當前位置:首頁 » 數據倉庫 » 資料庫有多少個控制電路
擴展閱讀
webinf下怎麼引入js 2023-08-31 21:54:13
堡壘機怎麼打開web 2023-08-31 21:54:11

資料庫有多少個控制電路

發布時間: 2023-02-24 15:43:39

❶ 一個例子說明內存資料庫為什麼比磁碟資料庫要快

假定在程序效率和關鍵過程相當且不計入緩存等措施的條件下,讀寫任何類型的數據都沒有直接操作文件來的快,不論MSYQL過程如何,最後都要到磁碟上去讀這個「文件」(記錄存儲區等效),所以當然這一切的前提是只讀 內容,無關任何排序或查找操作。

動態網站一般都是用資料庫來存儲信息,如果信息的及時性要求不高 可以加入緩存來減少頻繁讀寫資料庫。

兩種方式一般都支持,但是繞過操作系統直接操作磁碟的性能較高,而且安全性也較高,資料庫系中的磁碟性能一直都是瓶頸,大型資料庫一般基於unix
系統,當然win下也有,不常用應為win的不可靠性,unix下,用的是裸設備raw設備,就是沒有加工過的設備(unix下的磁碟分區屬於特殊設備,
以文件形式統一管理),由dbms直接管理,不通過操作系統,效率很高,可靠性也高,因為磁碟,cache和內存都是自己管理的,大型資料庫系統
db2,oracal,informix(不太流行了),mssql算不上大型資料庫系統。

1、直接讀文件相比資料庫查詢效率更勝一籌,而且文中還沒算上連接和斷開的時間。

2、一次讀取的內容越大,直接讀文件的優勢會越明
顯(讀文件時間都是小幅增長,這跟文件存儲的連續性和簇大小等有關系),這個結果恰恰跟書生預料的相反,說明MYSQL對更大文件讀取可能又附加了某些操
作(兩次時間增長了近30%),如果只是單純的賦值轉換應該是差異偏小才對。

3、寫文件和INSERT幾乎不用測試就可以推測出,資料庫效率只會更差。
4、很小的配置文件如果不需要使用到資料庫特性,更加適合放到獨立文件里存取,無需單獨創建數據表或記錄,很大的文件比如圖片、音樂等採用文件存儲更為方便,只把路徑或縮略圖等索引信息放到資料庫里更合理一些。

5、PHP上如果只是讀文件,file_get_contents比fopen、fclose更有效率,不包括判斷存在這個函數時間會少3秒左右。
6、fetch_row和fetch_object應該是從fetch_array轉換而來的,書生沒看過PHP的源碼,單從執行上就可以說明fetch_array效率更高,這跟網上的說法似乎相反。

磁碟讀寫與資料庫的關系:

一 磁碟物理結構
(1) 碟片:硬碟的盤體由多個碟片疊在一起構成。

在硬碟出廠時,由硬碟生產商完成了低級格式化(物理格式化),作用是將空白的碟片(Platter)劃分為一個個同圓心、不同半徑的磁軌
(Track),還將磁軌劃分為若干個扇區(Sector),每個扇區可存儲128×2的N次方(N=0.1.2.3)位元組信息,默認每個扇區的大小為
512位元組。通常使用者無需再進行低級格式化操作。

(2) 磁頭:每張碟片的正反兩面各有一個磁頭。

(3) 主軸:所有磁片都由主軸電機帶動旋轉。

(4) 控制集成電路板:復雜!上面還有ROM(內有軟體系統)、Cache等。

二 磁碟如何完成單次IO操作
(1) 尋道
當控制器對磁碟發出一個IO操作命令的時候,磁碟的驅動臂(Actuator
Arm)帶動磁頭(Head)離開著陸區(Landing
Zone,位於內圈沒有數據的區域),移動到要操作的初始數據塊所在的磁軌(Track)的正上方,這個過程被稱為尋道(Seeking),對應消耗的時
間被稱為尋道時間(Seek Time);

(2) 旋轉延遲
找到對應磁軌還不能馬上讀取數據,這時候磁頭要等到磁碟碟片(Platter)旋轉到初始數據塊所在的扇區(Sector)落在讀寫磁頭正下方之後才能開始讀取數據,在這個等待碟片旋轉到可操作扇區的過程中消耗的時間稱為旋轉延時(Rotational Delay);

(3) 數據傳送
接下來就隨著碟片的旋轉,磁頭不斷的讀/寫相應的數據塊,直到完成這次IO所需要操作的全部數據,這個過程稱為數據傳送(Data Transfer),對應的時間稱為傳送時間(Transfer Time)。完成這三個步驟之後單次IO操作也就完成了。

根據磁碟單次IO操作的過程,可以發現:
單次IO時間 = 尋道時間 + 旋轉延遲 + 傳送時間

進而推算IOPS(IO per second)的公式為:
IOPS = 1000ms/單次IO時間

三 磁碟IOPS計算
不同磁碟,它的尋道時間,旋轉延遲,數據傳送所需的時間各是多少?

1. 尋道時間
考慮到被讀寫的數據可能在磁碟的任意一個磁軌,既有可能在磁碟的最內圈(尋道時間最短),也可能在磁碟的最外圈(尋道時間最長),所以在計算中我們只考慮平均尋道時間。

在購買磁碟時,該參數都有標明,目前的SATA/SAS磁碟,按轉速不同,尋道時間不同,不過通常都在10ms以下:

3. 傳送時間2. 旋轉延時

和尋道一樣,當磁頭定位到磁軌之後有可能正好在要讀寫扇區之上,這時候是不需要額外的延時就可以立刻讀寫到數據,但是最壞的情況確實要磁碟旋轉整整
一圈之後磁頭才能讀取到數據,所以這里也考慮的是平均旋轉延時,對於15000rpm的磁碟就是(60s/15000)*(1/2) = 2ms。

(1) 磁碟傳輸速率
磁碟傳輸速率分兩種:內部傳輸速率(Internal Transfer Rate),外部傳輸速率(External Transfer Rate)。

內部傳輸速率(Internal Transfer Rate),是指磁頭與硬碟緩存之間的數據傳輸速率,簡單的說就是硬碟磁頭將數據從碟片上讀取出來,然後存儲在緩存內的速度。

理想的內部傳輸速率不存在尋道,旋轉延時,就一直在同一個磁軌上讀數據並傳到緩存,顯然這是不可能的,因為單個磁軌的存儲空間是有限的;

實際的內部傳輸速率包含了尋道和旋轉延時,目前家用磁碟,穩定的內部傳輸速率一般在30MB/s到45MB/s之間(伺服器磁碟,應該會更高)。

外部傳輸速率(External Transfer Rate),是指硬碟緩存和系統匯流排之間的數據傳輸速率,也就是計算機通過硬碟介面從緩存中將數據讀出交給相應的硬碟控制器的速率。

硬碟廠商在硬碟參數中,通常也會給出一個最大傳輸速率,比如現在SATA3.0的6Gbit/s,換算一下就是6*1024/8,768MB/s,通常指的是硬碟介面對外的最大傳輸速率,當然實際使用中是達不到這個值的。

這里計算IOPS,保守選擇實際內部傳輸速率,以40M/s為例。

(2) 單次IO操作的大小
有了傳送速率,還要知道單次IO操作的大小(IO Chunk Size),才可以算出單次IO的傳送時間。那麼磁碟單次IO的大小是多少?答案是:不確定。

操作系統為了提高 IO的性能而引入了文件系統緩存(File System Cache),系統會根據請求數據的情況將多個來自IO的請求先放在緩存裡面,然後再一次性的提交給磁碟,也就是說對於資料庫發出的多個8K數據塊的讀操作有可能放在一個磁碟讀IO里就處理了。

還有,有些存儲系統也是提供了緩存(Cache),接收到操作系統的IO請求之後也是會將多個操作系統的 IO請求合並成一個來處理。

不管是操作系統層面的緩存還是磁碟控制器層面的緩存,目的都只有一個,提高數據讀寫的效率。因此每次單獨的IO操作大小都是不一樣的,它主要取決於系統對於數據讀寫效率的判斷。這里以SQL Server資料庫的數據頁大小為例:8K。

(3) 傳送時間
傳送時間 = IO Chunk Size/Internal Transfer Rate = 8k/40M/s = 0.2ms

可以發現:
(3.1) 如果IO Chunk Size大的話,傳送時間會變大,從而導致IOPS變小;
(3.2) 機械磁碟的主要讀寫成本,都花在了定址時間上,即:尋道時間 + 旋轉延遲,也就是磁碟臂的擺動,和磁碟的旋轉延遲。
(3.3) 如果粗略的計算IOPS,可以忽略傳送時間,1000ms/(尋道時間 + 旋轉延遲)即可。

4. IOPS計算示例
以15000rpm為例:

(1) 單次IO時間
單次IO時間 = 尋道時間 + 旋轉延遲 + 傳送時間 = 3ms + 2ms + 0.2 ms = 5.2 ms

(2) IOPS
IOPS = 1000ms/單次IO時間 = 1000ms/5.2ms = 192 (次)
這里計算的是單塊磁碟的隨機訪問IOPS。

考慮一種極端的情況,如果磁碟全部為順序訪問,那麼就可以忽略:尋道時間 + 旋轉延遲 的時長,IOPS的計算公式就變為:IOPS = 1000ms/傳送時間
IOPS = 1000ms/傳送時間= 1000ms/0.2ms = 5000 (次)

顯然這種極端的情況太過理想,畢竟每個磁軌的空間是有限的,尋道時間 + 旋轉延遲 時長確實可以減少,不過是無法完全避免的。

四 資料庫中的磁碟讀寫
1. 隨機訪問和連續訪問
(1) 隨機訪問(Random Access)
指的是本次IO所給出的扇區地址和上次IO給出扇區地址相差比較大,這樣的話磁頭在兩次IO操作之間需要作比較大的移動動作才能重新開始讀/寫數據。

(2) 連續訪問(Sequential Access)
相反的,如果當次IO給出的扇區地址與上次IO結束的扇區地址一致或者是接近的話,那磁頭就能很快的開始這次IO操作,這樣的多個IO操作稱為連續訪問。

(3) 以SQL Server資料庫為例
數據文件,SQL Server統一區上的對象,是以extent(8*8k)為單位進行空間分配的,數據存放是很隨機的,哪個數據頁有空間,就寫在哪裡,除非通過文件組給每個表預分配足夠大的、單獨使用的文件,否則不能保證數據的連續性,通常為隨機訪問。
另外哪怕聚集索引表,也只是邏輯上的連續,並不是物理上。

日誌文件,由於有VLF的存在,日誌的讀寫理論上為連續訪問,但如果日誌文件設置為自動增長,且增量不大,VLF就會很多很小,那麼就也並不是嚴格的連續訪問了。

2. 順序IO和並發IO
(1) 順序IO模式(Queue Mode)
磁碟控制器可能會一次對磁碟組發出一連串的IO命令,如果磁碟組一次只能執行一個IO命令,稱為順序IO;

(2) 並發IO模式(Burst Mode)
當磁碟組能同時執行多個IO命令時,稱為並發IO。並發IO只能發生在由多個磁碟組成的磁碟組上,單塊磁碟只能一次處理一個IO命令。

(3) 以SQL Server資料庫為例
有的時候,盡管磁碟的IOPS(Disk Transfers/sec)還沒有太大,但是發現資料庫出現IO等待,為什麼?通常是因為有了磁碟請求隊列,有過多的IO請求堆積。

磁碟的請求隊列和繁忙程度,通過以下性能計數器查看:
LogicalDisk/Avg.Disk Queue Length
LogicalDisk/Current Disk Queue Length
LogicalDisk/%Disk Time

這種情況下,可以做的是:
(1) 簡化業務邏輯,減少IO請求數;
(2) 同一個實例下,多個資料庫遷移的不同實例下;
(3) 同一個資料庫的日誌,數據文件分離到不同的存儲單元;
(4) 藉助HA策略,做讀寫操作的分離。

3. IOPS和吞吐量(throughput)
(1) IOPS
IOPS即每秒進行讀寫(I/O)操作的次數。在計算傳送時間時,有提到,如果IO Chunk Size大的話,那麼IOPS會變小,假設以100M為單位讀寫數據,那麼IOPS就會很小。

(2) 吞吐量(throughput)
吞吐量指每秒可以讀寫的位元組數。同樣假設以100M為單位讀寫數據,盡管IOPS很小,但是每秒讀寫了N*100M的數據,吞吐量並不小。

(3) 以SQL Server資料庫為例
對於OLTP的系統,經常讀寫小塊數據,多為隨機訪問,用IOPS來衡量讀寫性能;
對於數據倉庫,日誌文件,經常讀寫大塊數據,多為順序訪問,用吞吐量來衡量讀寫性能。

磁碟當前的IOPS,通過以下性能計數器查看:
LogicalDisk/Disk Transfers/sec
LogicalDisk/Disk Reads/sec
LogicalDisk/Disk Writes/sec

磁碟當前的吞吐量,通過以下性能計數器查看:
LogicalDisk/Disk Bytes/sec
LogicalDisk/Disk Read Bytes/sec
LogicalDisk/Disk Write Bytes/sec

❷ 資料庫控制包括那幾個方面,作用是什麼

資料庫管理系統的數據控制功能為:數據安全性控制功能,即為了保證資料庫的數據安全可靠,防止不合法的使用造成數據泄漏和破壞,即避免數據被人偷看、篡改或搞壞;數據完整性控制功能,指為了保證資料庫中數據的正確、有效和相容,以防止不合語義的錯誤數據被輸入或輸出。

❸ 資料庫:DBMS的數據控制功能有哪些

資料庫就是一組經過計算機整理後的數據,存儲在一個或多個文件中,而管理這個資料庫的軟體就稱之為資料庫管理系統。
具有如下功能:
(1)數據定義功能。DBMS提供相應數據語言來定義(DDL)資料庫結構,它們是刻畫資料庫框架,並被保存在數據字典中。
(2)數據存取功能。DBMS提供數據操縱語言(DML),實現對資料庫數據的基本存取操作:檢索,插入,修改和刪除。
(3)資料庫運行管理功能。DBMS提供數據控制功能,即是數據的安全性、完整性和並發控制等對資料庫運行進行有效地控制和管理,以確保數據正確有效。
(4)資料庫的建立和維護功能。包括資料庫初始數據的裝入,資料庫的轉儲、恢復、重組織,系統性能監視、分析等功能。
(5)資料庫的傳輸。DBMS提供處理數據的傳輸,實現用戶程序與DBMS之間的通信,通常與操作系統協調完成。

❹ 資料庫系統由哪幾個部分組成

資料庫系統一般由4個部分組成:
1、資料庫是指長期存儲在計算機內的,有組織,可共享的數據的集合。
2、硬體:構成計算機系統的各種物理設備,包括存儲所需的外部設備。
3、軟體:包括操作系統、資料庫管理系統及應用程序。
4、人員:主要有4類。第一類為系統分析員和資料庫設計人員,系統分析員負責應用系統的需求分析和規范說明,和用戶及資料庫管理員一起確定系統的硬體配置,並參與資料庫系統的概要設計。第二類為應用程序員,負責編寫使用資料庫的應用程序。第三類為最終用戶,他們利用系統的介面或查詢語言訪問資料庫。第四類為資料庫管理員,負責資料庫的總體信息控制。

❺ 資料庫系統組成部分都包括什麼

資料庫系統組成部分包括資料庫,硬體,軟體和人員。

1、資料庫(database,DB)是指長期存儲在計算機內的,有組織,可共享的數據的集合。資料庫中的數據按一定的數學模型組織、描述和存儲,具有較小的冗餘,較高的數據獨立性和易擴展性,並可為各種用戶共享。

2、硬體:構成計算機系統的各種物理設備,包括存儲所需的外部設備。硬體的配置應滿足整個資料庫系統的需要。

3、軟體:包括操作系統、資料庫管理系統及應用程序。資料庫管理系統(database management system,DBMS)是資料庫系統的核心軟體,是在操作系統的支持下工作,解決如何科學地組織和存儲數據,如何高效獲取和維護數據的系統軟體。其主要功能包括:數據定義功能、數據操縱功能、資料庫的運行管理和資料庫的建立與維護。

4、人員:主要有4類。第一類為系統分析員和資料庫設計人員:系統分析員負責應用系統的需求分析和規范說明,他們和用戶及資料庫管理員一起確定系統的硬體配置,並參與資料庫系統的概要設計。資料庫設計人員負責資料庫中數據的確定、資料庫各級模式的設計。第二類為應用程序員,負責編寫使用資料庫的應用程序。這些應用程序可對數據進行檢索、建立、刪除或修改。第三類為最終用戶,他們利用系統的介面或查詢語言訪問資料庫。第四類用戶是資料庫管理員(data base administrator,DBA),負責資料庫的總體信息控制。DBA的具體職責包括:具體資料庫中的信息內容和結構,決定資料庫的存儲結構和存取策略,定義資料庫的安全性要求和完整性約束條件,監控資料庫的使用和運行,負責資料庫的性能改進、資料庫的重組和重構,以提高系統的性能。

❻ 什麼是資料庫完整性,關系資料庫中完整性控制有幾個方面,分別通過什麼機制保證

關系的完整性約束通常包括域完整性,實體完整性、參照完整性和用戶定義完整性。
1、域完整性是保證資料庫欄位取值的合理性,是最簡單、最基本的約束。在當今的關系DBMS中,一般都有域完整性約束檢查功能。
2、實體完整性,作用是指在傳輸、存儲信息或數據的過程中,確保信息或數據不被未授權的篡改或在篡改後能夠被迅速發現。按實體完整性規則要求,主屬性不得取空值,如主關鍵字是多個屬性的組合,則所有主屬性均不得取空值。
3、參照完整性,作用是定義建立關系之間聯系的主關鍵字與外部關鍵字引用的約束條件。關系資料庫中通常都包含多個存在相互聯系的關系,關系與關系之間的聯系是通過公共屬性來實現的。根據實體完整性要求,主關鍵字不得取空值。
4、用戶定義完整性作用是根據應用環境的要求和實際的需要,對某一具體應用所涉及的數據提出約束性條件。這一約束機制一般不應由應用程序提供,而應有由關系模型提供定義並檢驗,用戶定義完整性主要包括欄位有效性約束和記錄有效性。

❼ 簡述資料庫管理系統的功能

按功能劃分,資料庫管理系統大致可分為6個部分:

1、模式翻譯:提供數據定義語言。用它書寫的資料庫模式被翻譯為內部表示。資料庫的邏輯結構、完整性約束和物理儲存結構保存在內部的數據字典中。資料庫的各種數據操作(如查找、修改、插入和刪除等)和資料庫的維護管理都是以資料庫模式為依據的。

2、應用程序的編譯:把包含著訪問資料庫語句的應用程序,編譯成在dbms支持下可運行的目標程序。

3、互動式查詢:提供易使用的互動式查詢語言,如SQL.DBMS負責執行查詢命令,並將查詢結果顯示在屏幕上。

4、數據的組織與存取:提供數據在外圍儲存設備上的物理組織與存取方法。

5、事務運行管理:提供事務運行管理及運行日誌,事務運行的安全性監控和數據完整性檢查,事務的並發控制及系統恢復等功能。

6、資料庫的維護:為資料庫管理員提供軟體支持,包括數據安全控制、完整性保障、資料庫備份、資料庫重組以及性能監控等維護工具。



(7)資料庫有多少個控制電路擴展閱讀:

計算機資料庫管理系統最大的優勢在於能夠進行數據信息的長期存儲和管理。而這一特點在很多領域都有廣泛的應用。但是需要注意的是技術人員在增強信息存管率時應當對用戶的身份進行細致識別,防止非法用戶的入侵,最終減少惡意訪問、黑客攻擊等問題,真正保障數據信息的安全。

在計算機網路應用的過程中經常會出現信息丟失、系統崩潰等現象,致使數據信息損壞,無法正常調用。

而計算機資料庫管理系統主要就是數據的集合存儲,在這一存儲的過程中,管理系統會按照一定的模式進行數據存儲,並建立較為復雜的數據結構關系。這樣既能實現數據的單獨處理,也能實現數據結合的使用、處理,從而實現高效率的數據恢復。