當前位置:首頁 » 數據倉庫 » 資料庫搜索效率
擴展閱讀
webinf下怎麼引入js 2023-08-31 21:54:13
堡壘機怎麼打開web 2023-08-31 21:54:11

資料庫搜索效率

發布時間: 2023-06-02 02:20:56

Ⅰ 如何提升Oracle資料庫搜索效率

需要用索引來解決,索引的創建規則如下:
1、表的
主鍵

外鍵
必須有索引;
2、數據量超過300的表應該有索引;
3、經常與其他表進行連接的表,在連接欄位上應該建立索引;
4、經常出現在Where子句中的欄位,特別是大表的欄位,應該建立索引;
5、索引應該建在選擇性高的欄位上;
6、索引應該建在小欄位上,對於大的文本欄位甚至超長欄位,不要建索引;
7、復合索引的建立需要進行仔細分析;盡量考慮用單欄位索引代替:
A、
正確選擇
復合索引中的主列欄位,一般是選擇性較好的欄位;
B、復合索引的幾個欄位是否經常同時以AND方式出現在Where子句中?單欄位查詢是否極少甚至沒有?如果是,則可以建立復合索引;否則考慮單欄位索引;
C、如果復合索引中包含的欄位經常單獨出現在Where子句中,則分解為多個單欄位索引;
D、如果復合索引所包含的欄位超過3個,那麼仔細考慮其必要性,考慮減少復合的欄位;
E、如果既有單欄位索引,又有這幾個欄位上的復合索引,一般可以刪除復合索引;
8、頻繁進行
數據操作
的表,不要建立太多的索引;
9、刪除無用的索引,避免對執行計劃造成負面影響;
以上是一些普遍的建立索引時的判斷依據。一言以蔽之,索引的建立必須慎重,對每個索引的必要性都應該經過仔細分析,要有建立的依據。因為太多的索引與不充分、不正確的索引對性能都毫無益處:在表上建立的每個索引都會增加存儲開銷,索引對於插入、刪除、更新操作也會增加處理上的開銷。另外,過多的復合索引,在有單欄位索引的情況下,一般都是沒有
存在價值
的;相反,還會降低數據增加刪除時的性能,特別是對頻繁更新的表來說,負面影響更大。

Ⅱ 常見的數據檢索演算法有哪些資料庫都採用什麼樣的檢索方式如何提高檢索的效率

您好,你的問題,我之前好像也遇到過,以下是我原來的解決思路和方法,希望能幫助到你,若有錯誤,還望見諒!信息檢索方法包括:普通法、追溯法和分段法。1、普通法是利用書目、文摘、索引等檢索工具進行文獻資料查找的方法。運用這種方法的關鍵在於熟悉各種檢索工具的性質、特點和查找過程,從不同角度查找。普通法又可分為順檢法和倒檢法。2、追溯法是利用已有文獻所附的參考文獻不斷追蹤查找的方法,在沒有檢索工具或檢索工具不全時,此法可獲得針對性很強的資料,查准率較高,查全率較差。3、分段法是追溯法和普通法的綜合,它將兩種方法分期、分段交替使用,直至查到所需資料為止。(2)資料庫搜索效率擴展閱讀檢索原因信息檢索是獲取知識的捷徑美國普林斯頓大學物理系一個年輕大學生名叫約瀚·菲利普,在圖書館里借閱有關公開資料,僅用四個月時間,就畫出一張製造原子彈的設計圖。他設計的原子彈,體積小(棒球大小)、重量輕(7.5公斤)、威力大(相當廣島原子彈3/4的威力),造價低(當時僅需兩千美元),致使一些國家(法國、巴基斯坦等)紛紛致函美國大使館,爭相購買他的設計拷貝。二十世紀七十年代,美國核專家泰勒收到一份題為《製造核彈的方法》的報告,他被報告精湛的技術設計所吸引,驚嘆地說:「至今我看到的報告中,它是最詳細、最全面的一份。」但使他更為驚異的是,這份報告竟出於哈佛大學經濟專業的青年學生之手,而這個四百多頁的技術報告的全部信息來源又都是從圖書館那些極為平常的、完全公開的圖書資料中所獲得的。參考資料來源:網路——信息檢索,非常感謝您的耐心觀看,如有幫助請採納,祝生活愉快!謝謝!

Ⅲ 怎樣優化資料庫查詢怎樣才能提高資料庫的查詢效率

網上有好多這方面的帖子,但我就不去找了。把我知道的幾點給你列一下。
第一點:網速得給力,也就是應用伺服器和資料庫伺服器之間不要做過多限制,特別是防火牆方面的,最好在一個網段
第二點:使用資料庫連接池,無需創建連接,直接查詢
第三點:查詢語句上要明確指定查詢那些列
第四點:連接查詢,嵌套查詢方面要仔細斟酌,選擇最優的方案
第五點:分清各個函數、一些語法的特性,比如要分得清什麼時候用 exists 什麼時候用in
第六點:隨著數據量的增大,再好的語句也會慢下來,可以考慮利用分區
。。。
其他方面還有,可以查看下論壇上的帖子總結一下

Ⅳ 怎麼提高資料庫查詢效率

提高查詢效率首先要想到的就是加索引,那什麼是索引呢?
Mysql索引的建立對於MySQL的高效運行是很重要的,索引可以大大提高MySQL的檢索速度。
打個比方,如果合理的設計且使用索引的MySQL是一輛蘭博基尼的話,那麼沒有設計和使用索引的MySQL就是一個人力三輪車。
索引分單列索引和組合索引。單列索引,即一個索引只包含單個列,一個表可以有多個單列索引,但這不是組合索引。組合索引,即一個索引包含多個列。
創建索引時,你需要確保該索引是應用在 SQL 查詢語句的條件(一般作為 WHERE 子句的條件)。
實際上,索引也是一張表,該表保存了主鍵與索引欄位,並指向實體表的記錄。
上面都在說使用索引的好處,但過多的使用索引將會造成濫用。因此索引也會有它的缺點:雖然索引大大提高了查詢速度,同時卻會降低更新表的速度,如對表進行INSERT、UPDATE和DELETE。因為更新表時,MySQL不僅要保存數據,還要保存一下索引文件。
建立索引會佔用磁碟空間的索引文件。
如何使用索引呢?
首先索引有窄索引和寬索引兩個概念,窄索引是指索引的列數為1~2,寬索引就是說索引的列數大於2。
因為窄索引的效率要高於寬索引,所以能用窄索引就不要使用寬索引。
那麼對單欄位索引和復合索引應該如何使用?
目錄
單欄位索引的情況:
復合索引的優勢:
兩者的比較:
單欄位索引的情況:
1.表的主鍵,外鍵必須有索引
2.數據量超過300的表應該有索引
3.經常與其他表進行連接的表,在連接欄位上應該建立索引
4.經常出現在where字句中的欄位,特點是大表的欄位,應該建立索引
5.索引應該建在選擇性高的欄位上
6.索引應該建在小欄位上,對於大的文本欄位甚至超長欄位,不要建立索引
7.盡量用單欄位索引代替復合索引,復合索引的建立需要仔細的斟酌
復合索引的優勢:
1.單欄位索引很少甚至沒有
2.復合索引的幾個欄位經常同時以AND的方式出現在where語句
當where語句中的條件是OR時,索引不起作用。
兩者的比較:
以一個sql語句來舉例:SELECT * FROM STUDENT WHERE SEX="男" AND SAGE=18;
若在sex 和 sage 兩個欄位分別創建了單欄位索引,mysql查詢每次只能使用一個索引,雖然對於未添加索引時使用全盤掃描,我們的效率提升了很多,但如果在sex 和 sage兩個欄位添加復合索引,效率會跟高,如: 創建(sex, age,teacher)的復合索引,那麼其實相當於創建了(area,age,teacher)、(area,age)、(area)三個索引,這被稱為最佳左前綴特性。
那對於兩者優缺點的比較:
1.對於具有2個用and連接條件的語句,且2個列之間的關聯度較低的情況下,復合索引有一定優勢。
2.對於具有2個用and連接條件的語句,且2個列之間的關聯度較高的情況下,復合索引有很大優勢。
3.對於具有2個用or連接條件的語句,單索引有一定優勢,因為這種情況下復合索引將會導致全表掃描,而前者可以用到indexmerge的優化。
以上就是如何提高查詢效率的全部內容,如果有幫助到你的話記得點個關注喲

Ⅳ 影響數據檢索效率的幾個因素

影響數據檢索效率的幾個因素
數據檢索有兩種主要形態。第一種是純資料庫型的。典型的結構是一個關系型數據,比如 mysql。用戶通過 SQL 表達出所需要的數據,mysql 把 SQL 翻譯成物理的數據檢索動作返回結果。第二種形態是現在越來越流行的大數據玩家的玩法。典型的結構是有一個分區的數據存儲,最初這種存儲就是原始的 HDFS,後來開逐步有人在 HDFS 上加上索引的支持,或者乾脆用 Elasticsearc 這樣的數據存儲。然後在存儲之上有一個分布式的實時計算層,比如 Hive 或者 Spark SQL。用戶用 Hive SQL 提交給計算層,計算層從存儲里拉取出數據,進行計算之後返回給用戶。這種大數據的玩法起初是因為 SQL 有很多 ad-hoc 查詢是滿足不了的,乾脆讓用戶自己寫 map/rece 想怎麼算都可以了。但是後來玩大了之後,越來越多的人覺得這些 Hive 之類的方案查詢效率怎麼那麼低下啊。於是一個又一個項目開始去優化這些大數據計算框架的查詢性能。這些優化手段和經典的資料庫優化到今天的手段是沒有什麼兩樣的,很多公司打著搞計算引擎的旗號干著重新發明資料庫的活。所以,回歸本質,影響數據檢索效率的就那麼幾個因素。我們不妨來看一看。
數據檢索乾的是什麼事情
定位 => 載入 => 變換
找到所需要的數據,把數據從遠程或者磁碟載入到內存中。按照規則進行變換,比如按某個欄位group by,取另外一個欄位的sum之類的計算。
影響效率的四個因素
讀取更少的數據
數據本地化,充分遵循底層硬體的限制設計架構
更多的機器
更高效率的計算和計算的物理實現
原則上的四點描述是非常抽象的。我們具體來看這些點映射到實際的資料庫中都是一些什麼樣的優化措施。
讀取更少的數據
數據越少,檢索需要的時間當然越少了。在考慮所有技術手段之前,最有效果的恐怕是從業務的角度審視一下我們是否需要從那麼多的數據中檢索出結果來。有沒有可能用更少的數據達到同樣的效果。減少的數據量的兩個手段,聚合和抽樣。如果在入庫之前把數據就做了聚合或者抽樣,是不是可以極大地減少查詢所需要的時間,同時效果上並無多少差異呢?極端情況下,如果需要的是一天的總訪問量,比如有1個億。查詢的時候去數1億行肯定快不了。但是如果統計好了一天的總訪問量,查詢的時候只需要取得一條記錄就可以知道今天有1個億的人訪問了。
索引是一種非常常見的減少數據讀取量的策略了。一般的按行存儲的關系型資料庫都會有一個主鍵。用這個主鍵可以非常快速的查找到對應的行。KV存儲也是這樣,按照Key可以快速地找到對應的Value。可以理解為一個Hashmap。但是一旦查詢的時候不是用主鍵,而是另外一個欄位。那麼最糟糕的情況就是進行一次全表的掃描了,也就是把所有的數據都讀取出來,然後看要的數據到底在哪裡,這就不可能快了。減少數據讀取量的最佳方案就是,建立一個類似字典一樣的查找表,當我們找 username=wentao 的時候,可以列舉出所有有 wentao 作為用戶名的行的主鍵。然後拿這些主鍵去行存儲(就是那個hashmap)里撈數據,就一撈一個准了。
談到索引就不得不談一下一個查詢使用了兩個欄位,如何使用兩個索引的問題。mysql的行為可以代表大部分主流資料庫的處理方式:
基本上來說,經驗表明有多個單欄位的索引,最後資料庫會選一最優的來使用。其餘欄位的過濾仍然是通過數據讀取到內存之後,用predicate去判斷的。也就是無法減少數據的讀取量。
在這個方面基於inverted index的數據就非常有特點。一個是Elasticsearch為代表的lucene系的資料庫。另外一個是新銳的druid資料庫。
效果就是,這些資料庫可以把單欄位的filter結果緩存起來。多個欄位的查詢可以把之前緩存的結果直接拿過來做 AND 或者 OR 操作。
索引存在的必要是因為主存儲沒有提供直接的快速定位的能力。如果訪問的就是資料庫的主鍵,那麼需要讀取的數據也就非常少了。另外一個變種就是支持遍歷的主鍵,比如hbase的rowkey。如果查詢的是一個基於rowkey的范圍,那麼像hbase這樣的資料庫就可以支持只讀取到這個范圍內的數據,而不用讀取不再這個范圍內的額外數據,從而提高速度。這種加速的方式就是利用了主存儲自身的物理分布的特性。另外一個更常見的場景就是 partition。比如 mysql 或者 postgresql 都支持分區表的概念。當我們建立了分區表之後,查找的條件如果可以過濾出分區,那麼可以大幅減少需要讀取的數據量。比 partition 更細粒度一些的是 clustered index。它其實不是一個索引(二級索引),它是改變了數據在主存儲內的排列方式,讓相同clustered key的數據彼此緊挨著放在一起,從而在查詢的時候避免掃描到無關的數據。比 partition 更粗一些的是分庫分表分文件。比如我們可以一天建立一張表,查詢的時候先定位到表,再執行 SQL。比如 graphite 給每個 metric 創建一個文件存放採集來的 data point,查詢的時候給定metric 就可以定位到一個文件,然後只讀取這個文件的數據。
另外還有一點就是按行存儲和按列存儲的區別。按列存儲的時候,每個列是一個獨立的文件。查詢用到了哪幾個列就打開哪幾個列的文件,沒有用到的列的數據碰都不會碰到。反觀按行存儲,一張中的所有欄位是彼此緊挨在磁碟上的。一個表如果有100個欄位,哪怕只選取其中的一個欄位,在掃描磁碟的時候其餘99個欄位的數據仍然會被掃描到的。
考慮一個具體的案例,時間序列數據。如何使用讀取更少的數據的策略來提高檢索的效率呢?首先,我們可以保證入庫的時間粒度,維度粒度是正好是查詢所需要的。如果查詢需要的是5分鍾數據,但是入庫的是1分鍾的,那麼就可以先聚合成5分鍾的再存入資料庫。對於主存儲的物理布局選擇,如果查詢總是針對一個時間范圍的。那麼把 timestamp 做為 hbase 的 rowkey,或者 mysql 的 clustered index 是合適。這樣我們按時間過濾的時候,選擇到的是一堆連續的數據,不用讀取之後再過濾掉不符合條件的數據。但是如果在一個時間范圍內有很多中數據,比如1萬個IP,那麼即便是查1個IP的數據也需要把1萬個IP的數據都讀取出來。所以可以把 IP 維度也編碼到 rowkey 或者 clustered index 中。但是假如另外還有一個維度是 OS,那麼查詢的時候 IP 維度的 rowkey 是沒有幫助的,仍然是要把所有的數據都查出來。這就是僅依靠主存儲是無法滿足各種查詢條件下都能夠讀取更少的數據的原因。所以,二級索引是必要的。我們可以把時間序列中的所有維度都拿出來建立索引,然後查詢的時候如果指定了維度,就可以用二級索引把真正需要讀取的數據過濾出來。但是實踐中,很多資料庫並不因為使用了索引使得查詢變快了,有的時候反而變得更慢了。對於 mysql 來說,存儲時間序列的最佳方式是按時間做 partition,不對維度建立任何索引。查詢的時候只過濾出對應的 partition,然後進行全 partition 掃描,這樣會快過於使用二級索引定位到行之後再去讀取主存儲的查詢方式。究其原因,就是數據本地化的問題了。
[page]
數據本地化
數據本地化的實質是軟體工程師們要充分尊重和理解底層硬體的限制,並且用各種手段規避問題最大化利用手裡的硬體資源。本地化有很多種形態
最常見的最好理解的本地化問題是網路問題。我們都知道網路帶寬不是無限的,比本地磁碟慢多了。如果可能盡量不要通過網路去訪問數據。即便要訪問,也應該一次抓取多一些數據,而不是一次搞一點,然後搞很多次。因為網路連接和來回的開銷是非常高的。這就是 data locality 的問題。我們要把計算盡可能的靠近數據,減少網路上傳輸的數據量。
這種帶寬引起的本地化問題,還有很多。網路比硬碟慢,硬碟比內存慢,內存比L2緩存慢。做到極致的資料庫可以讓計算完全發生在 L2 緩存內,盡可能地避免頻繁地在內存和L2之間倒騰數據。
另外一種形態的問題化問題是磁碟的順序讀和隨機讀的問題。當數據彼此靠近地物理存放在磁碟上的時候,順序讀取一批是非常快的。如果需要隨機讀取多個不連續的硬碟位置,磁頭就要來回移動從而使得讀取速度快速下降。即便是 SSD 硬碟,順序讀也是要比隨機讀快的。
基於盡可能讓數據讀取本地化的原則,檢索應該盡可能地使用順序讀而不是隨機讀。如果可以的話,把主存儲的row key或者clustered index設計為和查詢提交一樣的。時間序列如果都是按時間查,那麼按時間做的row key可以非常高效地以順序讀的方式把數據拉取出來。類似地,按列存儲的數據如果要把一個列的數據都取出來加和的話,可以非常快地用順序讀的方式載入出來。
二級索引的訪問方式典型的隨機讀。當查詢條件經過了二級索引查找之後得到一堆的主存儲的 key,那麼就需要對每個 key 進行一次隨機讀。即便彼此僅靠的key可以用順序讀做一些優化,總體上來說仍然是隨機讀的模式。這也就是為什麼時間序列數據在 mysql 里建立了索引反而比沒有建索引還要慢的原因。
為了盡可能的利用順序讀,人們就開始想各種辦法了。前面提到了 mysql 里的一行數據的多個列是彼此緊靠地物理存放的。那麼如果我們把所需要的數據建成多個列,那麼一次查詢就可以批量獲得更多的數據,減少隨機讀取的次數。也就是把之前的一些行變為列的方式來存放,減少行的數量。這種做法的經典案例就是時間序列數據,比如可以一分鍾存一行數據,每一秒的值變成一個列。那麼行的數量可以變成之前的1/60。
但是這種行變列的做法在按列存儲的資料庫里就不能直接照搬了,有些列式資料庫有column family的概念,不同的設置在物理上存放可能是在一起的也可能是分開的。對於 Elasticsearch 來說,要想減少行的數量,讓一行多pack一些數據進去,一種做法就是利用 nested document。內部 Elasticsearch 可以保證一個 document 下的所有的 nested document是物理上靠在一起放在同一個 lucene 的 segment 內。
網路的data locality就比較為人熟知了。map rece的大數據計算模式就是利用map在數據節點的本地把數據先做一次計算,往往計算的結果可以比原數據小很多。然後再通過網路傳輸匯總後做 rece 計算。這樣就節省了大量網路傳輸數據的時間浪費和資源消耗。現在 Elasticsearch 就支持在每個 data node 上部署 spark。由 spark 在每個 data node 上做計算。而不用把數據都查詢出來,用網路傳輸到 spark 集群里再去計算。這種資料庫和計算集群的混合部署是高性能的關鍵。類似的還有 storm 和 kafka 之間的關系。
網路的data locality還有一個老大難問題就是分布式大數據下的多表join問題。如果只是查詢一個分布式表,那麼把計算用 map rece 表達就沒有多大問題了。但是如果需要同時查詢兩個表,就意味著兩個表可能不是在物理上同樣均勻分布的。一種最簡單的策略就是找出兩張表中最小的那張,然後把表的內容廣播到每個節點上,再做join。復雜一些的是對兩個單表做 map rece,然後按照相同的 key 把部分計算的結果匯集在一起。第三種策略是保證數據分布的方式,讓兩張表查詢的時候需要用到的數據總在一起。沒有完美的方案,也不大可能有完美的方案。除非有一天網路帶寬可以大到忽略不計的地步。
更多的機器
這個就沒有什麼好說的了。多一倍的機器就多一倍的 CPU,可以同時計算更多的數據。多一倍的機器就多一倍的磁頭,可以同時掃描更多的位元組數。很多大數據框架的故事就是講如何如何通過 scale out解決無限大的問題。但是值得注意的是,集群可以無限大,數據可以無限多,但是口袋裡的銀子不會無限多的。堆機器解決問題比升級大型機是要便宜,但是機器堆多了也是非常昂貴的。特別是 Hive 這些從一開始就是分布式多機的檢索方案,剛開始的時候效率並不高。堆機器是一個乘數,當資料庫本來單機性能不高的時候,乘數大並不能起到決定性的作用。
更高效的計算和計算實現
檢索的過程不僅僅是磁碟掃描,它還包括一個可簡單可復雜的變換過程。使用 hyperloglog,count min-sketch等有損演算法可以極大地提高統計計算的性能。資料庫的join也是一個經常有演算法創新的地方。
計算實現就是演算法是用C++實現的還是用java,還是python實現的。用java是用大Integer實現的,還是小int實現的。不同的語言的實現方式會有一些固定的開銷。不是說快就一定要C++,但是 python 寫 for 循環是顯然沒有指望的。任何數據檢索的環節只要包含 python/ruby 這些語言的逐條 for 循環就一定快不起來了。
結論
希望這四點可以被記住,成為一種指導性的優化數據檢索效率的思維框架。無論你是設計一個mysql表結構,還是優化一個spark sql的應用。從這四個角度想想,都有哪些環節是在拖後腿的,手上的工具有什麼樣的參數可以調整,讓隨機讀變成順序讀,表結構怎麼樣設計可以最小化數據讀取的量。要做到這一點,你必須非常非常了解工具的底層實現。而不是盲目的相信,xx資料庫是最好的資料庫,所以它一定很快之類的。如果你不了解你手上的資料庫或者計算引擎,當它快的時候你不知道為何快,當它慢的時候你就更加無從優化了。