當前位置:首頁 » 文件傳輸 » 標記環傳遞介質訪問
擴展閱讀
webinf下怎麼引入js 2023-08-31 21:54:13
堡壘機怎麼打開web 2023-08-31 21:54:11

標記環傳遞介質訪問

發布時間: 2022-04-14 17:08:30

A. 高速區域網的FDDI光纖環網

FDDI即光纖分布式數據介面(Fiber Distributed Data Interface)是計算機網路技術發展到高速數據通信階段出現的第一項高速網路技術。FDDI光纖環 網是由美國國家標准協會ANSI X3T9.5委員確定的一種使用光纖作為傳輸媒體的、高速的、通用的令牌環形網,後來又成為國際標准ISO9314. 1.高傳輸速率。 FDDI網充分利用光纖通信技術帶來的高帶寬,實現了100Mbit/s的高傳輸速率。
2.大容量。 FDDI網在100Mbit/s傳輸速率的基礎上,採用了多數據幀的數據處理方式,大大提高了網路帶寬的利用率,做到了大容量的數據傳輸。另外,網上的站點數目也明顯增加,連接多達500個站雙連接站或者1000個單連接站。3.遠距離。 由於光纖的傳輸損耗很低,延長了通信距離,使用多模光纖最大站間距離可為2kM,使用單模光纖光纖站間距離更長。FDDI網的環路長度可以達到100kM,即光纖總長度為200kM,網路覆蓋范圍遠遠超過了傳統的區域網范圍。
4.高可靠性。 FDDI網路採用有容錯能力的雙環拓撲結構,再加上使用信號衰減小,抗干擾能力強的光纖傳輸媒體以及相應的控制設備,其網路可靠性大為提高。網路系統可以
在多重故障的環境下自行重構,保證其安全運轉。
5.保密性好。 光纖通信由於沒有電流的直接作用影響,僅以光束在光線內部傳輸,不產生任何形式的輻射,電子竊聽技術對此毫無作用,外界無法完成非侵入式竊聽。即使對光纜進行侵入式竊聽,也極容易被檢測出來。6.良好的互操作性。 FDDI網使用IEEE 802.2LLC協議以及基於IEEE 802.5令牌環標準的令牌傳遞MAC協議,因而與IEEE 802 區域網兼容。另外,FDDI技術已經正式被國際標准化組織接納為國際標准,為FDDI產品具有良好的互操作性提供了保證。 從FDDI網的網路拓撲結構示意圖可以看出FDDI網由工作站、集線器、傳輸設備和網卡等組成。
1.工作站。 在FDDI上所連接的工作站有以下兩類。一類是:雙連接站(DAS)又稱為A類站,它提供了2個供連接光纜的埠,同時與主環和副環連接,DAS具有較高的可靠性,適用於較重要的工作站,當某一工作站發生故障時,可以用光旁路開關將數據從該站旁繞開。而當環路的某處發生故障時,通過主環、副環的重新組合,可以使環路仍然正常工作。二類是:單連接站(SAS)又稱為B站,它僅僅提供一對輸入輸出通路,不能直接與具有兩隊以上輸入輸出通路的雙環相連。SAS利於一條雙工電纜通過集線器再連接到主環上。此類站的重要性較小,出現故障時可以被直接隔離掉。
2.集線器。 為了保證網路整體的可靠性以及網路性能,在環上不宜連接過多的站點,通常是將工作站通過集線器連接至主環上。在FDDI中,集線器分為兩類:單連接集線器SAC。用於連接B類站;雙連接集線器DAC。用於連接A類站。集線器的主要功能是連接工作站,具體功能有以下幾項。1、數據幀的發送與接收功能。2、支持標識和確認幀處理,並能實現定時令牌協議。3、站點旁路。站點旁路功能是為了解決站點故障而設計的。當連接在集線器上的工作站發生故障或者斷電等情況時,集線器會自動使設備與網路隔離,從而不會影響環路的正常工作。4、網路管理。由於FDDI站點是分布式的,許多管理工作需要由集線器來承擔。例如搜集網路性能參數,執行對網路上各個站點的管理,負責對各個站點進行診斷和測試,並對出錯的站點從邏輯上進行隔離等。
3.傳輸設備。FDDI網中環路的傳輸介質主要是光纖。FDDI標准中推薦使用62.5/125um的多模光纖,其波長為1300nm,使用二極體而不是激光二極體。光纖要有相應的插頭才能與設備相連接,目前用得最多的光纖插頭是MIC,它可以接兩根光纖;其次還有ST,它只能接一根光纖。
4.FDDI網卡。 網卡也稱網路適配器,適用於連接站點的設備,凡是要直接連接到FDDI網上的設備,都應配置FDDI網卡。FDDI網卡一端接在站點的匯流排上,另一端與物理媒體相連。網卡的功能主要分為:完成信號的接收與發送工作,並實現接收和發送的自動檢測;具有接收和發送數據緩沖的能力;完成信號的串/並轉換工作;完成發送和接收鏈路的管理工作;對錯誤等有檢測能力;完成幀的裝配與拆卸功能等。
FDDI和標記環介質訪問控制標准接近,有以下幾點好處:(1)標記環協議在重負載條件下,運行效率很高,因此FDDI可得到同樣的效率。(2)使用相似的幀格式,全球不同速率的環網互連。(3)已經熟悉IEEE802.5的人很容易了解FDDI(4)已經積累了IEEE802.5的實踐經驗,特別是將它做集成電路片的經濟,用於FDDI系統和元件的製造。 由此可知:FDDI MAC幀和IEEE802.5的幀十分相似,不同之處包括:FDDI幀含有前文,對高數據率下時鍾同步十分重要;允許在網內使用16位和48位地址,比IEEE802.5更加靈活;控制幀也有不同。
FDDI和IEEE802.5的兩個主要區別:(1)FDDI協議規定發送站發送完幀後,立即發送一幅新的標記幀,而IEEE802.5規定當發送出去的幀的前沿回送至發送站時,才發送新的標記幀。(2)容量分配方案不同,兩者都可採用單個標記形式,對環上各站點提供同等公平的訪問權,也可優先分配給某些站點。IEEE802.5使用優先順序和預約方案。

B. 區域網中的介質訪問控制方法都有什麼

常用的介質訪問控制方式有時分多路復用(TDM)、帶沖突檢測的載波監聽多路訪問介質控制(CSMA/CD)和令牌環(Token Ring)。

1、CSMA/CD為標准乙太網、快速乙太網和千兆乙太網中統一採用的介質爭用處理協議(但在萬兆乙太網中,由於採用的是全雙工通信,所以不再採用這一協議)。

2、令牌環工作原理:網上站點要求發送幀,必須等待空令牌。當獲取空令牌,則將它改為忙令牌,後隨數據幀;環內其它站點不能發送數據。環上站點接收、移位數據,並進行檢測。如果與本站地址相同,則同時接收數據,接收完成後,設置相應標記。

該幀在環上循環一周後,回到發送站,發送站檢測相應標記後,將此幀移去。將忙令牌改成空令牌,繼續傳送,供後續站發送幀。



(2)標記環傳遞介質訪問擴展閱讀

在CSMA中,由於信道傳播時延的存在,即使通信雙方的站點都沒有偵聽到載波信號,在發送數據時仍可能會發生沖突,因為他們可能會在檢測到介質空閑時同時發送數據,致使沖突發生。盡管CSMA可以發現沖突,但它並沒有先知的沖突檢測和阻止功能,致使沖突發生頻繁。

一種CSMA的改進方案是使發送站點在傳輸過程中仍繼續偵聽介質,以檢測是否存在沖突。如果兩個站點都在某一時間檢測到信道是空閑的,並且同時開始傳送數據,則它們幾乎立刻就會檢測到有沖突發生。

如果發生沖突,信道上可以檢測到超過發送站點本身發送的載波信號幅度的電磁波,由此判斷出沖突的存在。一旦檢測到沖突,發送站點就立即停止發送,並向匯流排上發一串阻塞信號,用以通知匯流排上通信的對方站點,快速地終止被破壞的幀,可以節省時間和帶寬。

C. 區域網基本技術中有哪幾種媒體訪問控制方法

計算機區域網一般採用共享介質,這樣可以節約區域網的造價。對於共享介質,關鍵問題是當多個站點要同時訪問介質時,如何進行控制,這就涉及到區域網的介質訪問控制(Medium Access Control,MAC)協議。在網路中伺服器和計算機眾多,每台設備隨時都有發送數據的需求,這就需要有某些方法來控制對傳輸媒體的訪問,以便兩個特定的設備在需要時可以交換數據。傳輸媒體的訪問控制方式與區域網的拓撲結構、工作過程有密切關系。目前,計算機區域網常用的訪問控制方式有3種,分別是載波多路訪問/沖突檢測(CSMA/CD)、令牌環訪問控製法(Token Ring)和令牌匯流排訪問控製法(Toking Bus)。其中,載波多路訪問/沖突檢測(CSMA/CD)是由ALOHA隨機訪問控制技術發展而來的,在此,對ALOHA隨機訪問控制技術簡要介紹一下。
1.ALOHA協議
ALOHA協議是20世紀70年代在夏威夷大學由Norman Abramson及其同事發明的,目的是為了解決地面無線電廣播信道的爭用問題。ALOHA協議分為純ALOHA和分槽ALOHA兩種。
(1)純ALOHA
ALOHA協議的思想很簡單,只要用戶有數據要發送,就盡管讓他們發送。當然,這樣會產生沖突從而造成幀的破壞。但是,由於廣播信道具有反饋性,因此發送方可以在發送數據的過程中進行沖突檢測,將接收到的數據與緩沖區的數據進行比較就可以知道數據幀是否遭到破壞。同樣的道理,其他用戶也是按照此過程工作。如果發送方知道數據幀遭到破壞(檢測到沖突),那麼它可以等待一段隨機長的時間後重發該幀。對於區域網LAN,反饋信息很快就可以得到;而對於衛星網,發送方要在270ms後才能確認數據發送是否成功。通過研究證明,純ALOHA協議的信道利用率最大不超過18%(1/2e)。
(2)分槽ALOHA
1972年,Roberts發明了一種能把信道利用率提高一倍的信道分配策略,即分槽ALOHA協議。其思想是用時鍾來統一用戶的數據發送。辦法是將時間分為離散的時間片,用戶每次必須等到下一個時間片才能開始發送數據,從而避免了用戶發送數據的隨意性,減少了數據產生沖突的可能性,提高了信道的利用率。在分槽ALOHA系統中,計算機並不是在用戶按下回車鍵後就立即發送數據,而是要等到下一個時間片開始時才發送。這樣,連續的純ALOHA就變成離散的分槽ALOHA。由於沖突的危險區平均減少為純ALOHA的一半,因此分槽ALOHA的信道利用率可以達到36%(1/e),是純ALOHA協議的兩倍。對於分槽ALOHA,用戶數據的平均傳輸時間要高於純ALOHA系統。
2.載波偵聽多路訪問/沖突檢測(CSMA/CD)
CSMA/CD是Carrier Sense Multiple Access With Collision Detection的縮寫,含有兩方面的內容,即載波偵聽(CSMA)和沖突檢測(CD)。CSMA/CD訪問控制方式主要用於匯流排型和樹狀網路拓撲結構、基帶傳輸系統。信息傳輸是以「包」為單位,簡稱信包,發展為IEEE 802.3基帶CSMA/CD區域網標准。
(1)CSMA/CD介質訪問控制方案
先聽後發,工作站在每次發送前,先偵聽匯流排是否空閑,如發現已被佔用,便推遲本次的發送,僅在匯流排空閑時才發送信息。介質的最大利用率取決於幀的長度和傳播時間,與幀長成正比,與傳播時間成反比。
載波監聽多路訪問CSMA的技術也稱做先聽後說LBT(Listen Before Talk)。要傳輸數據的站點首先對媒體上有無載波進行監聽,以確定是否有別的站點在傳輸數據。如果媒體空閑,該站點便可傳輸數據;否則,該站點將避讓一段時間後再做嘗試。這就需要有一種退避演算法來決定避讓的時間,常用的退避演算法有非堅持、1-堅持、P-堅持3種。
① 非堅持演算法。演算法規則如下:
如果媒本是空閑的,則可以立即發送。
如果媒體是忙的,則等待一個由概率分布決定的隨機重發延遲後,再重復前一個步驟。
採用隨機的重發延遲時間可以減少沖突發生的可能性。
非堅持演算法的缺點是:即使有幾個著眼點位都有數據要發送,但由於大家都在延遲等待過程中,致使媒體仍可能處於空閑狀態,使利用率降低。
② 1-堅持演算法。演算法規則如下:
如果媒體是空閑的,則可以立即發送。
如果媒體是忙的,則繼續監聽,直至檢測到媒體是空閑,立即發送。
如果有沖突(在一段時間內未收到肯定的回復),則等待一個隨機量的時間,重復前兩步。
這種演算法的優點是:只要媒體空閑,站點就可立即發送,避免了媒體利用率的損失。
其缺點是:假若有兩個或兩個以上的站點有數據要發送,沖突就不可避免。
③ P-堅持演算法。演算法規則如下:
監聽匯流排,如果媒體是空閑的,則以P的概率發送,而以(1–P)的概率延遲一個時間單位。一個時間單位通常等於最大傳播時延的2倍。
延遲一個時間單位後,再重復第一步。
如果媒體是忙的,繼續監聽直至媒體空閑並重復第一步。
P-堅持演算法是一種既能像非堅持演算法那樣減少沖突,又能像1-堅持演算法那樣減少媒體空閑時間的折中方案。問題在於如何選擇P的值,這要考慮到避免重負載下系統處於的不穩定狀態。假如媒體忙時,有N個站有數據等待發送,一旦當前的發送完成,將要試圖傳輸的站的總期望數為NP。如果選擇P過大,使NP>1,表明有多個站點試圖發送,沖突就不可避免。最壞的情況是,隨著沖突概率的不斷增大,而使吞吐量降低到零。所以必須選擇適當P值使NP<1。當然P值選得過小,則媒體利用率又會大大降低。
(2)二進制指數退避演算法
重發時間均勻分布在0~TBEB之間,TBEB=2i–1(2a),a為端-端的傳輸延遲,i為重發次數。該式表明,重發延遲將隨著重發次數的增加而按指數規律迅速地延長。
(3)CSMA/CD
載波監聽多路訪問/沖突檢測方法是提高匯流排利用率的一種CSMA改進方案。該方法為:使各站點在發送信息時繼續監聽介質,一旦檢測到沖突,就立即停止發送,並向匯流排發送一串阻塞信號,通知匯流排上的各站點沖突已發生。
採用CSMA/CD介質訪問控制方法的匯流排型區域網中,每一個結點在利用匯流排發送數據時,首先要偵聽匯流排的忙、閑狀態。如果匯流排上已經有數據信號傳輸,則為匯流排忙;如果匯流排上沒有數據信號傳輸,則為匯流排空閑。由於Ethernet的數據信號是按差分曼徹斯特方法編碼,因此如果匯流排上存在電平跳變,則判斷為匯流排忙;否則判斷為匯流排空。如果一個結點准備好發送的數據幀,並且此時匯流排空閑,它就可以啟動發送。同時也存在著這種可能,那就是在幾乎相同的時刻,有兩個或兩個以上結點發送了數據幀,那麼就會產生沖突,所以結點在發送數據的同時應該進行沖突檢測。
(4)CSMA/CD方式的主要特點
原理比較簡單,技術上較易實現,網路中各工作站處於同等地位,不要集中控制,但這種方式不能提供優先順序控制,各結點爭用匯流排,不能滿足遠程式控制制所需要的確定延時和絕對可靠性的要求。此方式效率高,但當負載增大時,發送信息的等待時間較長。
3.令牌環(Token Ring)訪問控制
Token Ring是令牌傳輸環(Token Passing Ring)的簡寫。令牌環介質訪問控制方法是通過在環狀網上傳輸令牌的方式來實現對介質的訪問控制。只有當令牌傳輸至環中某站點時,它才能利用環路發送或接收信息。當環線上各站點都沒有幀發送時,令牌標記為01111111,稱為空標記。當一個站點要發送幀時,需等待令牌通過,並將空標記置換為忙標記01111110,緊跟著令牌,用戶站點把數據幀發送至環上。由於是忙標記,所以其他站點不能發送幀,必須等待。
發送出去的幀將隨令牌沿環路傳輸下去。在循環一周又回到原發送站點時,由發送站點將該幀從環上移去,同時將忙標記換為空標記,令牌傳至後面站點,使之獲得發送的許可權。發送站點在從環中移去數據幀的同時還要檢查接收站載入該幀的應答信息,若為肯定應答,說明發送的幀已被正確接收,完成發送任務。若為否定應答,說明對方未能正確收到所發送的幀,原發送站點需要在帶空標記的令牌第二次到來時,重發此幀。採用發送站從環上收回幀的策略,不僅具有對發送站點自動應答的功能,而且還具有廣播特性,即可有多個站點接收同一個數據幀。
接收幀的過程與發送幀不同,當令牌及數據幀通過環上站點時,該站將幀攜帶的目標地址與本站地址相比較。若地址符合,則將該幀復制下來放入接收緩沖器中,待接收站正確接收後,即在該幀上載入肯定應答信號;若不能正確接收則載入否定應答信號,之後再將該幀送入環上,讓其繼續向下傳輸。若地址不符合,則簡單地將數據幀重新送入環中。所以當令牌經過某站點而它既不發送信息,又無處接收時,會稍經延遲,繼續向前傳輸。
在系統負載較輕時,由於站點需等待令牌到達才能發送或接收數據,因此效率不高。但若系統負載較重,則各站點可公平共享介質,效率較高。為避免所傳輸數據與標記形式相同而造成混淆,可採用位填入技術,以區別數據和標記。
使用令牌環介質訪問控制方法的網路,需要有維護數據幀和令牌的功能。例如,可能會出現因數據幀未被正確移去而始終在環上傳輸的情況;也可能出現令牌丟失或只允許一個令牌的網路中出現了多個令牌等異常情況。解決這類問題的辦法是在環中設置監控器,對異常情況進行檢測並消除。令牌環網上的各個站點可以設置成不同的優先順序,允許具有較高優先權的站申請獲得下一個令牌權。
歸納起來,在令牌環中主要有下面3種操作。
截獲令牌並且發送數據幀。如果沒有結點需要發送數據,令牌就由各個結點沿固定的順序逐個傳遞;如果某個結點需要發送數據,它要等待令牌的到來,當空閑令牌傳到這個結點時,該結點修改令牌幀中的標志,使其變為「忙」的狀態,然後去掉令牌的尾部,加上數據,成為數據幀,發送到下一個結點。
接收與轉發數據。數據幀每經過一個結點,該結點就比較數據幀中的目的地址,如果不屬於本結點,則轉發出去;如果屬於本結點,則復制到本結點的計算機中,同時在幀中設置已經復制的標志,然後向下一個結點轉發。
取消數據幀並且重發令牌。由於環網在物理上是個閉環,一個幀可能在環中不停地流動,所以必須清除。當數據幀通過閉環重新傳到發送結點時,發送結點不再轉發,而是檢查發送是否成功。如果發現數據幀沒有被復制(傳輸失敗),則重發該數據幀;如果發現傳輸成功,則清除該數據幀,並且產生一個新的空閑令牌發送到環上。
4.令牌匯流排訪問控製法(Token Bus)
Token Bus是令牌通行匯流排(Token Passing bus)的簡寫。這種方式主要用於匯流排型或樹狀網路結構中。1976年美國Data Point公司研製成功的ARCnet(Attached Resource Computer)網路,它綜合了令牌傳遞方式和匯流排網路的優點,在物理匯流排結構中實現令牌傳遞控制方法,從而構成一個邏輯環路。此方式也是目前微機局域中的主流介質訪問控制方式。
ARCnet網路把匯流排或樹狀傳輸介質上的各工作站形成一個邏輯上的環,即將各工作站置於一個順序的序列內(例如可按照介面地址的大小排列)。方法可以是在每個站點中設一個網路結點標識寄存器NID,初始地址為本站點地址。網路工作前,要對系統初始化,以形成邏輯環路,其過程主要是:網中最大站號n開始向其後繼站發送「令牌」信包,目的站號為n+1,若在規定時間內收到肯定的信號ACK,則n+1站連入環路,否則在n+1繼續向下詢問(該網中最大站號為n=255,n+1後變為0,然後1、2、3、…遞增),凡是給予肯定回答的站都可連入環路並將給予肯定回答的後繼站號放入本站的NID中,從而形成一個封閉邏輯環路,經過一遍輪詢過程,網路各站標識寄存器NID中存放的都是其相鄰的下游站地址。
邏輯環形成後,令牌的邏輯中的控制方法類似於Token Ring。在Token Bus中,信息是按雙向傳送的,每個站點都可以「聽到」其他站點發出的信息,所以令牌傳遞時都要加上目的地址,明確指出下一個將到控制的站點。這種方式與CSMA/CD方式的不同在於除了當時得到令牌的工作站之外,所有的工作站只收不發,只有收到令牌後才能開始發送,所以拓撲結構雖是匯流排型但可以避免沖突。
Token Bus方式的最大優點是具有極好的吞吐能力,且吞吐量隨數據傳輸速率的增高而增加,並隨介質的飽和而穩定下來但並不下降;各工作站不需要檢測沖突,故信號電壓容許較大的動態范圍,聯網距離較遠;有一定實時性,在工業控制中得到了廣泛應用,如MAP網就是用的寬頻令牌匯流排。其主要缺點在於其復雜性和時間開銷較大,工作站可能必須等待多次無效的令牌傳送後才能獲得令牌。
應該指出,ARCnet網實際上採用稱為集中器的硬體聯網,物理拓撲上有星狀和匯流排型兩種連接方式。

D. 令牌環網的介質訪問方法的原理,格式和傳遞方式是什麼

令牌環網在拓撲結構上是環型的,在令牌傳遞邏輯上也是環型的,在網路正常工作時,令牌按某一方向沿著環路經過環路中的各個節點單方向傳遞。握有令牌的站點具有發送數據的權力,當它發送完所有數據或者持有令牌到達最大時間時,就要交就令牌

E. 令牌環網和令牌匯流排的介質訪問控制方法

如果某結點有數據幀要發送,它必須等待空閑令牌的到來。當此結點獲得空閑令牌之後,將令牌標志位由「閑」變為「忙」,然後傳送數據。令牌環的基本工作過程如下圖所示。
IEEE802.5標准對以上技術進行了一些改進,主要表現在以下幾點:
--單令牌協議,即環中只能存在一個有效令牌
--支持多優先順序方案
--設置一個監控站,執行環維護功能
--通過預約指示器進行令牌預約。

F. 什麼是介質訪問控制方法

介質訪問控制方式,也就是信道訪問控制方法,可以簡單的把它理解為如何控制網路節點何時發送數據、如何傳輸數據以及怎樣在介質上接收數據。常用的介質訪問控制方式有時分多路復用(TDM)、帶沖突檢測的載波監聽多路訪問介質控制(CSMA/CD)和令牌環(Token Ring)。

G. 區域網的訪問控制有哪幾種,分別適用於哪些網路

1、沖突檢測的載波偵聽多路訪問法:適用於所有區域網。

2、令牌環訪問控製法:只適用於環形拓撲結構的區域網。

3、令牌匯流排訪問控製法:主要用於匯流排形或樹形網路結構中。


(7)標記環傳遞介質訪問擴展閱讀

令牌匯流排訪問控制方式類似於令牌環,但把匯流排形或樹形網路中的各個工作站按一定順序如按介面地址大小排列形成一個邏輯環。只有令牌持有者才能控制匯流排,才有發送信息的權力。信息是雙向傳送,每個站都可檢測到站點發出的信息。

CSMA/CD要解決的另一主要問題是如何檢測沖突。當網路處於空閑的某一瞬間,有兩個或兩 個以上工作站要同時發送信息,同步發送的信號就會引起沖突。

H. 介質訪問控制的令牌環介質訪問控制

IEEE 802.5令牌環介質訪問控制使用一個令牌沿著環循環,且應確保令牌在環中為唯一的。令牌環工作原理:
網上站點要求發送幀,必須等待空令牌。
當獲取空令牌,則將它改為忙令牌,後隨數據幀;環內其它站點不能發送數據。
環上站點接收、移位數據,並進行檢測。如果與本站地址相同,則同時接收數據,接收完成後,設置相應標記。
該幀在環上循環一周後,回到發送站,發送站檢測相應標記後,將此幀移去。
將忙令牌改成空令牌,繼續傳送,供後續站發送幀。 環的長度用位計算:
由於電磁波的傳播速度有限,傳輸介質中可能同時存在多個數據位。
環上每個中繼器引入至少 1 bit 延遲
環上保留的位數:
傳播延遲(us /km)×介質長度×數據速率 + 中繼器延遲
例:介質長度 L = 1 km ,數據速率 C = 4 Mbit/s ,站點數 N = 50。
解:傳播延遲 tp = L / v
v = 2 ×105km / s tp = 5 us 環上保留的位數 = 5 × 1 ×4 + 50 = 70 bit IEEE 802.5 MAC幀格式令牌和數據幀的管理:
如何防止數據幀在環上無休止循環?
設置監控器
在幀結構上留一標識
如何監測令牌出錯?
無令牌
多個令牌
忙令牌死循環
集中式檢測:
設置集中監控站(超時計數器)/標記丟失
在幀結構上檢測忙標記標識/ 死循環
分布式檢測:
每站設置定時器:當站有數據要發且等待標記的時間超限 /標記丟失 拓撲結構: 工作原理: Token Bus 在物理總系線上建立邏輯環。
邏輯環上,令牌是站點可以發送數據的必要條件。
令牌在邏輯環中按地址的遞減順序傳送到下一站點。
從物理上看,含DA的令牌幀廣播到BUS上,所有站點按DA = 本站地址判斷收否。
特點: 無沖突,令牌環的信息幀長度可按需而定。
順序接收Fairness (公平性),站點等待Token的時間是確知的。
(需限定每個站發送幀的最大值)
因檢測沖突需要填充信息位(不允許小於46位元組)

I. 區域網典型特性是什麼

區域網分布范圍小,投資少,配置簡單等,具有如下特徵:

1.傳輸速率高:一般為1Mbps--20Mbps,光纖高速網可達100Mbps,1000MbpS

2.支持傳輸介質種類多。

3.通信處理一般由網卡完成。

4.傳輸質量好,誤碼率低。

5.有規則的拓撲結構。