當前位置:首頁 » 文件傳輸 » 在乙太網上使用哪種介質訪問方法
擴展閱讀
webinf下怎麼引入js 2023-08-31 21:54:13
堡壘機怎麼打開web 2023-08-31 21:54:11

在乙太網上使用哪種介質訪問方法

發布時間: 2022-04-15 04:52:00

① 乙太網是目前應用最廣泛的區域網,使用介質訪問方式是什麼

咨詢記錄 · 回答於2021-10-17

② 乙太網絡的介質控制方式是什麼(介質訪問方式),工作原理是什麼

乙太網的介質訪問控制(MAC)技術稱為:載波監聽多路存取和沖突檢測(CSMA/CD),下面我們分步來說明其原理:
1、載波監聽:當你所在的網站(包括伺服器和工作站)要向另一個網站發送信息時,先監聽網路信道上有無信息正在傳輸,信道是否空閑。
2、信道忙碌:如果發現網路信道正忙,則等待,直到發現網路信道空閑為止。
3、信道空閑:如果發現網路信道空閑,則向網上發送信息。由於整個網路信道為共享匯流排結構,網上所有網站都能夠收到你所發出的信息,所以網站向網路信道發送信息也稱為「廣播」。但只有你想要發送數據的網站識別和接收這些信息。
4、沖突檢測:網站發送信息的同時,還要監聽網路信道,檢測是否有另一台網站同時在發送信息。如果有,兩個網站發送的信息會產生碰撞,即產生沖突,從而使數據信息包被破壞。
5、遇忙停發:如果發送信息的網站檢測到網上的沖突,則立即停止該此網路信息發送,並向網上發送一個「沖突」信號,讓其它網站也發現該沖突,從而擯棄可能一直在接收的受損的信息包。
6、多路存取:如果發送信息的網站因「碰撞沖突」而停止發送,就需等待一段時間,再回到第一步,重新開始載波監聽和發送,直到數據成功發送為止。
乙太網規范具體規定了如何在臨近的物理區域,即區域網內,實現計算機之間的數據傳送。如果希望將一台計算機接入區域網成為整個網路的一部分,該計算機需要具備一個用於分割和包裝數據的網路介面以及一個用於連接線纜的連接埠。連接埠一般被集成到系統的主板上或做為內置網卡將數據發送到網路上,同時接收來自網路上其它計算機的數據。

乙太網不僅僅是一種硬體規范,同時它還是一種通訊協議,可以控制如何在相互連接的計算機中傳送數據。通過乙太網技術連接的計算機首先把需要發送的信息分割成小的許多小的數據包,然後再通過網線發送出去。我們可以把數據包想像為一個個的行李箱,加上標簽之後,通過運輸通經發送到不同的目的城市。除了需要傳送的信息之外,數據包中還包含用於指定接收方的目標地址和用於標明發送方的源地址。

乙太網介面使用一種被稱為 Carrier Sense Multiple Access With Collision Detection即CSMA/CD(載波監聽多路存取和沖突檢測) 的協議發送數據包。該協議為避免多台計算機同時發送數據所造成的數據丟失和網路阻塞,規定在任意時刻內網路上只能有一台計算機向外發送數據,每一台計算機在發送數據之前必須等待網路上的空閑間隔時間。當一個被發送出的數據包到達接收方時,發送方會收到確認信息,然後等待下一次網路空閑時間發送下一個數據包。所有在數據包傳輸路徑上的設備都會讀取數據包內的目標地址,以判斷是否接收數據包或繼續轉發數據包。

③ 簡述乙太網的介質訪問控制方式的原理

在CSMA中,由於信道傳播時延的存在,即使通信雙方的站點都沒有偵聽到載波信號,在發送數據時仍可能會發生沖突,因為他們可能會在檢測到介質空閑時同時發送數據,致使沖突發生。盡管CSMA可以發現沖突,但它並沒有先知的沖突檢測和阻止功能,致使沖突發生頻繁。

一種CSMA的改進方案是使發送站點在傳輸過程中仍繼續偵聽介質,以檢測是否存在沖突。如果兩個站點都在某一時間檢測到信道是空閑的,並且同時開始傳送數據,則它們幾乎立刻就會檢測到有沖突發生。

如果發生沖突,信道上可以檢測到超過發送站點本身發送的載波信號幅度的電磁波,由此判斷出沖突的存在。一旦檢測到沖突,發送站點就立即停止發送,並向匯流排上發一串阻塞信號,用以通知匯流排上通信的對方站點,快速地終止被破壞的幀,可以節省時間和帶寬。

這種方案就是本節要介紹的CSMA/CD(Carrier Sense Multiple Access with Collision Detection,載波偵聽多路訪問/沖突檢測協議),已廣泛應用於區域網中。

(3)在乙太網上使用哪種介質訪問方法擴展閱讀:

介質訪問控制地址:

在區域網(LAN)或其他網路中,介質訪問控制地址(MAC address,Media Access Control address)是您計算機唯一的硬體號。

在區域網(LAN)或其他網路中,介質訪問控制地址(MAC address,Media Access Control address)是您計算機唯一的硬體號。(在乙太網區域網中,它與您的乙太網地址相同。)當您從計算機連接到互聯網,一個對應表將您的IP地址連到區域網中您計算機的物理(MAC)地址。

介質訪問控制子層(通信協議的數據鏈路層)使用MAC(Media Access Control)地址。每個物理設備類型有一個不同的MAC子層。數據鏈路層(DLC)的另一個子層是邏輯鏈路控制子層。

④ 乙太網採用何種媒體訪問技術

乙太網是當今現有區域網採用的最通用的通信協議標准,組建於七十年代早期。Ethernet(乙太網)是一種傳輸速率為10Mbps的常用區域網(LAN)標准。在乙太網中,所有計算機被連接一條同軸電纜上,採用具有沖突檢測的載波感應多處訪問(CSMA/CD)方法,採用競爭機制和匯流排拓樸結構。基本上,乙太網由共享傳輸媒體,如雙絞線電纜或同軸電纜和多埠集線器、網橋或交換機構成。在星型或匯流排型配置結構中,集線器/交換機/網橋通過電纜使得計算機、列印機和工作站彼此之間相互連接。

乙太網具有的一般特徵概述如下:

共享媒體:所有網路設備依次使用同一通信媒體。

廣播域:需要傳輸的幀被發送到所有節點,但只有定址到的節點才會接收到幀。

CSMA/CD:乙太網中利用載波監聽多路訪問/沖突檢測方法(Carrier Sense Multiple Access/Collision Detection)以防止 twp 或更多節點同時發送。

MAC 地址:媒體訪問控制層的所有 Ethernet 網路介面卡(NIC)都採用48位網路地址。這種地址全球唯一。

Ethernet 基本網路組成:

共享媒體和電纜:10BaseT(雙絞線),10Base-2(同軸細纜),10Base-5(同軸粗纜)。

轉發器或集線器:集線器或轉發器是用來接收網路設備上的大量乙太網連接的一類設備。通過某個連接的接收雙方獲得的數據被重新使用並發送到傳輸雙方中所有連接設備上,以獲得傳輸型設備。

網橋:網橋屬於第二層設備,負責將網路劃分為獨立的沖突域獲分段,達到能在同一個域/分段中維持廣播及共享的目標。網橋中包括一份涵蓋所有分段和轉發幀的表格,以確保分段內及其周圍的通信行為正常進行。

交換機:交換機,與網橋相同,也屬於第二層設備,且是一種多埠設備。交換機所支持的功能類似於網橋,但它比網橋更具有的優勢是,它可以臨時將任意兩個埠連接在一起。交換機包括一個交換矩陣,通過它可以迅速連接埠或解除埠連接。與集線器不同,交換機只轉發從一個埠到其它連接目標節點且不包含廣播的埠的幀。

乙太網協議:IEEE 802.3標准中提供了以太幀結構。當前乙太網支持光纖和雙絞線媒體支持下的四種傳輸速率:

10 Mbps – 10Base-T Ethernet(802.3)

100 Mbps – Fast Ethernet(802.3u)

1000 Mbps – Gigabit Ethernet(802.3z))

10 Gigabit Ethernet – IEEE 802.3ae

乙太網簡史:

1972年,羅伯特•梅特卡夫(Robert Metcalfe)和施樂公司帕洛阿爾托研究中心(Xerox PARC)的同事們研製出了世界上第一套實驗型的乙太網系統,用來實現Xerox Alto(一種具有圖形用戶界面的個人工作站)之間的互連,這種實驗型的乙太網用於Alto工作站、伺服器以及激光列印機之間的互連,其數據傳輸率達到了2.94Mbps。

梅特卡夫發明的這套實驗型的網路當時被稱為Alto Aloha網。1973年,梅特卡夫將其命名為乙太網,並指出這一系統除了支持Alto工作站外,還可以支持任何類型的計算機,而且整個網路結構已經超越了Aloha系統。他選擇「以太」(ether)這一名詞作為描述這一網路的特徵:物理介質(比如電纜)將比特流傳輸到各個站點,就像古老的「以太理論」(luminiferous ether)所闡述的那樣,古代的「以太理論」認為「以太」通過電磁波充滿了整個空間。就這樣,乙太網誕生了。

最初的乙太網事一種實驗型的同軸電纜網,沖突檢測採用CSMA/CD 。該網路的成功,引起了大家的關注。1980年,三家公司(數字設備公司、Intel公司、施樂公司)聯合研發了10M乙太網1.0規范。最初的IEEE802.3即基於該規范,並且與該規范非常相似。802.3工作組於1983年通過了草案,並於1985年出版了官方標准ANSI/IEEE Std 802.3-1985。從此以後,隨著技術的發展,該標准進行了大量的補充與更新,以支持更多的傳輸介質和更高的傳輸速率等。

1979年,梅特卡夫成立了3Com公司,並生產出第一個可用的網路設備:乙太網卡(NIC), 它是允許從主機到IBM終端和PC機等不同設備相互之間實現無縫通信的第一款產品,使企業能夠以無縫方式共享和列印文件,從而增強工作效率,提高企業范圍的通信能力。

乙太網和IEEE802.3:

乙太網是Xerox公司發明的基帶LAN標准。它採用帶沖突檢測的載波監聽多路訪問協議(CSMA/CD),速率為10Mbps,傳輸介質為同軸電纜。乙太網是在20世紀70年代為解決網路中零散的和偶然的堵塞而開發的,而IEEE802.3標準是在最初的乙太網技術基礎上於1980年開發成功的。現在,乙太網一詞泛指所有採用CSMA/CD協議的區域網。乙太網2.0版由數字設備公司、Intel公司和Xerox公司聯合開發,它與IEEE802.3兼容。

乙太網和IEEE802.3通常由介面卡(網卡)或主電路板上的電路實現。乙太網電纜協議規定用收發器將電纜連到網路物理設備上。收發器執行物理層的大部分功能,其中包括沖突檢測及收發器電纜將收發器連接到工作站上。

IEEE802.3提供了多種電纜規范,10Base5就是其中的一種,它與乙太網最為接近。在這一規范中,連接電纜稱作連接單元介面(AUI),網路連接設備稱為介質訪問單元(MAU)而不再是收發器。

1.乙太網和IEEE802.3的工作原理

在基於廣播的乙太網中,所有的工作站都可以收到發送到網上的信息幀。每個工作站都要確認該信息幀是不是發送給自己的,一旦確認是發給自己的,就將它發送到高一層的協議層。

在採用CSMA/CD傳輸介質訪問的乙太網中,任何一個CSMA/CDLAN工作站在任何一時刻都可以訪問網路。發送數據前,工作站要偵聽網路是否堵塞,只有檢測到網路空閑時,工作站才能發送數據。

在基於競爭的乙太網中,只要網路空閑,任一工作站均可發送數據。當兩個工作站發現網路空閑而同時發出數據時,就發生沖突。這時,兩個傳送操作都遭到破壞,工作站必須在一定時間後重發,何時重發由延時演算法決定。

2.乙太網和IEEE802.3服務的差別

盡管乙太網與IEEE802.3標准有很多相似之處,但也存在一定的差別。乙太網提供的服務對應於OSI參考模型的第一層和第二層,而IEEE802.3提供的服務對應於OSI參考模型的第一層和第二層的信道訪問部分(即第二層的一部分)。IEEE802.3沒有定義邏輯鏈路控制協議,但定義了幾個不同物理層,而乙太網只定義了一個。

IEEE802.3的每個物理層協議都可以從三方面說明其特徵,這三方面分別是LAN的速度、信號傳輸方式和物理介質類型

⑤ 在共享介質乙太網中,採用的介質訪問控制方法是

控制方法是CSMA/CD方法。

在傳統的共享乙太網中,所有的節點共享傳輸介質。為了保證傳輸介質有序、高效地為許多節點提供傳輸服務,就需要乙太網的介質訪問控制協議解決問題。

CSMA/CD是一種爭用型的介質訪問控制協議。它起源於美國夏威夷大學開發的ALOHA網所採用的爭用型協議,並進行了改進,使之具有比ALOHA協議更高的介質利用率。主要應用於現場匯流排Ethernet中。另一個改進是,對於每一個站而言,一旦它檢測到有沖突,它就放棄它當前的傳送任務。

因為需要使用CSMA/CD協議來控制乙太網的介質訪問,所以答案是(D )CSMA/CD方法。

(5)在乙太網上使用哪種介質訪問方法擴展閱讀:

CSMA/CD控制方式的優點是:

原理比較簡單,技術上易實現,網路中各工作站處於平等地位 ,不需集中控制,不提供優先順序控制。但在網路負載增大時,發送時間增長,發送效率急劇下降。

它的工作原理是: 發送數據前 先偵聽信道是否空閑 ,若空閑,則立即發送數據。若信道忙碌,則等待一段時間至信道中的信息傳輸結束後再發送數據;若在上一段信息發送結束後,同時有兩個或兩個以上的節點都提出發送請求,則判定為沖突。若偵聽到沖突,則立即停止發送數據,等待一段隨機時間,再重新嘗試。

⑥ 乙太網採用的介質訪問協議是

CSMA/CD訪問法,也就是帶有碰撞檢測的載波偵聽多點訪問法

⑦ 乙太網可以使用的主要傳輸介質

雙絞線、細纜、粗纜、光纜。

在物理層上乙太網的每個版本都有電纜的最大長度限制(即無須放大的長度),這個范圍內的信號可以正常傳播,超過這個范圍信號將無法傳播。

為了允許建設更大的網路,可以用中繼器把多條電纜連接起來。中繼器是一個物理層設備,它能接收、放大並在兩個方向上重發信號。在這些電纜上,信息的發送使用曼徹斯特編碼。

(7)在乙太網上使用哪種介質訪問方法擴展閱讀:

乙太網起源:

乙太網的故事始於ALOHA時期,確切的時間是在一個名叫Bob Metcalfe的學生獲得麻省理工學院的學士學位後,搬到河對岸的哈佛大學攻讀博士學位之後。在他學習期間,他接觸到了Abramson的工作,他對此很感興趣。

從哈佛畢業之後,他決定前往施樂帕洛阿爾托研究中心正式工作之前留在夏威夷度假,以便幫助Abramson工作。當他到帕洛阿爾托研究中心,他看到那裡的研究人員已經設計並建造出後來稱為個人計算機的機器,但這些機器都是孤零零的;

他便運用幫助Abramson工作獲得的知識與同事David Boggs 設計並實現了第一個區域網。該區域網採用一個長的粗同軸電纜,以3Mbps速率運行。

他們把這個系統命名為乙太網,人們曾經認為通過它可以傳播電磁輻射。

⑧ 乙太網的介質訪問規則是什麼

介質訪問控制(MAC)在OSI網路模型中是一個數據鏈路層的下層,它決定誰被在任何時間允許訪問物理介質。它作為在邏輯鏈路子層和網路物理層之間的一個介面。這個介質訪問控制子層最初與訪問物理傳輸介質(例如那個站點附到線上或頻率范圍有權利進行傳輸)或低水平介質共享協議例如CSMA/CD控制有關。 MAC為在網際網路協議(IP)網路上的計算機提供獨特的鑒定和訪問控制。MAC分配一個獨特的編碼到每個IP網路適配器叫做MAC地址。

⑨ 乙太網的介質訪問方法是什麼

CSMA/CD 載波偵聽/沖突檢測

⑩ 區域網從介質訪問控制方法的角度可分為哪兩類乙太網屬於其中的哪一類區域網

傳輸訪問控制方式與區域網的拓撲結構/工作過程有密切關系.目前,計算機區域網常用的訪問控制方式有三種,分別用於不同的拓撲結構:帶有沖突檢測的載波偵聽多路訪問法(CSMA/CD),令牌環訪問控製法(Token Ring),令牌匯流排訪問控製法(token bus).

1 CSMA/CD

最早的CSMA方法起源於美國夏威夷大學的ALOHA廣播分組網路,1980年美國DEC、Intel和Xerox公司聯合宣布Ethernet網採用CSMA技術,並增加了檢測碰撞功能,稱之為CSMA/CD。這種 方式適用於匯流排型和樹形拓撲結構,主要解決如何共享一條公用廣播傳輸介質。其簡單原理 是:在網路中,任何一個工作站在發送信息前,要偵聽一下網路中有無其它工作站在發送信 號,如無則立即發送,如有,即信道被佔用,此工作站要等一段時間再爭取發送權。等待時 間可由二種方法確定,一種是某工作站檢測到信道被佔用後,繼續檢測,直到信道出現空閑 。另一種是檢測到信道被佔用後,等待一個隨機時間進行檢測,直到信道出現空閑後再發送 。

CSMA/CD要解決的另一主要問題是如何檢測沖突。當網路處於空閑的某一瞬間,有兩個或兩 個以上工作站要同時發送信息,這時,同步發送的信號就會引起沖突,現由IEEE802.3標准確定的CSMA/CD檢測沖突的方法是:當一個工作站開始佔用信道進行發送信息時,再用碰撞 檢測器繼續對網路檢測一段時間,即一邊發送,一邊監聽,把發送的信息與監聽的信息進行比較,如結果一致,則說明發送正常,搶占匯流排成功,可繼續發送。如結果不一致,則說明 有沖突,應立即停止發送。等待一隨機時間後,再重復上述過程進行發送。

CSMA/CD控制方式的優點是:原理比較簡單,技術上易實現,網路中各工作站處於平等地位 ,不需集中控制,不提供優先順序控制。但在網路負載增大時,發送時間增長,發送效率急劇下降。

2 令牌環

令牌環只適用於環形拓撲結構的區域網。其主要原理是:使用一個稱之為「令牌」的控制標 志(令牌是一個二進制數的位元組,它由「空閑」與「忙」兩種編碼標志來實現,既無目的地 址 ,也無源地址),當無信息在環上傳送時,令牌處於「空閑」狀態,它沿環從一個工作站到 另 一個工作站不停地進行傳遞。當某一工作站准備發送信息時,就必須等待,直到檢測並捕獲 到經過該站的令牌為止,然後,將令牌的控制標志從「空閑」狀態改變為「忙」狀態,並發送出一幀信息。其他的工作站隨時檢測經過本站的幀,當發送的幀目的地址與本站地址相符時,就接收該幀,待復制完畢再轉發此幀,直到該幀沿環一周返回發送站,並收到接收站指向發送站的肯定應簽信息時,才將發送的幀信息進行清除,並使令牌標志又處於「空閑」狀 態,繼續插入環中。當另一個新的工作站需要發送數據時,按前述過程,檢測到令牌,修改狀態,把信息裝配成幀,進行新一輪的發送。

令牌環控制方式的優點是它能提供優先權服務,有很強的實時性,在重負載環路中,「令牌 」以循環方式工作,效率較高。其缺點是控制電路較復雜,令牌容易丟失。但IBM在1985年 已解決了實用問題,近年來採用令牌環方式的令牌環網實用性已大大增強。

3 令牌匯流排

令牌匯流排主要用於匯流排形或樹形網路結構中。它的訪問控制方式類似於令牌環,但它是把總 線形或樹形網路中的各個工作站按一定順序如按介面地址大小排列形成一個邏輯環。只有令牌持有者才能控制匯流排,才有發送信息的權力。信息是雙向傳送,每個站都可檢測到其它站 點發出的信息。在令牌傳遞時,都要加上目的地址,所以只有檢測到並得到令牌的工作站, 才能發送信息,它不同於CSMA/CD方式,可在匯流排和樹形結構中避免沖突。

這種控制方式的優點是各工作站對介質的共享權力是均等的,可以設置優先順序,也可以不設 ;有較好的吞吐能力,吞吐量隨數據傳輸速率增高而加大,連網距離較CSMA/CD方式大。缺 點是控制電路較復雜、成本高,輕負載時,線路傳輸效率低。