當前位置:首頁 » 硬碟大全 » 帶圈足硬碟
擴展閱讀
webinf下怎麼引入js 2023-08-31 21:54:13
堡壘機怎麼打開web 2023-08-31 21:54:11

帶圈足硬碟

發布時間: 2022-11-29 04:41:12

Ⅰ 全面的硬碟知識

硬碟,英文「hard-disk」簡稱HD 。是一種儲存量巨大的設備,作用是儲存計算機運行時需要的數據。
體現硬碟好壞的主要參數為傳輸率,其次的為轉速、單片容量、尋道時間、緩存、噪音和S.M.A.R.T.
1956年IBM公司製造出世界上第一塊硬碟350 RAMAC(Random Access Method of Accounting and Control),它的數據為:容量5MB、碟片直徑為24英寸、碟片數為50片、重量上百公斤。碟片上有一層磁性物質,被軸帶著旋轉,有磁頭移動著存儲數據,實現了隨機存取。
1970年磁碟誕生
1973年IBM公司製造出了一台640MB的硬碟、第一次採用「溫徹斯特」技術,是現在硬碟的開端,因為磁頭懸浮在碟片上方,所以鍍磁的碟片在密封的硬碟里可以飛速的旋轉,但有好幾十公斤重。
1975年Soft-adjacent layer(軟接近層)專利的MR磁頭結構產生
1979年IBM發明了薄膜磁頭,這意味著硬碟可以變的很小,速度可以更快,同體積下硬碟可以更大。
1979年IBM 3370誕生,它是第一款採用thin-film感應磁頭及Run-Length-Limited(RLL)編碼配置的硬碟,"2-7"RLL編碼將能減小硬碟錯誤
1986年IBM 9332誕生,它是第一款使用更高效的1-7 run-length-limited(RLL)代碼的硬碟。
1989年第一代MR磁頭出現
1991年IBM磁阻MR(Magneto Resistive)磁頭硬碟出現。帶動了一個G的硬碟也出現。磁阻磁頭對信號變化相當敏感,所以碟片的存儲密度可以得到幾十倍的提高。意味著硬碟的容量可以作的更大。意味著硬碟進入了G級時代。
1993年GMR(巨磁阻磁頭技術)推出,這使硬碟的存儲密度又上了一個台階。
認識硬碟
硬碟是電腦中的重要部件,大家所安裝的操作系統(如:Windows 9x、Windows 2k…)及所有的應用軟體(如:Dreamwaver、Flash、Photoshop…)等都是位於硬碟中,或許你沒感覺到吧!但硬碟確實非常重要,至少目前它還是我們存儲數據的主要場所,那你對硬碟究竟了解多少了?可能你對她一竅不通,不過沒關系,請見下文。
一、硬碟的歷史與發展
從第一塊硬碟RAMAC的產生到現在單碟容量高達15GB多的硬碟,硬碟也經歷了幾代的發展,下面就介紹一下其歷史及發展。
1.1956年9月,IBM的一個工程小組向世界展示了第一台磁碟存儲系統IBM 350 RAMAC(Random Access Method of Accounting and Control),其磁頭可以直接移動到碟片上的任何一塊存儲區域,從而成功地實現了隨機存儲,這套系統的總容量只有5MB,共使用了50個直徑為24英寸的磁碟,這些碟片表面塗有一層磁性物質,它們被疊起來固定在一起,繞著同一個軸旋轉。此款RAMAC在那時主要用於飛機預約、自動銀行、醫學診斷及太空領域內。
2.1968年IBM公司首次提出「溫徹斯特/Winchester」技術,探討對硬碟技術做重大改造的可能性。「溫徹斯特」技術的精隋是:「密封、固定並高速旋轉的鍍磁碟片,磁頭沿碟片徑向移動,磁頭懸浮在高速轉動的碟片上方,而不與碟片直接接觸」,這也是現代絕大多數硬碟的原型。
3.1973年IBM公司製造出第一台採用「溫徹期特」技術的硬碟,從此硬碟技術的發展有了正確的結構基礎。
4.1979年,IBM再次發明了薄膜磁頭,為進一步減小硬碟體積、增大容量、提高讀寫速度提供了可能。
5.80年代末期IBM對硬碟發展的又一項重大貢獻,即發明了MR(Magneto Resistive)磁阻,這種磁頭在讀取數據時對信號變化相當敏感,使得碟片的存儲密度能夠比以往20MB每英寸提高了數十倍。
6.1991年IBM生產的3.5英寸的硬碟使用了MR磁頭,使硬碟的容量首次達到了1GB,從此硬碟容量開始進入了GB數量級。
7.1999年9月7日,Maxtor宣布了首塊單碟容量高達10.2GB的ATA硬碟,從而把硬碟的容量引入了一個新里程碑。
8.2000年2月23日,希捷發布了轉速高達15,000RPM的Cheetah X15系列硬碟,其平均尋道時間只有3.9ms,這可算是目前世界上最快的硬碟了,同時它也是到目前為止轉速最高的硬碟;其性能相當於閱讀一整部Shakespeare只花.15秒。此系列產品的內部數據傳輸率高達48MB/s,數據緩存為4~16MB,支持Ultra160/m SCSI及Fibre Channel(光纖通道) ,這將硬碟外部數據傳輸率提高到了160MB~200MB/s。總得來說,希捷的此款("捷豹")Cheetah X15系列將硬碟的性能提高到了一個新的里程碑。

9.2000年3月16日,硬碟領域又有新突破,第一款「玻璃硬碟」問世,這就是IBM推出的Deskstar 75GXP及Deskstar 40GV,此兩款硬碟均使用玻璃取代傳統的鋁作為碟片材料,這能為硬碟帶來更大的平滑性及更高的堅固性。另外玻璃材料在高轉速時具有更高的穩定性。此外Deskstar 75GXP系列產品的最高容量達75GB,這是目前最大容量的硬碟,而Deskstar 40GV的數據存儲密度則高達14.3 十億數據位/每平方英寸,這再次涮新數據存儲密度世界記錄。
二、硬碟分類
目前的硬碟產品內部碟片有:5.25,3.5,2.5和1.8英寸(後兩種常用於筆記本及部分袖珍精密儀器中,現在台式機中常用3.5英寸的碟片);如果按硬碟與電腦之間的數據介面,可分為兩大類:IDE介面及SCSI介面硬碟兩大陣營。
三、技術規格
目前台式機中硬碟的外形差不了多少,在技術規格上有幾項重要的指標:
1.平均尋道時間(average seek time),指硬碟磁頭移動到數據所在磁軌時所用的時間,單位為毫秒(ms)。注意它與平均訪問時間的差別,平均尋道時間當然是越小越好,現在選購硬碟時應該選擇平均尋道時間低於9ms的產品。
2.平均潛伏期(average latency),指當磁頭移動到數據所在的磁軌後,然後等待所要的數據塊繼續轉動(半圈或多些、少些)到磁頭下的時間,單位為毫秒(ms)。
3.道至道時間(single track seek),指磁頭從一磁軌轉移至另一磁軌的時間,單位為毫秒(ms)。
4.全程訪問時間(max full seek),指磁頭開始移動直到最後找到所需要的數據塊所用的全部時間,單位為毫秒(ms)。
5.平均訪問時間(average access),指磁頭找到指定數據的平均時間,單位為毫秒。通常是平均尋道時間和平均潛伏時間之和。注意:現在不少硬碟廣告之中所說的平均訪問時間大部分都是用平均尋道時間所代替的。
6.最大內部數據傳輸率(internal data transfer rate),也叫持續數據傳輸率(sustained transfer rate),單位Mb/S(注意與MB/S之間的差別)。它指磁頭至硬碟緩存間的最大數據傳輸率,一般取決於硬碟的碟片轉速和碟片數據線密度(指同一磁軌上的數據間隔度)。注意,在這項指標中常常使用Mb/S或Mbps為單位,這是兆位/秒的意思,如果需要轉換成MB/S(兆位元組/秒),就必須將Mbps數據除以8(一位元組8位數)。例如,WD36400硬碟給出的最大內部數據傳輸率為131Mbps,但如果按MB/S計算就只有16.37MB/s(131/8)。
7.外部數據傳輸率:通稱突發數據傳輸率(burst data transfer rate),指從硬碟緩沖區讀取數據的速率,在廣告或硬碟特性表中常以數據介面速率代替,單位為MB/S。目前主流硬碟普通採用的是Ultra ATA/66,它的最大外部數據率即為66.7MB/s,而在SCSI硬碟中,採用最新的Ultra 160/m SCSI介面標准,其數據傳輸率可達160MB/s,採用Fibra Channel(光纖通道),最大外部數據傳輸將可達200MB/s。在廣告中我們有時能看到說雙Ultra 160/m SCSI的介面,這理論上將最大外部數據傳輸率提高到了320MB/s,但目前好像還沒有結合有此介面的產品推出。
8.主軸轉速:是指硬碟內主軸的轉動速度,目前ATA(IDE)硬碟的主軸轉速一般為5400~7200rpm,主流硬碟的轉速為7200RPM,至於SCSI硬碟的主軸轉速可達一般為7200~10,000RPM,而最高轉速的SCSI硬碟轉速高達15,000RPM(即希捷「捷豹X15」系列硬碟)。
9.數據緩存:指在硬碟內部的高速存儲器:目前硬碟的高速緩存一般為512KB~2MB,目前主流ATA硬碟的數據緩存應該為2MB,而在SCSI硬碟中最高的數據緩存現在已經達到了16MB。對於大數據緩存的硬碟在存取零散文件時具有很大的優勢。
10.硬碟表面溫度:它是指硬碟工作時產生的溫度使硬碟密封殼溫度上升情況。這項指標廠家並不提供,一般只能在各種媒體的測試數據中看到。硬碟工作時產生的溫度過高將影響薄膜式磁頭(包括GMR磁頭)的數據讀取靈敏度,因此硬碟工作表面溫度較低的硬碟有更好的數據讀、寫穩定性。如果對於高轉速的SCSI硬碟一般來說應該加一個硬碟冷卻裝置,這樣硬碟的工作穩定性才能得到保障。
11.MTBF(連續無故障時間):它指硬碟從開始運行到出現故障的最長時間,單位是小時。一般硬碟的MTBF至少在30000或40000小時。這項指標在一般的產品廣告或常見的技術特性表中並不提供,需要時可專門上網到具體生產該款硬碟的公司網址中查詢。
四、介面標准
ATA介面,這是目前台式機硬碟中普通採用的介面類型。
ST-506/412介面:
這是希捷開發的一種硬碟介面,首先使用這種介面的硬碟為希捷的ST-506及ST-412。ST-506介面使用起來相當簡便,它不需要任何特殊的電纜及接頭,但是它支持的傳輸速度很低,因此到了1987年左右這種介面就基本上被淘汰了,採用該介面的老硬碟容量多數都低於200MB。早期IBM PC/XT和PC/AT機器使用的硬碟就是ST-506/412硬碟或稱MFM硬碟,MFM(Modified Frequency Molation)是指一種編碼方案 。
ESDI介面:
即(Enhanced Small Drive Interface)介面,它是邁拓公司於1983年開發的。其特點是將編解碼器放在硬碟本身之中,而不是在控制卡上,理論傳輸速度是前面所述的ST-506的2…4倍,一般可達到10Mbps。但其成本較高,與後來產生的IDE介面相比無優勢可言,因此在九十年代後就補淘汰了
IDE及EIDE介面:
IDE(Integrated Drive Electronics)的本意實際上是指把控制器與盤體集成在一起的硬碟驅動器,我們常說的IDE介面,也叫ATA(Advanced Technology Attachment)介面,現在PC機使用的硬碟大多數都是IDE兼容的,只需用一根電纜將它們與主板或介面卡連起來就可以了。 把盤體與控制器集成在一起的做法減少了硬碟介面的電纜數目與長度,數據傳輸的可靠性得到了增強,硬碟製造起來變得更容易,因為廠商不需要再擔心自己的硬碟是否與其它廠商生產的控制器兼容,對用戶而言,硬碟安裝起來也更為方便。
ATA-1(IDE):
ATA是最早的IDE標準的正式名稱,IDE實際上是指連在硬碟介面的硬碟本身。ATA在主板上有一個插口,支持一個主設備和一個從設備,每個設備的最大容量為504MB,ATA最早支持的PIO-0模式(Programmed I/O-0)只有3.3MB/s,而ATA-1一共規定了3種PIO模式和4種DMA模式(沒有得到實際應用),要升級為ATA-2,你需要安裝一個EIDE適配卡。
ATA-2(EIDE Enhanced IDE/Fast ATA):
這是對ATA-1的擴展,它增加了2種PIO和2種DMA模式,把最高傳輸率提高到了16.7MB/s,同時引進了LBA地址轉換方式,突破了老BIOS固有504MB的限制,支持最高可達8.1GB的硬碟。如你的電腦支持ATA-2,則可以在CMOS設置中找到(LBA,LogicalBlock Address)或(CHS,Cylinder,Head,Sector)的設置。其兩個插口分別可以連接一個主設備和一個從設置,從而可以支持四個設備,兩個插口也分為主插口和從插口。通常可將最快的硬碟和CD—ROM放置在主插口上,而將次要一些的設備放在從插口上,這種放置方式對於486及早期的Pentium電腦是必要的,這樣可以使主插口連在快速的PCI匯流排上,而從插口連在較慢的ISA匯流排上。
ATA-3(FastATA-2):
這個版本支持PIO-4,沒有增加更高速度的工作模式(即仍為16.7MB/s),但引入了簡單的密碼保護的安全方案,對電源管理方案進行了修改,引入了S.M.A.R.T(Self-Monitoring,Analysis and Reporting Technology,自監測、分析和報告技術)
ATA-4(UltraATA、UltraDMA、UltraDMA/33、UltraDMA/66):
這個新標准將PIO-4下的最大數據傳輸率提高了一倍,達到33MB/s,或更高的66MB/s。它還在匯流排佔用上引入了新的技術,使用PC的DMA通道減少了CPU的處理負荷。要使用Ultra-ATA,需要一個空閑的PCI擴展槽,如果將UltraATA硬碟卡插在ISA擴展槽上,則該設備不可能達到其最大傳輸率,因為ISA匯流排的最大數據傳輸率只有8MB/s 。其中的Ultra ATA/66(即Ultra DMA/66)是目前主流桌面硬碟採用的介面類型,其支持最大外部數據傳輸率為66.7MB/s。
Serial ATA:
新的Serial ATA(即串列ATA),是英特爾公司在今年IDF(Intel Developer Forum,英特爾開發者論壇) 發布的將於下一代外設產品中採用的介面類型,就如其名所示,它以連續串列的方式傳送資料,在同一時間點內只會有1位數據傳輸,此做法能減小介面的針腳數目,用四個針就完成了所有的工作(第1針發出、2針接收、3針供電、4針地線)。這樣做法能降低電力消耗,減小發熱量。最新的硬碟介面類型ATA-100就是Serial ATA是初始規格,它支持的最大外部數據傳輸率達100MB/s,上面介紹的那兩款IBM Deskstar 75GXP及Deskstar 40GV就是第一次採用此ATA-100介面類型的產品。在2001年第二季度將推出Serial ATA 1x標準的產品,它能提高150MB/s的數據傳輸率。對於Serial ATA介面,一台電腦同時掛接兩個硬碟就沒有主、從盤之分了,各設備對電腦主機來說,都是Master,這樣我們可省了不少跳線功夫。
SCSI介面:
SCSI就是指Small Computer System Interface(小型計算機系統介面),它最早研製於1979,原是為小型機的研製出的一種介面技術,但隨著電腦技術的發展,現在它被完全移植到了普通PC上。現在的SCSI可以劃分為SCSI-1和SCSI-2(SCSI Wide與SCSI Wind Fast),最新的為SCSI-3,不過SCSI-2是目前最流行的SCSI版本。 SCSI廣泛應用於如:硬碟、光碟機、ZIP、MO、掃描儀、磁帶機、JAZ、列印機、光碟刻錄機等設備上。它的優點非常多主要表現為以下幾點:
1、適應面廣; 使用SCSI,你所接的設備就可以超過15個,而所有這些設備只佔用一個IRQ,這就可以避免IDE最大外掛15個外設的限制。
2、多任務;不像IDE,SCSI允許對一個設備傳輸數據的同時,另一個設備對其進行數據查找。這將在多任務操作系統如Linux、Windows NT中獲得更高的性能。
3、寬頻寬;在理論上,最快的SCSI匯流排有160MB/s的帶寬,即Ultra 160/s SCSI;這意味著你的硬碟傳輸率最高將達160MB/s(當然這是理論上的,實際應用中可能會低一點)。
4、少CPU佔用率
從最早的SCSI到現在Ultra 160/m SCSI,SCSI介面具有如下幾個發展階段
1、SCSI-1 —最早SCSI是於1979年由美國的Shugart公司(Seagate希捷公司的前身)制訂的,並於1986年獲得了ANSI(美國標准協會)承認的SASI(Shugart Associates System Interface施加特聯合系統介面) ,這就是我們現在所指的SCSI -1,它的特點是,支持同步和非同步SCSI外圍設備;支持7台8位的外圍設備最大數據傳輸速度為5MB/S;支持WORM外圍設備。
2、SCSI-2 —90年代初(具體是1992年),SCSI發展到了SCSI-2,當時的SCSI-2 產品(通稱為Fast SCSI)是能過提高同步傳輸時的頻率使數據傳輸率提高為10MB/S,原本為8位的並行數據傳輸稱為:Narrow SCSI;後來出現了16位的並行數據傳輸的WideSCSI,將其數據傳輸率提高到了20MB/S 。
3、SCSI-3 —1995年推出了SCSI-3,其俗稱Ultra SCSI,全稱為SCSI-3 Fast-20 Parallel Interface(數據傳輸率為20M/S)它採用了同步傳輸時鍾頻率提高到20MHZ以提高數據傳輸的技術,因此使用了16位傳輸的Wide模式時,數據傳輸即可達到40MB/s。其允許介面電纜的最大長度為1.5米。
4、1997年推出了Ultra 2 SCSI(Fast-40),其採用了LVD(Low Voltage Differential,低電平微分)傳輸模式,16位的Ultra2SCSI(LVD)介面的最高傳輸速率可達80MB/S,允許介面電纜的最長為12米,大大增加了設備的靈活性。
5、1998年9月更高的數據傳輸率的Ultra160/m SCSI(Wide下的Fast-80)規格正式公布,其最高數據傳輸率為160MB/s,這將給電腦系統帶來更高的系統性能。

現有最流行的串列硬碟技術
隨著INTEL的915平台的發布,最新的ICH6-M也進入了我們的視野。而ICH6除了在一些電源管理特性方面有所增強外,也正式引入了SATA(串列ATA,以下簡稱SATA)和PCI-E概念。對於筆記本來說,從它誕生的那天起就一直使用著PATA(並行ATA,以下簡稱PATA)來連接硬碟,SATA的出現無疑是一項硬碟介面的革命。而如今隨著INTEL的積極推動,筆記本也開始邁入SATA的陣營。

關於SATA的優勢,筆者相信諸位也都有了解。確實,比起PATA,SATA有著很多不可比擬的優勢,而筆者將在本文中透過技術細節來多其進行分析。相信您讀完本文後會對SATA有著更深入的了解。另外由於本文主要針對筆記本和台式機,所以諸如RAID等技術不在本文討論范圍之內。

串列通信和並行通信

再進行詳細的介紹之前,我們先了解一下串列通信和並行通信的特點。

一般來說,串列通信一般由二根信號線和一根地線就可完成互相的信息的傳送。如下圖,我們看到設備A和設備B之間的信號交換僅用了兩根信號線和一根地線就完成了。這樣,在一個時鍾內,二個bit的數據就會被傳輸(每個方向一個bit,全雙工),如果能時鍾頻率足夠高,那麼數據的傳輸速度就會足夠快。
如果為了節省成本,我們也可以只用一根信號線和一根地線連接。這樣在一個時鍾內只有一個bit被傳輸(半雙工),我們也同樣可以提高時鍾頻率來提升其速度。

而並行通信在本質上是和串列通信一樣的。唯一的區別是並行通信依靠多條數據線在一個時鍾周期里傳送更多的bit。下圖中,數據線已經不是一條或者是兩條,而是多條。我們很容易知道,如果有8根數據線的話,在同一時鍾周期內傳送的的數據量是8bit。如果我們的數據線足夠多的話,比如PCI匯流排,那一個周期內就可以傳送32bit的數據。

在這里,筆者想提醒各位讀者,對於一款產品來說,用最低的成本來滿足帶寬的需要,那就是成功的設計,而不會在意你是串列通信還是並行通信,也不會管你的傳輸技術是先進還是落後。

PATA介面的速度

我們知道,ATA-33的速度為33MB/S,ATA-100的速度是100MB/S。那這個速度是如何計算出來的呢?

首先,我們需要知道匯流排上的時鍾頻率,比如ATA-100是25MHz,PATA的並行數據線有16根,一次能傳送16bit的數據。而ATA-66以上的規范為了降低匯流排本身的頻率,PATA被設計成在時鍾的上下沿都能傳輸數據(類似DDR的原理),使得在一個時鍾周期內能傳送32bit。

這樣,我們很容易得出ATA-100的速度為:25M*16bit*2=800Mbps=100MByte/s。

PATA的局限性

在相同頻率下,並行匯流排優於串列匯流排。隨著當前硬碟的數據傳輸率越來越高,傳統的並行ATA介面日益逐漸暴露出一些設計上的缺陷,其中最致命的莫過於並行線路的信號干擾問題。

那各信號線之間是如何干擾的呢?

1,首先是信號的反射現象。從南橋發出的PATA信號,通過扁長的信號線到達硬碟(在筆記本上對應的也有從南橋引出PATA介面,一直布線到硬碟的介面)。學過微波通信的讀者肯定知道,信號在到達PATA硬碟後不可避免的會發生反彈,而反彈的信號必將疊加到當前正在被傳輸的信號上,導致傳輸中數據的完整性被破壞,引起接受端誤判。

所以在實際的設計中,都必須要設計相應的電路來保證信號的完整性。

我們看到,從南橋發出的PATA信號一般都需要經過一個排阻才發送到PATA的設備。我們必須加上至少30個電阻(除了16根數據線,還有一些控制信號)才能有效的防止信號的反彈。而在硬碟內部,硬碟廠商會在裡面接上終端電阻以防止引號反彈。這不僅對成本有所上升,也對PCB的布局也造成了困擾。

當然,信號反彈在任何高速電路里都會發生,在SATA里我們也會看到終端電阻,但因為SATA的數據線比PATA少很多,並且採用了差分信號傳輸,所以這個問題並不突出。

2,其次是信號的偏移問題
理論上,並行匯流排的數據線的長度應該是一致的。而在實際上,這點很難得到保證。信號線長度的不一致性會導致某個信號過快/過慢到達接受端,導致邏輯誤判。不僅如此,導致信號延遲的原因還有很多,比如線路板上的分布電容、信號線在高頻時產生的感抗等都會引起信號的延遲。

如圖,在左側南橋端我們發送的數據為[1,1,1,0],在發送到硬碟的過程中,第四個信號由於某種原因出現延遲,在判斷時刻還沒到達接受端。這樣,接受端判斷接受到的信號為[1,1,1,1],出現錯誤。由此也可看出,並行數據線越多,出現錯誤的概率也越大。

下圖是SONY Z1的硬碟轉接線,我們看到,設計師做了不少蛇行走線以滿足PATA數據線的長度一致性要求。

我們可以很容易想像,信號的時鍾越快,被判斷信號判斷的時間就越短,出現誤判的可能性就越大。在較慢的匯流排上(上),允許數據信號和判斷信號的時間誤差為a,而在高速的匯流排上(下),允許誤差為b。速度越快,允許的誤差越小。這也是PATA的匯流排頻率提升的局限性,而匯流排頻率直接影響著硬碟傳輸速度。。。

3,還有是信號線間的干擾(串音干擾)

這種干擾幾乎存在與任何電路。和信號偏移一樣,串音干擾也是並行通信的通病。由於並行通信需要多條信號線並行走線(以滿足長度、分布電容等參數的一致性),而串音干擾就是在這時候導致的。由於信號線在傳輸數據的過程中不停的以0,1間變換,導致其周邊的磁場變化甚快。通過法拉第定律我們知道,磁場變化越快,切割磁力線的導線上的電壓越大。這個電壓將導致信號的變形,信號頻率越高,干擾愈加嚴重,直至完全無法工作。串音干擾可以說這是對並行的PATA線路影響最大的不利因素,並且大大限制了線路的長度。

硬碟的恢復主要是靠備份,還有一些比較專業的恢復技術就是要專業學習的了.不過我不專業,現在最常用的就是GHOST,它可以備份任何一個盤付,並生成一個備份文件必要的時候可以用來恢復數據

現在市場上的主要幾款硬碟就是邁托,西部數據(WD),希捷(ST),三星,東之,松下,還有最新的那個易拓保密硬碟

Ⅱ 硬碟是什麼東西

硬碟(港台稱之為硬碟,英文名:Hard Disk Drive 簡稱HDD 全名 溫徹斯特式硬碟)是電腦主要的存儲媒介之一,由一個或者多個鋁制或者玻璃制的碟片組成。這些碟片外覆蓋有鐵磁性材料。絕大多數硬碟都是固定硬碟,被永久性地密封固定在硬碟驅動器中。 查看精彩圖冊
目錄硬碟硬碟種類硬碟技術機械硬碟介面ATAIDESATASATA ⅡSATA ⅢSCSI光纖通道SAS介面尺寸製造廠商物理結構1.磁頭2.磁軌3.扇區4.柱面邏輯結構3D參數基本Int 13H 調用現代硬碟結構擴展Int 13H基本參數一、容量二、轉速三、平均訪問時間四、傳輸速率五、緩存數據保護擴展分區相關名詞磁頭數薄膜感應(TFI)磁頭網路硬碟固態硬碟DNA硬碟故障表現維護保養1.讀寫過程中且忌斷電2.保持良好的工作環境3.防止受震動4.減少頻繁操作5.恰當的使用時間6.定期整理碎片7.使用穩定的電源供電8、不要強制性關機虛擬硬碟展開硬碟硬碟種類硬碟技術機械硬碟介面ATAIDESATASATA ⅡSATA ⅢSCSI光纖通道SAS介面尺寸製造廠商物理結構1.磁頭2.磁軌3.扇區4.柱面邏輯結構3D參數基本Int 13H 調用現代硬碟結構擴展Int 13H基本參數一、容量二、轉速三、平均訪問時間四、傳輸速率五、緩存數據保護擴展分區相關名詞磁頭數薄膜感應(TFI)磁頭網路硬碟固態硬碟DNA硬碟故障表現維護保養1.讀寫過程中且忌斷電2.保持良好的工作環境3.防止受震動4.減少頻繁操作5.恰當的使用時間6.定期整理碎片7.使用穩定的電源供電8、不要強制性關機虛擬硬碟展開
編輯本段硬碟硬碟種類硬碟分為固態硬碟(SSD)和機械硬碟(HDD);SSD採用快閃記憶體顆粒來存儲,HDD採用磁性碟片來存儲。硬碟技術磁頭復位節能技術:通過在閑時對磁頭的復位來節能。
西部數據在最新的硬碟上採用了該技術來減少空閑時功耗。
多磁頭技術:通過在同一碟片增加多個磁頭同時的讀或寫來為硬碟提速,或同時在多碟片同時利用磁頭來讀或寫來為磁碟提速。目前希捷和日立數據的部分型號採用了該技術。多用於伺服器和資料庫中心。
機械硬碟1.1956年,IBM的IBM 350 RAMAC是現代硬碟的雛形,它相當於兩個冰箱的體積,不過其儲存容量只有5MB。1973年IBM 3340問世,它擁有「溫徹斯特」這個綽號,來源於他兩個30MB的儲存單元,恰是當時出名的「溫徹斯特來福槍」的口徑和填彈量。至此,硬碟的基本架構被確立。
2.1980年,兩位前IBM員工創立的公司開發出5.25英寸規格的5MB硬碟,這是首款面向台式機的產品,而該公司正是希捷(SEAGATE)公司。
3.80年代末,IBM公司推出MR(Magneto Resistive磁阻)技術令磁頭靈敏度大大提升,使碟片的儲存密度較之前的20Mbpsi(bit/每平方英寸)提高了數十倍,該技術為硬碟容量的巨大提升奠定了基礎。1991年,IBM應用該技術推出了首款3.5英寸的1GB硬碟。
4.1970年到1991年,硬碟碟片的儲存密度以每年25%~30%的速度增長;從1991年開始增長到60%~80%;至今,速度提升到100%甚至是200%,從1997年開始的驚人速度提升得益於IBM的GMR(Giant
Magneto Resistive,巨磁阻)技術,它使磁頭靈敏度進一步提升,進而提高了儲存密度。
5.1995年,為了配合Intel的LX晶元組,昆騰(Quantum)與Intel攜手發布UDMA 33介面——EIDE標准將原來介面數據傳輸率從16.6MB/s提升到了33MB/s 同年,希捷開發出液態軸承(FDB,Fluid
Dynamic Bearing)馬達。所謂的FDB就是指將陀螺儀上的技術引進到硬碟生產中,用厚度相當於頭發直徑十分之一的油膜取代金屬軸承,減輕了硬碟噪音與發熱量。
6.1996年,希捷收購康諾(Conner Peripherals)。
7.1998年2月,UDMA66規格面世。
8.1999年,容量高達10GB的ATA硬碟面世。
9.2000年2月23日,希捷發布了轉速高達15,000RPM的Cheetah X15系列硬碟。
3月16日,硬碟領域又有新突破,第一款"玻璃硬碟"問世。
10月,邁拓(Maxtor)收購昆騰。
10.2001年:新的磁頭技術,此時的全部硬碟幾乎均採用GMR,該技術目前最新的為第四代GMR磁頭技術。
11.2003年1月,日立宣布完成20.5億美元的收購IBM硬碟事業部計劃,並成立日立環球儲存科技公司(Hitachi Global Storage
Technologies,Hitachi GST)。
12.2005年日立環儲和希捷都宣布了將開始大量採用磁碟垂直寫入技術(perpendicular recording),該原理是將平行於碟片的磁場方向改變為垂直(90度),更充分地利用的儲存空間。
13.2005年12月21日,硬碟製造商希捷宣布收購邁拓(Maxtor)。
14.2007年1月,日立環球儲存科技宣布將會發售全球首隻1Terabyte的硬碟,比原先的預定時間遲了一年多。硬碟的售價為399美元,平均每美元可以購得2.75GB硬碟空間。
15.2007年11月,Maxtor硬碟出廠的預先格式化的硬碟,被發現已植入會盜取在線游戲的帳號與密碼的木馬。
16.2010年12月,日立環球存儲科技公司日前同時宣布,將向全球OEM廠商和部分分銷合作夥伴推出3T
硬碟(15張)B、2TB和1.5TB Deskstar
7K3000硬碟系列。
17.2011年3月8日凌晨,WD西部數據公司宣布,將以現金加股票的形式,出資43億美元收購日立全資子公司,同為世界級硬碟大廠的日立環球存儲技術公司(HGST)。
編輯本段介面ATA全稱Advanced
Technol
ogy Attachment,是用傳統的40-pin 並口數據線連接主板與硬碟的,外部介面速度最大為133MB/s,因為並口線的抗干擾性太差,且排線占空間,不利計算機散熱,將逐漸被SATA 所取代。
IDEIDE的英文全稱為「Integrated Drive
Electronics」,即「電子集成驅動器」,俗稱PATA並口。
SATA使用SATA(Serial ATA)口的硬碟又叫串口硬碟,是未來PC機硬碟的趨勢。2001年,由Intel、APT、Dell、IBM、希捷、邁拓這幾大廠商組成的Serial ATA委員會正式確立了Serial ATA
1.0規范,2002年,雖然串列ATA的相關設備還未正式上市,但Serial ATA委員會已搶先確立了Serial ATA 2.0規范。Serial
ATA採用串列連接方式,串列ATA匯流排使用嵌入式時鍾信號,具備了更強的糾錯能力,與以往相比其最大的區別在於能對傳輸指令(不僅僅是數據)進行檢查,如果發現錯誤會自動矯正,這在很大程度上提高了數據傳輸的可靠性。串列介面還具有結構簡單、支持熱插拔的優點。
SATA ⅡSATA
Ⅱ是晶元巨頭Intel英特爾與硬碟巨頭Seagate希捷在SATA的基礎上發展起來的,其主要特徵是外部傳輸率從SATA的150MB/s進一步提高到了300MB/s,此外還包括NCQ(Native Command Queuing,原生命令隊列)、埠多路器(Port
Multiplier)、交錯啟動(Staggered Spin-up)等一系列的技術特徵。但是並非所有的SATA硬碟都可以使用NCQ技術,除了硬碟本身要支持NCQ之外,也要求主板晶元組的SATA控制器支持NCQ。
SATA
Ⅲ正式名稱為「SATARevision3.0」,是串列ATA國際組織(SATA-IO)在2009年5月份發布的新版規范,主要是傳輸速度翻番達到6Gbps,同時向下兼容舊版規范「SATARevision2.6」(也就是現在俗稱的SATA3Gbps),介面、數據線都沒有變動。SATA3.0介面技術標準是2007上半年英特爾公司提出的,由英特爾公司的存儲產品架構設計部技術總監Knut Grimsrud負責,Knut Grimsrud表示,SATA3.0的傳輸速率將達到6Gbps,將在SATA2.0的基礎上增加1倍。
SCSISCSI的英文全稱為「Small Computer System
Interface」(小型計算機系統介面),是同IDE(ATA)完全不同的介面,IDE介面是普通PC的標准介面,而SCSI並不是專門為硬碟設計的介面,是一種廣泛應用於小型機上的高速數據傳輸技術。SCSI介面具有應用范圍廣、多任務、帶寬大、CPU佔用率低,以及熱插拔等優點,但較高的價格使得它很難如IDE硬碟般普及,因此SCSI硬碟主要應用於中、高端伺服器和高檔工作站中。
光纖通道光纖通道的英文拼寫是Fibre Channel,和SCIS介面一樣光纖通道最初也不是為硬碟設計開發的介面技術,是專門為網路系統設計的,但隨著存儲系統對速度的需求,才逐漸應用到硬碟系統中。光纖通道硬碟是為提高多硬碟存儲系統的速度和靈活性才開發的,它的出現大大提高了多硬碟系統的通信速度。光纖通道的主要特性有:熱插拔性、高速帶寬、遠程連接、連接設備數量大等。
光纖通道是為在像伺服器這樣的多硬碟系統環境而設計,能滿足高端工作站、伺服器、海量存儲子網路、外設間通過集線器、交換機和點對點連接進行雙向、串列數據通訊等系統對高數據傳輸率的要求。
SAS介面SAS(Serial
Attached SCSI)即串列連接SCSI,是新一代的SCSI技術,和現在流行的Serial ATA(SATA)硬碟相同,都是採用串列技術以獲得更高的傳輸速度,並通過縮短連結線改善內部空間等。SAS是並行SCSI介面之後開發出的全新介面。此介面的設計是為了改善存儲系統的效能、可用性和擴充性,並且提供與SATA硬碟的兼容性。
編輯本段尺寸⒊5英寸台式機硬碟;風頭正勁,廣泛用於各種台式計算機。
硬碟內部⒉5英寸筆記本硬碟;廣泛用於筆記本電腦,桌面一體機,移動硬碟及攜帶型硬碟播放器。
⒈8英寸微型硬碟;廣泛用於超薄筆記本電腦,移動硬碟及蘋果播放器。
⒈3英寸微型硬碟;產品單一,三星獨有技術,僅用於三星的移動硬碟。

⒈0英寸微型硬碟;最早由IBM公司開發,MicroDrive微硬碟(簡稱MD)。因符合CFⅡ標准,所以廣泛用於單反數碼相機。
0.85英寸微型硬碟;產品單一,日立獨有技術,已知用於日立的一款硬碟手機,前Rio公司的幾款MP3播放器也採用了這種硬碟。
製造廠商希捷(Seagate)

希捷 logo
希捷公司成立於1979年,現為全球第二大的硬碟、磁碟和讀寫磁頭製造商,希捷在設計、製造和銷售硬碟領域居全球領先地位,提供用於企業、台式電腦、移動設備和消費電子的產品。2005年並購邁拓(Maxtor)2011年4月收購三星(Samsung)旗下的硬碟業務。

西部數據(Western Digital)

全球知名的硬碟廠商,現為全球第一大硬碟製造商,成立於1979年,目前總部位於美國加州,在世界各地設有分公司或辦事處,為全球五大洲用戶提供存儲器產品,2011年3月收購日立之後,市場份額達到將近百分之50,取代希捷成為名副其實的硬碟老大。

日立(HITACHI)
HITACHI日立集團是全球最大的綜合跨國集團之一.台式電腦硬碟,筆記本硬碟都有生產。於2002年並購IBM硬碟生產事業部門。於2011年3月被西部數據收購。
東芝(TOSHIBA)
日本最大的半導體製造商,亦是第二大綜合電機製造商,隸屬於三井集團旗下。主要生產移動存儲產品。

三星(Samsung)
韓國最大的企業集團三星集團的簡稱。生產的硬碟提供用於台式電腦、移動設備和消費電子的產品。2011年4月19日,希捷正式宣布以13.75億美元(現金加股票的方式)收購三星硬碟業務。2011年12月20日,希捷宣布已完成對三星電子有限公司旗下硬碟業務的收購交易。

編輯本段物理結構1.磁頭
硬碟內部結構
磁頭是硬碟中最昂貴的部件,也是硬碟技術中最重要和最關鍵的一環。傳統的磁頭是讀寫合一的電磁感應式磁頭,但是,硬碟的讀、寫卻是兩種截然不同的操作,為此,這種二合一磁頭在設計時必須要同時兼顧到讀/寫兩種特性,從而造成了硬碟設計上的局限。而MR磁頭(Magnetoresistive
heads),即磁阻磁頭,採用的是分離式的磁頭結構:寫入磁頭仍採用傳統的磁感應磁頭(MR磁頭不能進行寫操作),讀取磁頭則採用新型的MR磁頭,即所謂的感應寫、磁阻讀。這樣,在設計時就可以針對兩者的不同特性分別進行優化,以得到最好的讀/寫性能。另外,MR磁頭是通過阻值變化而不是電流變化去感應信號幅度,因而對信號變化相當敏感,讀取數據的准確性也相應提高。而且由於讀取的信號幅度與磁軌寬度無關,故磁軌可以做得很窄,從而提高了碟片密度,達到200MB/英寸2,而使用傳統的磁頭只能達到20MB/英寸2,這也是MR磁頭被廣泛應用的最主要原因。目前,MR磁頭已得到廣泛應用,而採用多層結構和磁阻效應更好的材料製作的GMR磁頭(Giant
Magnetoresistive heads)也逐漸普及。
2.磁軌當磁碟旋轉時,磁頭若保持在一個位置上,則每個磁頭都會在磁碟表面劃出一個圓形軌跡,這些圓形軌跡就叫做磁軌。這些磁軌用肉眼是根本看不到的,因為它們僅是盤面上以特殊方式磁化了的一些磁化區,磁碟上的信息便是沿著這樣的軌道存放的。相鄰磁軌之間並不是緊挨著的,這是因為磁化單元相隔太近時磁性會相互產生影響,同時也為磁頭的讀寫帶來困難。一張1.44MB的3.5英寸軟盤,一面有80個磁軌,而硬碟上的磁軌密度則遠遠大於此值,通常一面有成千上萬個磁軌。
3.扇區磁碟上的每個磁軌被等分為若干個弧段,這些弧段便是磁碟的扇區,每個扇區可以存放512個位元組的信息,磁碟驅動器在向磁碟讀取和寫入數據時,要以扇區為單位。1.44MB3.5英寸的軟盤,每個磁軌分為18個扇區。
4.柱面硬碟通常由重疊的一組碟片構成,每個盤面都被劃分為數目相等的磁軌,並從外緣的「0」開始編號,具有相同編號的磁軌形成一個圓柱,稱之為磁碟的柱面。磁碟的柱面數與一個盤單面上的磁軌數是相等的。無論是雙盤面還是單盤面,由於每個盤面都有自己的磁頭,因此,盤面數等於總的磁頭數。所謂硬碟的CHS,即Cylinder(柱面)、Head(磁頭)、Sector(扇區),只要知道了硬碟的CHS的數目,即可確定硬碟的容量,硬碟的容量=柱面數*磁頭數*扇區數*512B。

編輯本段邏輯結構3D參數很久以前,硬碟的容量還非常小的時候,人們採用與軟盤類似的結構生產硬碟。也就是硬碟碟片的每一條磁軌都具有相同的扇區數。由此產生了所謂的3D參數(Disk Geometry). 即磁頭數(Heads),柱面數(Cylinders),扇區數(Sectors),以及相應的定址方式。

其中:

磁頭數(Heads)表示硬碟總共有幾個磁頭,也就是有幾面碟片, 最大為255 (用8 個二進制位存儲)

柱面數(Cylinders) 表示硬碟每一面碟片上有幾條磁軌,最大為1023(用 10 個二進制位存儲)

扇區數(Sectors) 表示每一條磁軌上有幾個扇區,最大為63(用 6個二進制位存儲)

每個扇區一般是512個位元組, 理論上講這不是必須的,但好像沒有取別的值的。

所以磁碟最大容量為:

255 * 1023 * 63 * 512 / 1048576 = 7.837 GB (1M
=1048576 Bytes)

或硬碟廠商常用的單位:

255 * 1023 * 63 * 512 / 1000000 = 8.414 GB (1M
=1000000 Bytes)

在CHS 定址方式中,磁頭,柱面,扇區的取值范圍分別為0到 Heads - 1。0 到Cylinders - 1。1 到Sectors
(注意是從1 開始)。
基本Int 13H 調用BIOS
Int 13H 調用是BIOS提供的磁碟基本輸入輸出中斷調用,它可以完成磁碟(包括硬碟和軟盤)的復位,讀寫,校驗,定位,診,格式化等功能。它使用的就是CHS 定址方式,因此最大識能訪問 8 GB 左右的硬碟(本文中如不作特殊說明,均以 1M = 1048576 位元組為單位)。
現代硬碟結構在老式硬碟中,由於每個磁軌的扇區數相等,所以外道的記錄密度要遠低於內道,因此會浪費很多磁碟空間
(與軟盤一樣)。為了解決這一問題,進一步提高硬碟容量,人們改用等密度結構生產硬碟。也就是說,外圈磁軌的扇區比內圈磁軌多,採用這種結構後,硬碟不再具有實際的3D參數,定址方式也改為線性定址,即以扇區為單位進行定址。

為了與使用3D定址的老軟體兼容(如使用BIOSInt13H介面的軟體), 在硬碟控制器內部安裝了一個地址翻譯器,由它負責將老式3D參數翻譯成新的線性參數。這也是為什麼現在硬碟的3D參數可以有多種選擇的原因(不同的工作模式,對應不同的3D參數,如 LBA,LARGE,NORMAL)。
擴展Int 13H雖然現代硬碟都已經採用了線性定址,但是由於基本Int13H 的制約,使用BIOS Int
13H 介面的程序,如 DOS 等還只能訪問8
G以內的硬碟空間。為了打破這一限制,Microsoft 等幾家公司制定了擴展Int 13H 標准(Extended Int13H),採用線性定址方式存取硬碟,所以突破了 8 G的限制,而且還加入了對可拆卸介質(如活動硬碟) 的支持。

編輯本段基本參數一、容量作為計算機系統的數據存儲器,容量是硬碟最主要的參數。

硬碟的容量以兆位元組(MB/MiB)或千兆位元組(GB/GiB)為單位,1GB=1000MB而1GiB=1024MiB。但硬碟廠商通常使用的是GB,也就是1G=1000MB,而Windows系統,就依舊以「GB」字樣來表示「GiB」單位(1024換算的),因此我們在BIOS中或在格式化硬碟時看到的容量會比廠家的標稱值要小。

硬碟的容量指標還包括硬碟的單碟容量。所謂單碟容量是指硬碟單片碟片的容量,單碟容量越大,單位成本越低,平均訪問時間也越短。

一般情況下硬碟容量越大,單位位元組的價格就越便宜,但是超出主流容量的硬碟略微例外。
二、轉速轉速(Rotational Speed 或Spindle speed),是硬碟內電機主軸的旋轉速度,也就是硬碟碟片在一分鍾內所能完成的最大轉數。轉速的快慢是標示硬碟檔次的重要參數之一,它是決定硬碟內部傳輸率的關鍵因素之一,在很大程度上直接影響到硬碟的速度。硬碟的轉速越快,硬碟尋找文件的速度也就越快,相對的硬碟的傳輸速度也就得到了提高。硬碟轉速以每分鍾多少轉來表示,單位表示為RPM,RPM是Revolutions
Per minute的縮寫,是轉/每分鍾。RPM值越大,內部傳輸率就越快,訪問時間就越短,硬碟的整體性能也就越好。

硬碟的主軸馬達帶動碟片高速旋轉,產生浮力使磁頭飄浮在碟片上方。要將所要存取資料的扇區帶到磁頭下方,轉速越快,則等待時間也就越短。因此轉速在很大程度上決定了硬碟的速度。

家用的普通硬碟的轉速一般有5400rpm、7200rpm幾種,高轉速硬碟也是現在台式機用戶的首選;而對於筆記本用戶則是4200rpm、5400rpm為主,雖然已經有公司發布了10000rpm的筆記本硬碟,但在市場中還較為少見;伺服器用戶對硬碟性能要求最高,伺服器中使用的SCSI硬碟轉速基本都採用10000rpm,甚至還有15000rpm的,性能要超出家用產品很多。較高的轉速可縮短硬碟的平均尋道時間和實際讀寫時間,但隨著硬碟轉速的不斷提高也帶來了溫度升高、電機主軸磨損加大、工作噪音增大等負面影響。
三、平均訪問時間平均訪問時間(Average Access Time)是指磁頭從起始位置到達目標磁軌位置,並且從目標磁軌上找到要讀寫的數據扇區所需的時間。

平均訪問時間體現了硬碟的讀寫速度,它包括了硬碟的尋道時間和等待時間,即:平均訪問時間=平均尋道時間+平均等待時間。

硬碟的平均尋道時間(Average Seek Time)是指硬碟的磁頭移動到盤面指定磁軌所需的時間。這個時間當然越小越好,目前硬碟的平均尋道時間通常在8ms到12ms之間,而SCSI硬碟則應小於或等於8ms。

硬碟的等待時間,又叫潛伏期(Latency),是指磁頭已處於要訪問的磁軌,等待所要訪問的扇區旋轉至磁頭下方的時間。平均等待時間為碟片旋轉一周所需的時間的一半,一般應在4ms以下。
四、傳輸速率傳輸速率(Data
Transfer Rate) 硬碟的數據傳輸率是指硬碟讀寫數據的速度,單位為兆位元組每秒(MB/s)。硬碟數據傳輸率又包括了內部數據傳輸率和外部數據傳輸率。

內部傳輸率(Internal Transfer Rate) 也稱為持續傳輸率(Sustained
Transfer Rate),它反映了硬碟緩沖區未用時的性能。內部傳輸率主要依賴於硬碟的旋轉速度。

外部傳輸率(External Transfer Rate)也稱為突發數據傳輸率(Burst Data Transfer
Rate)或介面傳輸率,它標稱的是系統匯流排與硬碟緩沖區之間的數據傳輸率,外部數據傳輸率與硬碟介面類型和硬碟緩存的大小有關。

目前Fast ATA介面硬碟的最大外部傳輸率為16.6MB/s,而Ultra
ATA介面的硬碟則達到33.3MB/s。2012年12月,兩80後研製出傳輸速度每秒1.5GB的固態硬碟。[1]
使用SATA(Serial ATA)口的硬碟又叫串口硬碟,是未來PC機硬碟的趨勢。2001年,由Intel、APT、Dell、IBM、希捷、邁拓這幾大廠商組成的Serial
ATA委員會正式確立了Serial ATA 1.0規范。2002年,雖然串列ATA的相關設備還未正式上市,但Serial ATA委員會已搶先確立了Serial
ATA 2.0規范。Serial ATA採用串列連接方式,串列ATA匯流排使用嵌入式時鍾信號,具備了更強的糾錯能力,與以往相比其最大的區別在於能對傳輸指令(不僅僅是數據)進行檢查,如果發現錯誤會自動矯正,這在很大程度上提高了數據傳輸的可靠性。串列介面還具有結構簡單、支持熱插拔的優點。
五、緩存緩存(Cache memory)是硬碟控制器上的一塊內存晶元,具有極快的存取速度,它是硬碟內部存儲和外界介面之間的緩沖器。由於硬碟的內部數據傳輸速度和外界介面傳輸速度不同,緩存在其中起到一個緩沖的作用。緩存的大小與速度是直接關繫到硬碟的傳輸速度的重要因素,能夠大幅度地提高硬碟整體性能。當硬碟存取零碎數據時需要不斷地在硬碟與內存之間交換數據,有大緩存,則可以將那些零碎數據暫存在緩存中,減小外系統的負荷,也提高了數據的傳輸速度

編輯本段數據保護1.S.M.A.R.T.技術

S.M.A.R.T.技術的全稱是Self-Monitoring,Analysis and Reporting
Technology,即「自監測、分析及報告技術」。在ATA-3標准中,S.M.A.R.T.技術被正式確立。S.M.A.R.T.監測的對象包括磁頭、磁碟、馬達、電路等,由硬碟的監測電路和主機上的監測軟體對被監測對象的運行情況與歷史記錄及預設的安全值進行分析、比較,當出現安全值范圍以外的情況時,會自動向用戶發出警告,而更先進的技術還可以提醒網路管理員的注意,自動降低硬碟的運行速度,把重要數據文件轉存到其它安全扇區,甚至把文件備份到其它硬碟或存儲設備。通過S.M.A.R.T.技術,確實可以對硬碟潛在故障進行有效預測,提高數據的安全性。但我們也應該看到,S.M.A.R.T.技術並不是萬能的,它只能對漸發性的故障進行監測,而對於一些突發性的故障,如碟片突然斷裂等,硬碟再怎麼smart也無能為力了。因此不管怎樣,備份仍然是必須的。

2.DFT技術

DFT(Drive Fitness Test,驅動器健康檢測)技術是IBM公司為其PC硬碟開發的數據保護技術,它通過使用DFT程序訪問IBM硬碟里的DFT微代碼對硬碟進行檢測,可以讓用戶方便快捷地檢測硬碟的運轉狀況。

據研究表明,在用戶送回返修的硬碟中,大部分的硬碟本身是好的。DFT能夠減少這種情形的發生,為用戶節省時間和精力,避免因誤判造成數據丟失。它在硬碟上分割出一個單獨的空間給DFT程序,即使在系統軟體不能正常工作的情況下也能調用。

DFT微代碼可以自動對錯誤事件進行登記,並將登記數據保存到硬碟上的保留區域中。DFT微代碼還可以實時對硬碟進行物理分析,如通過讀取伺服位置錯誤信號來計算出碟片交換、伺服穩定性、重復移動等參數,並給出圖形供用戶或技術人員參考。這是一個全新的觀念,硬碟子系統的控制信號可以被用來分析硬碟本身的機械狀況。

而DFT軟體是一個獨立的不依賴操作系統的軟體,它可以在用戶其他任何軟體失效的情況下運行。

3.加密技術
現代社會人們對隱私的保護欲越來越強烈,硬碟加密技術開始發展。文字、圖形、數字密碼保護是最基本的形式,隨著科技的進步,生物識別技術開始應用到硬碟技術當中。

編輯本段擴展分區由於主分區表中只能分四個分區,無法滿足需求,因此設計了一種擴展分區格式。基本上說,擴展分區的信息是以鏈表形式存放的,但也有一些特別的地方。首先, 主分區表中要有一個基本擴展分區項,所有擴展分區都隸屬於它,也就是說其他所有擴展分區的空間都必須包括在這個基本擴展分區中。對於DOS
/ Windows 來說,擴展分區的類型為0x05。除基本擴展分區以外的其他所有擴展分區則以鏈表的形式級聯存放, 後一個擴展分區的數據項記錄在前一個擴展分區的分區表中,但兩個擴展分區的空間並不重疊。

擴展分區類似於一個完整的硬碟,必須進一步分區才能使用。但每個擴展分區中只能存在一個其他分區。此分區在
DOS/Windows環境中即為邏輯盤。因此每一個擴展分區的分區表(同樣存儲在擴展分區的第一個扇區中)中最多隻能有兩個分區數據項(包括下一個擴展分區的數據項)。

Ⅲ 硬碟參數 高手幫忙解答

以下是和硬碟有關的參數,仔細看完所有的,你就知道什麼硬碟是好硬碟了。

硬碟的轉速(Rotationl Speed): 也就是硬碟電機主軸的轉速,轉速是決定硬碟內部傳輸率的關鍵因素之一,它的快慢在很大程度上影響了硬碟的速度,同時轉速的快慢也是區分硬碟檔次的重要標志之一。硬碟的主軸馬達帶動碟片高速旋轉,產生浮力使磁頭飄浮在碟片上方。要將所要存取資料的扇區帶到磁頭下方,轉速越快,等待時間也就越短。因此轉速在很大程度上決定了硬碟的速度。目前市場上常見的硬碟轉速一般有5400rpm、7200rpm、甚至10000rpm。理論上,轉速越快越好。因為較高的轉速可縮短硬碟的平均尋道時間和實際讀寫時間。可是轉速越快發熱量越大,不利於散熱。現在的主流硬碟轉速一般為7200rpm以上。

隨著硬碟容量的不斷增大,硬碟的轉速也在不斷提高。然而,轉速的提高也帶來了磨損加劇、溫度升高、雜訊增大等一系列負面影響。於是,應用在精密機械工業上的液態軸承馬達(Fluid dynamic bearing motors)便被引入到硬碟技術中。液態軸承馬達使用的是黏膜液油軸承,以油膜代替滾珠。這樣可以避免金屬面的直接磨擦,將雜訊及溫度被減至最低;同時油膜可有效吸收震動,使抗震能力得到提高;更可減少磨損,提高壽命。

平均尋道時間(Average seek time):指硬碟在盤面上移動讀寫頭至指定磁軌尋找相應目標數據所用的時間,它描述硬碟讀取數據的能力,單位為毫秒。當單碟片容量增大時,磁頭的尋道動作和移動距離減少,從而使平均尋道時間減少,加快硬碟速度。目前市場上主流硬碟的平均尋道時間一般在9ms以下,大於10ms的硬碟屬於較早的產品,一般不值得購買。

平均潛伏時間(Average latency time): 指當磁頭移動到數據所在的磁軌後,然後等待所要的數據塊繼續轉動到磁頭下的時間,一般在2ms-6ms之間。

平均訪問時間(Average access time): 指磁頭找到指定數據的平均時間,通常是平均尋道時間和平均潛伏時間之和。平均訪問時間最能夠代表硬碟找到某一數據所用的時間,越短的平均訪問時間越好,一般在11ms-18ms之間。注意:現在不少硬碟廣告之中所說的平均訪問時間大部分都是用平均尋道時間所代替的。

突發數據傳輸率(Burst data transfer rate):指的是電腦通過數據匯流排從硬碟內部緩存區中所讀取數據的最高速率。也叫外部數據傳輸率(External data transfer rate)。目前採用UDMA/66技術的硬碟的外部傳輸率已經達到了66.6MB/s。

最大內部數據傳輸率(Internal data transfer rate): 指磁頭至硬碟緩存間的最大數據傳輸率,一般取決於硬碟的碟片轉速和碟片數據線密度(指同一磁軌上的數據間隔度)。也叫持續數據傳輸率(sustained transfer rate)。一般採用UDMA/66技術的硬碟的內部傳輸率也不過25-30MB/s,只有極少數產品超過30MB/s,由於內部數據傳輸率才是系統真正的瓶頸,因此大家在購買時要分清這兩個概念。不過一般來講,硬碟的轉速相同時,單碟容量大的內部傳輸率高;在單碟容量相同時,轉速高的硬碟的內部傳輸率高。

自動檢測分析及報告技術(Self-Monitoring Analysis and Report Technology,簡稱S.M.A.R.T): 現在出廠的硬碟基本上都支持S.M.A.R.T技術。這種技術可以對硬碟的磁頭單元、碟片電機驅動系統、硬碟內部電路以及碟片表面媒介材料等進行監測,當S.M.A.R.T監測並分析出硬碟可能出現問題時會及時向用戶報警以避免電腦數據受到損失。S.M.A.R.T技術必須在主板支持的前提下才能發生作用,而且S.M.A.R.T技術也不能保證能預報出所有可能發生的硬碟故障。

磁阻磁頭技術MR(Magneto-Resistive Head): MR(MAGNETO-RESITIVEHEAD)即磁阻磁頭的簡稱。MR技術可以更高的實際記錄密度、記錄數據,從而增加硬碟容量,提高數據吞吐率。目前的MR技術已有幾代產品。MAXTOR的鑽石三代/四代等均採用了最新的MR技術。磁阻磁頭的工作原理是基於磁阻效應來工作的,其核心是一小片金屬材料,其電阻隨磁場變化而變化,雖然其變化率不足2%,但因為磁阻元件連著一個非常靈敏的放大器,所以可測出該微小的電阻變化。MR技術可使硬碟容量提高40%以上。GMR(GiantMagnetoresistive)巨磁阻磁頭GMR磁頭與MR磁頭一樣,是利用特殊材料的電阻值隨磁場變化的原理來讀取碟片上的數據,但是GMR磁頭使用了磁阻效應更好的材料和多層薄膜結構,比MR磁頭更為敏感,相同的磁場變化能引起更大的電阻值變化,從而可以實現更高的存儲密度,現有的MR磁頭能夠達到的碟片密度為3Gbit-5Gbit/in2(千兆位每平方英寸),而GMR磁頭可以達到10Gbit-40Gbit/in2以上。目前GMR磁頭已經處於成熟推廣期,在今後的數年中,它將會逐步取代MR磁頭,成為最流行的磁頭技術。

緩存: 緩存是硬碟與外部匯流排交換數據的場所。硬碟的讀數據的過程是將磁信號轉化為電信號後,通過緩存一次次地填充與清空,再填充,再清空,一步步按照PCI匯流排的周期送出,可見,緩存的作用是相當重要的。在介面技術已經發展到一個相對成熟的階段的時候,緩存的大小與速度是直接關繫到硬碟的傳輸速度的重要因素。目前主流硬碟的緩存主要有512KB和2MB等幾種。其類型一般是EDO DRAM或SDRAM,目前一般以SDRAM為主。根據寫入方式的不同,有寫通式和回寫式兩種。寫通式在讀硬碟數據時,系統先檢查請求指令,看看所要的數據是否在緩存中,如果在的話就由緩存送出響應的數據,這個過程稱為命中。這樣系統就不必訪問硬碟中的數據,由於SDRAM的速度比磁介質快很多,因此也就加快了數據傳輸的速度。回寫式就是在寫入硬碟數據時也在緩存中找,如果找到就由緩存就數據寫入盤中,現在的多數硬碟都是採用的回寫式硬碟,這樣就大大提高了性能。

連續無故障時間(MTBF):指硬碟從開始運行到出現故障的最長時間。一般硬碟的MTBF至少在30000或40000小時。

部分響應完全匹配技術PRML(Partial Response Maximum Likelihood):能使碟片存儲更多的信息,同時可以有效地提高數據的讀取和數據傳輸率。是當前應用於硬碟數據讀取通道中的先進技術之一。PRML技術是將硬碟數據讀取電路分成兩段「操作流水線」,流水線第一段將磁頭讀取的信號進行數字化處理然後只選取部分「標准」信號移交第二段繼續處理,第二段將所接收的信號與PRML晶元預置信號模型進行對比,然後選取差異最小的信號進行組合後輸出以完成數據的讀取過程。PRML技術可以降低硬碟讀取數據的錯誤率,因此可以進一步提高磁碟數據密集度。

單磁軌時間(Single track seek time):指磁頭從一磁軌轉移至另一磁軌所用的時間。

超級數字信號處理器(Ultra DSP)技術:用Ultra DSP進行數學運算,其速度較一般CPU快10到50倍。採用Ultra DSP技術,單個的DSP晶元可以同時提供處理器及驅動介面的雙重功能,以減少其它電子元件的使用,可大幅度地提高硬碟的速度和可*性。介面技術可以極大地提高硬碟的最大外部傳輸率,最大的益處在於可以把數據從硬碟直接傳輸到主內存而不佔用更多的CPU資源,提高系統性能。
硬碟表面溫度: 指硬碟工作時產生的溫度使硬碟密封殼溫度上升情況。硬碟工作時產生的溫度過高將影響薄膜式磁頭(包括MR磁頭)的數據讀取靈敏度,因此硬碟工作表面溫度較低的硬碟有更好的數據讀、寫穩定性。

全程訪問時間(Max full seek time):指磁頭開始移動直到最後找到所需要的數據塊所用的全部時間。

介面技術:口技術可極大地提高硬碟的最大外部數據傳輸率,現在普遍使用的ULTRAATA/66已大幅提高了E-IDE介面的性能,所謂UltraDMA66是指一種由Intel及Quantum公司設計的同步DMA協議。使用該技術的硬碟並配合相應的晶元組,最大傳輸速度可以由16MB/s提高到66MS/s。它的最大優點在於把CPU從大量的數據傳輸中解放出來了,可以把數據從HDD直接傳輸到主存而不佔用更多的CPU資源,從而在一定程度上提高了整個系統的性能。由於採用ULTRAATA技術的硬碟整體性能比普通硬碟可提高20%~60%,所以已成為目前E-IDE硬碟事實上的標准。

SCSI硬碟的介面技術也在迅速發展。Ultra160/mSCSI被引入硬碟世界,對硬碟在高計算量應用領域的性能擴展極有裨益,處理關鍵任務的伺服器、圖形工作站、冗餘磁碟陣列(RAID)等設備將因此得到性能提升。從技術發展看,Ultra160/mSCSI僅僅是硬碟介面發展道路上的一環而已,200MB的光纖技術也遠未達到止境,未來的介面技術必將令今天的用戶瞠目結舌。

光纖通道技術具有數據傳輸速率高、數據傳輸距離遠以及可簡化大型存儲系統設計的優點。目前,光纖通道支持每秒200MB的數據傳輸速率,可以在一個環路上容納多達127個驅動器,局域電纜可在25米范圍內運行,遠程電纜可在10公里范圍內運行。某些專門的存儲應用領域,例如小型存儲區域網路(SAN)以及數碼視像應用,往往需要高達每秒200MB的數據傳輸速率和強勁的聯網能力,光纖通道技術的推出正適應了這一需求。同時,其超長的數據傳輸距離,大大方便了遠程通信的技術實施。由於光纖通道技術的優越性,支持光纖界面的硬碟產品開始在市場上出現。這些產品一般是大容量硬碟,平均尋道時間短,適應於高速、高數據量的應用需求,將為中高端存儲應用提供良好保證。

IEEE1394:IEEE1394又稱為Firewire(火線)或P1394,它是一種高速串列匯流排,現有的IEEE1394標准支持100Mbps、200Mbps和400Mbps的傳輸速率,將來會達到800Mbps、1600Mbps、3200Mbps甚至更高,如此高的速率使得它可以作為硬碟、DVD、CD-ROM等大容量存儲設備的介面。IEEE1394將來有望取代現有的SCSI匯流排和IDE介面,但是由於成本較高和技術上還不夠成熟等原因,目前仍然只有少量使用IEEE1394介面的產品,硬碟就更少了。

硬碟:英文「hard-disk」簡稱HD 。是一種儲存量巨大的設備,作用是儲存計算機運行時需要的數據。計算機的硬碟主要由碟片、磁頭、磁頭臂、磁頭臂服務定位系統和底層電路板、數據保護系統以及介面等組成。 計算機硬碟的技術指標主要圍繞在碟片大小、碟片多少、單碟容量、磁碟轉速、磁頭技術、服務定位系統、介面、二級緩存、噪音和S.M.A.R.T. 等參數上。

碟片:硬碟的所有數據都存儲在碟片上,碟片是由硬質合金組成的碟片,現在還出現了玻璃碟片。目前的硬碟產品內部碟片大小有:5.25,3.5,2.5和1.8英寸(後兩種常用於筆記本及部分袖珍精密儀器中,現在台式機中常用3.5英寸的碟片)。

磁頭:硬碟的磁頭是用線圈纏繞在磁芯上製成的,最初的磁頭是讀寫合一的,通過電流變化去感應信號的幅度。對於大多數計算機來說,在與硬碟交換數據的過程中,讀操作遠遠快於寫操作,而且讀/寫是兩種不同特性的操作,這樣就促使硬碟廠商開發一種讀/寫分離磁頭。在1991年,IBM提出了它基於磁阻(MR)技術的讀磁頭技術 D D各項異性磁 ,磁頭在和旋轉的碟片相接觸過程中,通過感應碟片上磁場的變化來讀取數據。在硬碟中,碟片的單碟容量和磁頭技術是相互制約、相互促進的。

AMR(Anisotropic Magneto Resistive,AMR):一種磁頭技術,AMR技術可以支持3.3GB/平方英寸的記錄密度,在1997年AMR是當時市場的主流技術。

GMR(Giant Magneto Resistive,巨磁阻):比AMR技術磁頭靈敏度高2倍以上,GMR磁頭是由4層導電材料和磁性材料薄膜構成的:一個感測層、一個非導電中介層、一個磁性的栓層和一個交換層。前3個層控制著磁頭的電阻。在栓層中,磁場強度是固定的,並且磁場方向被相臨的交換層所保持。而且自由層的磁場強度和方向則是隨著轉到磁頭下面的磁碟表面的微小磁化區所改變的,這種磁場強度和方向的變化導致明顯的磁頭電阻變化,在一個固定的信號電壓下面,就可以拾取供硬碟電路處理的信號。
OAW(光學輔助溫式技術):希捷正在開發的OAW是未來磁頭技術發展的方向,OAW技術可以在1英寸寬內寫入105000以上的磁軌,單碟容量有望突破36GB。單碟容量的提高不僅可以提高硬碟總容量、降低平均尋道時間,還可以降低成本、提高性能。

PRML(局部響應最大擬然,Partial Response Maximum Likelihood):除了磁頭技術的日新月異之外,磁記錄技術也是影響硬碟性能非常關鍵的一個因素。當磁記錄密度達到某一程度後,兩個信號之間相互干擾的現象就會非常嚴重。為了解決這一問題,人們在硬碟的設計中加入了PRML技術。PRML讀取通道方式可以簡單地分成兩個部分。首先是將磁頭從碟片上所讀取的信號加以數字化,並將未達到標準的信號加以舍棄,而沒有將信號輸出。這個部分便稱為局部響應。最大擬然部分則是拿數字化後的信號模型與PRML晶元本身的信號模型庫加以對比,找出最接近、失真度最小的信號模型,再將這些信號重新組合而直接輸出數據。使用PRML方式,不需要像脈沖檢測方式那樣高的信號強度,也可以避開因為信號記錄太密集而產生的相互干擾的現象。 磁頭技術的進步,再加上目前記錄材料技術和處理技術的發展,將使硬碟的存儲密度提升到每平方英寸10GB以上,這將意味著可以實現40GB或者更大的硬碟容量。

間隔因子:硬碟磁軌上相鄰的兩個邏輯扇區之間的物理扇區的數量。因為硬碟上的信息是以扇區的形式來組織的,每個扇區都有一個號碼,存取操作要通過這個扇區號,所以使用一個特定的間隔因子來給扇區編號而有助於獲取最佳的數據傳輸率。

著陸區(LZ):為使硬碟有一個起始位置,一般指定一個內層柱面作為著陸區,它使硬碟磁頭在電源關閉之前停回原來的位置。著陸區不用來存儲數據,因些可避免磁頭在開、關電源期間緊急降落時所造成數據的損失。目前,一般的硬碟在電源關閉時會自動將磁頭停在著陸區,而老式的硬碟需執行PARK命令才能將磁頭歸位。

反應時間:指的是硬碟中的轉輪的工作情況。反應時間是硬碟轉速的一個最直接的反應指標。5400RPM的硬碟擁有的是5.55 MS的反應時間,而7200RPM的可以達到4.17 MS。反應時間是硬碟將利用多長的時間完成第一次的轉輪旋轉。如果我們確定一個硬碟達到120周旋轉每秒的速度,那麼旋轉一周的時間將是1/120即0.008333秒的時間。如果我們的硬碟是0.0041665秒每周的速度,我們也可以稱這塊硬碟的反應時間是4.17 ms(1ms=1/1000每秒)。

平均潛伏期(average latency):指當磁頭移動到數據所在的磁軌後,然後等待所要的數據塊繼續轉動(半圈或多些、少些)到磁頭下的時間,單位為毫秒(ms)。平均潛伏期是越小越好,潛伏期小代表硬碟的讀取數據的等待時間短,這就等於具有更高的硬碟數據傳輸率。

道至道時間(single track seek):指磁頭從一磁軌轉移至另一磁軌的時間,單位為毫秒(ms)。

全程訪問時間(max full seek):指磁頭開始移動直到最後找到所需要的數據塊所用的全部時間,單位為毫秒(ms)。

外部數據傳輸率:通稱突發數據傳輸率(burst data transfer rate):指從硬碟緩沖區讀取數據的速率,常以數據介面速率代替,單位為MB/S。目前主流硬碟普通採用的是Ultra ATA/66,它的最大外部數據率即為66.7MB/s,2000年推出的Ultra ATA/100,理論上最大外部數據率為100MB/s,但由於內部數據傳輸率的制約往往達不到這么高。

主軸轉速:是指硬碟內電機主軸的轉動速度,目前ATA(IDE)硬碟的主軸轉速一般為5400-7200rpm,主流硬碟的轉速為7200RPM,至於SCSI硬碟的主軸轉速可達一般為7200-10,000RPM,而最高轉速的SCSI硬碟轉速高達15,000RPM。

數據緩存:指在硬碟內部的高速存儲器,在電腦中就象一塊緩沖器一樣將一些數據暫時性的保存起來以供讀取和再讀取。目前硬碟的高速緩存一般為512KB-2MB,目前主流ATA硬碟的數據緩存為2MB,而在SCSI硬碟中最高的數據緩存現在已經達到了16MB。對於大數據緩存的硬碟在存取零散文件時具有很大的優勢。

硬碟表面溫度:它是指硬碟工作時產生的溫度使硬碟密封殼溫度上升情況。硬碟工作時產生的溫度過高將影響磁頭的數據讀取靈敏度,因此硬碟工作表面溫度較低的硬碟有更好的數據讀、寫穩定性。
MTBF(連續無故障時間):它指硬碟從開始運行到出現故障的最長時間,單位是小時。一般硬碟的MTBF至少在30000或40000小時。

S.M.A.R.T.(自監測、分析、報告技術):這是現在硬碟普遍採用的數據安全技術,在硬碟工作的時候監測系統對電機、電路、磁碟、磁頭的狀態進行分析,當有異常發生的時候就會發出警告,有的還會自動降速並備份數據。

DPS(數據保護系統):昆騰在火球八代硬碟中首次內建了DPS,在硬碟的前300MB內存放操作系統等重要信息,DPS可在系統出現問題後的90秒內自動檢測恢復系統數據,若不行則用DPS軟盤啟動後它會自動分析故障,盡量保證數據不丟失。

數據衛士:是西部數據(WD)特有的硬碟數據安全技術,此技術可在硬碟工作的空餘時間里自動每8個小時自動掃描、檢測、修復碟片的各扇區。

MaxSafe:是邁拓在金鑽二代上應用的技術,它的核心是將附加的ECC校驗位保存在硬碟上,使讀寫過程都經過校驗以保證數據的完整性。

DST:驅動器自我檢測技術,是希捷公司在自己硬碟中採用的數據安全技術,此技術可保證保存在硬碟中數據的安全性。

DFT:驅動器健康檢測技術,是IBM公司在自己硬碟中採用的數據安全技術,此技術同以上幾種技術一樣可極大的提高數據的安全性。

噪音與防震技術:硬碟主軸高速旋轉時不可避免的產生噪音,並會因金屬磨擦而產生磨損和發熱問題,「液態軸承馬達」就可以解決這一問題。它使用的是黏膜液油軸承,以油膜代替滾珠,可有效地降低以上問題。同時液油軸承也可有效地吸收震動,使硬碟的抗震能力由一般的一二百個G提高到了一千多G,因此硬碟的壽命與可*性也可以得到提高。昆騰在火球七代(EX)系列之後的硬碟都應用了SPS震動保護系統;邁拓在金鑽二代上應用了ShockBlock防震保護系統,他們的目的都是分散沖擊能量,盡量避免磁頭和碟片的撞擊;希捷的金牌系列硬碟中SeaShield系統是用減震材料製成的保護軟罩外加磁頭臂與碟片間的防震設計來實現的。

ST-506/412介面:這是希捷開發的一種硬碟介面,首先使用這種介面的硬碟為希捷的ST-506及ST-412。ST-506介面使用起來相當簡便,它不需要任何特殊的電纜及接頭,但是它支持的傳輸速度很低,因此到了1987年左右這種介面就基本上被淘汰了,採用該介面的老硬碟容量多數都低於200MB。早期IBM PC/XT和PC/AT機器使用的硬碟就是ST-506/412硬碟或稱MFM硬碟-MFM(Modified Frequency Molation)是指一種編碼方案。

ESDI介面:即(Enhanced Small Drive Interface)介面,它是邁拓公司於1983年開發的。其特點是將編解碼器放在硬碟本身之中,而不是在控制卡上,理論傳輸速度是前面所述的ST-506的2…4倍,一般可達到10Mbps。但其成本較高,與後來產生的IDE介面相比無優勢可言,因此在九十年代後就被淘汰了。

IDE及EIDE介面:IDE(Integrated Drive Electronics)的本意實際上是指把控制器與盤體集成在一起的硬碟驅動器,我們常說的IDE介面,也叫ATA(Advanced Technology Attachment)介面,現在PC機使用的硬碟大多數都是IDE兼容的,只需用一根電纜將它們與主板或介面卡連起來就可以了。把盤體與控制器集成在一起的做法減少了硬碟介面的電纜數目與長度,數據傳輸的可*性得到了增強,硬碟製造起來變得更容易,因為廠商不需要再擔心自己的硬碟是否與其它廠商生產的控制器兼容,對用戶而言,硬碟安裝起來也更為方便。

ATA-1(IDE):ATA是最早的IDE標準的正式名稱,IDE實際上是指連在硬碟介面的硬碟本身。ATA在主板上有一個插口,支持一個主設備和一個從設備,每個設備的最大容量為504MB,ATA最早支持的PIO-0模式(Programmed I/O-0)只有3.3MB/s,而ATA-1一共規定了3種PIO模式和4種DMA模式(沒有得到實際應用),要升級為ATA-2,需要安裝一個EIDE適配卡。

ATA-2 (EIDE Enhanced IDE/Fast ATA):這是對ATA-1的擴展,它增加了2種PIO和2種DMA模式,把最高傳輸率提高到了16.7MB/s,同時引進了LBA地址轉換方式,突破了老BIOS固有504MB的限制,支持最高可達8.1GB的硬碟。如你的電腦支持ATA-2,則可以在CMOS設置中找到(LBA,LogicalBlock Address)或(CHS,Cylinder,Head,Sector)的設置。其兩個插口分別可以連接一個主設備和一個從設置,從而可以支持四個設備,兩個插口也分為主插口和從插口。通常可將最快的硬碟和CD-ROM放置在主插口上,而將次要一些的設備放在從插口上,這種放置方式對於486及早期的Pentium電腦是必要的,這樣可以使主插口連在快速的PCI匯流排上,而從插口連在較慢的ISA匯流排上。

Ⅳ 怎樣選擇電腦硬碟

首先:推薦硬碟使用SSD,好處網路一下就知道。價格差不多是普通硬碟的2倍,也並不是很高。而且SSD主要應用於系統盤足以。
硬碟是電腦中的重要部件之一,不僅價格昂貴,存儲的信息更是無價之寶,因此,每個購買電腦的用戶都希望選擇一個性價比高、性能穩定的的好硬碟,並且在一段時間內能夠滿足自己的存儲需要。速度、容量、安全性一直是衡量硬碟的最主要的三大因素。更大、更快、更安全、更廉價永遠是硬碟發展的方向。選購硬碟首先應該從以下幾方面加以考慮:
(一)、硬碟容量
硬碟的容量是非常關鍵的,大多數被淘汰的硬碟都是因為容量不足,不能適應日益增長海量數據的存儲,如果說速度慢一點還可以等待的話,要是空間缺乏可是更令人頭痛的事。硬碟的容量多大也不為過,在資金充裕的條件下,應盡量購買大容量硬碟,這是因為容量越大,硬碟上每兆存儲介質的成本越低。
原則上說,在盡可能的范圍內,硬碟的容量越大越好,一方面用戶得到了更大的存儲空間,能夠更好地面對將來可能潛在的存儲需要,另一方面容量越大硬碟上每兆存儲介質的成本就越低,無形中為用戶降低了使用成本,這一點對於那些從事圖形圖像處理、音頻語音識別和多媒體技術應用等工作,要求海量存儲空間的用戶尤其重要。但是並不是對所有用戶都是如此,譬如為辦公室里應用於一般辦公的PC配備一隻超大容量的硬碟就多少有些「奢侈」了,而普通的家庭用戶,由於資金的限制,不可能購買容量很大的硬碟,但是在當前至少也應該購買80GB以上的硬碟。
目前推動硬碟容量飛速發展的主要動力在於以下兩點:
一是隨著網路應用的日益發展,各地電信網路不斷增容、升級,網路用戶能享用到越來越大的帶寬,上網速度越來越快。隨之而來的一個問題是,從網上下載的數據量也會劇增。這個數量是用傳統電話線及普通Modem所不敢想像的。例如,有線電視Modem以及衛星鏈路技術可提供每秒30至40兆位的數據傳輸速度。上網幾十分鍾,拉回數百兆的文件只是小菜一碟。有些觀察家聲稱Internet具有一種"增殖效應"。根據他們的預測,對於網上存放的任何東西(數據)來說,隨著遍布全球的用戶不斷下載各種軟體、圖片、資訊、視頻以及游戲,同樣的東西會被數以千百次地重復下載,最終躺到用戶的硬碟里。盡管他們認為這種效應會產生一些"浪費"。但無法迴避的一個事實是,隨著家庭用戶享受的帶寬越來越高,大型文件的下載會變得更加容易,相應對硬碟容量的要求也越來越迫切。
二是數字媒體內容快速增長, 一些"存儲密集型"的多媒體應用也在刺激大容量驅動器發展。這些應用包括數碼電視、照片、電影以及音樂等等,它們均對系統的存儲能力提出了苛刻的要求。分析家預測這些應用會變得越來越流行,而且會成為持續刺激硬碟擴容的一項重要因素。下面來看看為滿足這些令人激動的數碼應用的要求,需要准備多大的硬碟空間:
·電視:每小時13GB(採用miniDV格式)
·音樂:每輯50MB(採用MP3格式)
·電影:每部4GB
(二)、硬碟速度
由於硬碟的讀寫離不開機械運動,其速度相對於CPU、內存、顯卡等的速度來說要慢得多,從著名「木桶效應」來看,可以說硬碟的性能決定了計算機的最終性能。
硬碟速度的快慢主要取決於轉速、緩存、平均尋道時間和介面類型,在內部傳輸率(磁頭→緩存的速率)成為瓶頸的現在,僅僅提高外部數據傳輸率(改進介面類型)對總體性能的影響不大,因此,我們可以簡單地認為硬碟的速度只決定於其轉速、緩存大小和平均尋道時間。
1.主軸轉速
轉速是影響硬碟性能最重要的因素之一,目前市場上流行的是5400rpm(每分鍾轉數)和7200rpm的硬碟。不宜選用低於5400轉的產品,7200轉的如果質量穩定應優先考慮。
2.平均尋道時間
平均尋道時間是指磁頭從得到指令到尋找到數據所在磁軌的時間,它描述硬碟讀取數據的能力,以毫秒為單位。作為完成一次傳輸的前提,磁頭首先要快速找到該數據所在的扇區,這一定位時間叫「平均尋道時間」(AverageSeekTimes)。這個時間越小越好,一般要選擇平均尋道時間在10ms以下的產品。
3.內部數據傳輸率
即磁頭到硬碟的高速緩存之間的數據傳輸速度,這可以說是影響硬碟整體速度的瓶頸。如今各品牌的主流硬碟,容量差不多,平均尋道時間相差不大,轉速也多為7200轉,高速緩存為2MB左右,外部數據傳輸率都採用UltraDMA100技術,可是內部數據傳輸率卻因品牌及型號不同而呈現較大的差異。選購硬碟時不要忽視對內部數據傳輸率的關注。
數據傳輸率分為外部傳輸率(External TransferRate)和內部傳輸率(Internal Transfer Rate)。外部數據傳輸率指硬碟的緩存與系統主存之間交換數據的速度,內部數據傳輸率指硬碟磁頭從緩存中讀寫數據的速度。在這項指標中常常使用Mb/S或Mbps為單位,這是兆位/秒的意思,如果需要轉換成MB/S(兆位元組/秒),就必須將Mbps數據除以8(一位元組位數)。例如最大內部數據傳輸率為240Mbps,但如果按MB/S計算就只有30MB/s,遠不到硬碟介面的100MB/s。因此硬碟的內部數據傳輸率就成了整個系統瓶頸中的瓶頸,只有硬碟的內部數據傳輸率提高了,再提高硬碟的介面速度才有實在的意義。
4.介面方式
現在常用的硬碟基本都採用的是DMA 100/133或SATA、SCSI的介面方式。要注意SCSI硬碟介面有三種,分別是50針、68針和80針。我們常見到硬碟型號上標有「N」「W」「SCA」,就是表示介面針數的。N即窄口(Narrow),50針;W即寬口(Wide),68針;SCA即單接頭(Single ConnectorAttachment),80針。其中80針的SCSI盤一般支持熱插拔。
5.高速緩存
高速緩存的大小對硬碟速度有較大影響,當然是越大越好,目前最大已達8MB以上。不應低於2MB。
6、安全性
硬碟作為存放信息的主要場所,所存放信息的價值往往要遠高於其產品的價值,硬碟的穩定可靠性就顯得非常重要了。這要注意品牌的口碑及是否採用了前面談到的SPS等數據保護技術。
(三)、選購硬碟時需注意的其他問題
1、平均潛伏期(averagelatency):指當磁頭移動到數據所在的磁軌後,然後等待所要的數據塊繼續轉動(半圈或多些、少些)到磁頭下的時間,單位為毫秒(ms)。
2、道至道時間(singletrackseek):指磁頭從一磁軌轉移至另一磁軌的時間,單位為毫秒(ms)。
3、全程訪問時間(maxfullseek):單位同樣是毫秒(ms),指磁頭開始移動直到最後找到所需要的數據塊所用的全部時間。
4、平均訪問時間(averageaccess):指磁頭找到指定數據的平均時間,單位為毫秒(ms)。通常是平均尋道時間和平均潛伏時間之和。注意:現在不少硬碟廣告之中所說的平均訪問時間大部分都是用平均尋道時間所代替的。
5、突發數據傳輸率(burstdatatransferrate):也叫外部數據傳輸率(externaldatatransferrate),單位為MB/S。指的是電腦通過數據匯流排從硬碟內部緩存區中所讀取數據的最高速率。在廣告或硬碟特性表中常以數據介面速率代替。
6、MTBF(連續無故障時間):指硬碟從開始運行到出現故障的最長時間,單位是小時。一般硬碟的MTBF至少在30000或40000小時。這項指標在一般的產品廣告或常見的技術特性表中並不提供,需要時可專門上網到具體生產該款硬碟的公司網址中查詢。
7、單碟容量: 高的硬碟單碟容量至少可以為我們帶來兩大好處:一是使硬碟可以擁有更大的存儲容量。我們知道,3.5英寸的硬碟目前最多隻能裝四張碟片,如果要增加硬碟的存儲空間,唯一的方法是提高單碟容量。提高單碟容量後,用同樣數目的碟片可以生產出容量更大的硬碟,能進一步控制硬碟的成本。第二大好處是可以有效地提高硬碟的內部轉輸率。在磁碟轉速和磁頭的操作速度不變的情況下,相同的時間內磁頭所能訪問到磁碟的區域是一定的。而單碟容量提高後,碟片上的數據密度更高,單位面積上所記載的數據量也得以提高,相應的在單位時間內磁頭能夠存取到的數據信息也更多。
8、發熱及噪音問題。硬碟的表面溫度指硬碟工作時產生的溫度使硬碟密封殼溫度上升情況。這項指標廠家並不提供,一般只能在各種媒體的測試數據中看到。硬碟工作時產生的溫度過高將影響薄膜式磁頭(包括MR磁頭)的數據讀取靈敏度,因此硬碟工作表面溫度較低的硬碟有更好的數據讀、寫穩定性。若硬碟散發的熱量不能及時的傳導出去,硬碟就會急劇的升溫,一方面會使硬碟的電路工作在不穩定的狀態,另一方面硬碟的碟片與磁頭長時間在高溫下工作也很容易使碟片出現讀寫錯誤和壞道,而且對硬碟使用壽命也會有一定影響。好在隨著技術的發展,如今市場上大多數硬碟的發熱量都有漸小之勢了,這一點現在不必過於擔心。噪音對單個硬碟而言沒有大的影響。不過在夜深人靜的時候,不時聽到從機箱里發出的一陣陣硬碟響聲,聲音太大的,會弄得你心煩不安。當然是越「安靜」的硬碟越受歡迎。
9、超頻問題。要穩定超頻,除CPU外,其它設備也是決定能否穩定超頻的因素,硬碟就是其中之一。在很多情況下不能超頻,往往是由硬碟造成的。尤其在非標准外頻下,硬碟的數據傳輸率也會隨之上升,硬碟自身承受不了,就有可能出現不正常現象,如不能進入Windows等,更嚴重的還會搞得數據丟失、系統被破壞。所以各位打算拿機器來超頻的朋友選購時一定要考慮到這一點。
對66MHz匯流排來說,當匯流排(BUS)頻率超到75、83MHz時,IDE匯流排將以超負荷13.6%、25.8%的頻率運行;對100MHz匯流排來說,超到112、124、133MHz時,IDE匯流排將以超負荷12%、24%、33%的頻率運行。因此超頻對硬碟的考驗苛刻到幾乎可以致命的地步,一旦失敗則可能會損壞硬碟中的數據和物理介質。
10、假貨問題。嚴格說硬碟產品並不存在假貨的問題。但市場仍有一部分經銷商常常在硬碟上耍花招對用戶進行欺詐。一是將老一代的產品以新產品的價格賣給用戶;二是市場上銷售的硬碟,有可能由於運輸或者其它環節的問題,其中的少部分在品質上可能會有一些瑕疵(比如有少量壞道),而有些經銷商將這些產品賣給那些不太懂行的用戶,一方面侵害了用戶的合法權益,另一方面也為用戶的使用埋下了隱患,三是水貨問題,目前市場上有一些沒有經過正常報關手續的硬碟,就是我們通常所說的「水貨」,按理說,這些產品和那些經過正常報關手續的同型號硬碟在性能、質量上沒有什麼差別,但是由於其特殊的「渠道」,這些產品沒有可靠的質保,雖然比正規渠道的相同產品便宜一些,但是「三年質保」變成了「一年質保」,有些經銷商雖然也對這些產品做出了「質保三年」的承諾,但是這根本不可能得到落實,用戶們要避免購買這一類產品

Ⅳ iot硬碟和普通硬碟區別

iot硬碟進一步強化安全性的同時,大幅度提高單片硬碟容量,通過更安全、更經濟、更可靠的特點,將撬動整個物聯網數據中心規模建設,為未來物聯網快速普及建設拓寬道路。

硬碟的磁軌記錄著數據,這些磁軌是以一圈圈的同心圓的形式由內到外分布在碟片上,磁軌與磁軌中間存在空隙,而SMR壓縮了這些空隙,使相鄰的磁軌在物理空間上進行部分平面重疊,就像圓形屋頂上的瓦片一樣疊在一起。

固定硬碟

被永久性地密封固定在硬碟驅動器中。早期的硬碟存儲媒介是可替換的,不過今日典型的硬碟是固定的存儲媒介,被封在硬碟里 (除了一個過濾孔,用來平衡空氣壓力)。隨著發展,可移動硬碟也出現了,而且越來越普及,種類也越來越多.大多數微機上安裝的硬碟,由於都採用溫切斯特(winchester)技術而被稱之為「溫切斯特硬碟」,或簡稱「溫盤」。

Ⅵ 推薦一款高性價比的移動硬碟吧

推薦你看一下以下這幾款:

1.紐曼旅行者2.5T(殺毒)

存儲容量 20 GB
介面類型 USB 2.0
數據傳輸率 480 Mbps
功能特點 USB插口為工字型,可防止反插引起的電路燒壞
兼容操作系統 支持Windows 98/SE/ME/2000/XP/Linux 2.4
轉速 4200 rpm
平均尋道時間 13 ms

詳情請參考:http://proct.pcpop.com/000016734/Index.html

2.紐曼數據王(30G)

存儲容量 30 GB
介面類型 USB 2.0
數據傳輸率 480 Mbps
存儲介質 2.5寸硬碟
兼容操作系統 WIN98SE、 WINME、WIN2000、WINXP

詳情請參考:http://proct.pcpop.com/000021819/Index.html

3.清華紫光 風神2.5T (40G)

產品類別:移動存儲
生產廠商:清華紫光
參考價格:¥ 850
介面類型: USB 2.0
數據傳輸速率: 480
兼容存儲介質: 2.5英寸硬碟
供電方式: USB口直接取電
兼容操作系統: Win98/ME/2000/XP
附件及選件: USB A to B電纜、用戶手冊、光碟驅動程序

詳情請參考:http://info.zzit.com.cn/1107/13000/index.html

硬碟常見的技術指標有以下幾種:
1、每分鍾轉速(RPM,Revolutions Per Minute):這一指標代表了硬碟主軸馬達(帶動磁碟)的轉速,比如5400RPM就代表該硬碟中的主軸轉速為每分鍾5400轉。
2、平均尋道時間(Average Seek Time):如果沒有特殊說明一般指讀取時的尋道時間,單位為ms(毫秒)。這一指標的含義是指硬碟接到讀/寫指令後到磁頭移到指定的磁軌(應該是柱面,但對於具體磁頭來說就是磁軌)上方所需要的平均時間。除了平均尋道時間外,還有道間尋道時間(Track to Track或Cylinder Switch Time)與全程尋道時間(Full Track或Full Stroke),前者是指磁頭從當前磁軌上方移至相鄰磁軌上方所需的時間,後者是指磁頭從最外(或最內)圈磁軌上方移至最內(或最外)圈磁軌上方所需的時間,基本上比平均尋道時間多一倍。出於實際的工作情況,我們一般只關心平均尋道時間。
3、平均潛伏期(Average Latency):這一指標是指當磁頭移動到指定磁軌後,要等多長時間指定的讀/寫扇區會移動到磁頭下方(碟片是旋轉的),碟片轉得越快,潛伏期越短。平均潛伏期是指磁碟轉動半圈所用的時間。顯然,同一轉速的硬碟的平均潛伏期是固定的。7200RPM時約為4.167ms,5400RPM時約為5.556ms。
4、平均訪問時間(Average Access Time):又稱平均存取時間,一般在廠商公布的規格中不會提供,這一般是測試成績中的一項,其含義是指從讀/寫指令發出到第一筆數據讀/寫時所用的平均時間,包括了平均尋道時間、平均潛伏期與相關的內務操作時間(如指令處理),由於內務操作時間一般很短(一般在0.2ms左右),可忽略不計,所以平均訪問時間可近似等於平均尋道時間+平均潛伏期,因而又稱平均定址時間。如果一個5400RPM硬碟的平均尋道時間是9ms,那麼理論上它的平均訪問時間就是14.556ms。
5、數據傳輸率(DTR,Data Transfer Rate):單位為MB/s(兆位元組每秒,又稱MBPS)或Mbits/s(兆位每秒,又稱Mbps)。DTR分為最大(Maximum)與持續(Sustained)兩個指標,根據數據交接方的不同又分外部與內部數據傳輸率。內部DTR是指磁頭與緩沖區之間的數據傳輸率,外部DTR是指緩沖區與主機(即內存)之間的數據傳輸率。外部DTR上限取決於硬碟的介面,目前流行的Ultra ATA-100介面即代表外部DTR最高理論值可達100MB/s,持續DTR則要看內部持續DTR的水平。內部DTR則是硬碟的真正數據傳輸能力,為充分發揮內部DTR,外部DTR理論值都會比內部DTR高,但內部DTR決定了外部DTR的實際表現。由於磁碟中最外圈的磁軌最長,可以讓磁頭在單位時間內比內圈的磁軌劃過更多的扇區,所以磁頭在最外圈時內部DTR最大,在最內圈時內部DTR最小。

移動硬碟的主要技術指標 :

1、介面類型
移動硬碟盒外置介面方式主要有並行介面、ieee1394、usb三種。並行介面移動硬碟盒出現較早,由於其數據傳輸率都低並且不支持即插即用功能而被淘汰。
IEEE1394也稱 frie wire(火線),它是蘋果公司在八十年代中期提出的,是蘋果 電腦標准介面。其數據傳輸速度理論上可達400mbps,並支持熱插撥。但只有一些高端pc主板才配有ieee1394介面,所以普及性較差。推薦有特殊需要的朋友使用。
usb介面的移動硬碟盒是的主流介面,支持熱插拔。usb有兩種標准,usb1.1和 usb2.0。usb2.0傳輸速度高達480mbps,是usb1.1介面的40倍,usb2.0需要主板的支持,可向下兼容。同品牌usb2.0移動硬碟盒比usb1.1的要貴30~50元。 但考慮到其速度巨大差異和usb2.0已成為市場的主流,所以推薦購買支持usb2.0的移動硬碟盒。即使你現在的主板不支持,也可為以後的升級做好准備。
現在市場上出現不少usb2.0+ieee1394雙介面的移動硬碟盒,配置較為靈活,但售價也相對較高。

2、移動硬碟盒的尺寸

移動硬碟盒分為2.5寸和3.5寸兩種。2.5寸移動硬碟盒使用筆記本電腦硬碟,2.5寸移動硬碟盒體積小重量輕,便於攜帶,一般沒有外置電源。
3.5寸的硬碟盒使用台式電腦硬碟,體積較大,便攜性相對較差。3.5寸的硬碟盒內 一般都自帶外置電源和散熱風扇,價格也相對較高。
此外還有5.25寸移動硬碟盒,不僅可以裝台式機硬碟還能裝光碟機來組成外置光碟機,但它的體積實在難與「便攜」扯上關系。推薦選購更符合便攜性要求的2.5寸移動硬碟盒。

3、供電

2.5寸usb移動硬碟工作時,硬碟和數據介面由計算機usb介面供電。usb介面可提供0.5a電流,而筆記本電腦硬碟的工作電流為0.7~1a,一般的數據拷貝不會出現問題。但如果硬碟容量較大或移動文件較大時很容易出現供電不足,而且若usb介面同時給多個usb設備供電時也容易出現供電不足的現象,造成數據丟失甚至硬碟損壞。為加強供電, 2.5寸usb硬碟盒一般會提供從ps/2介面取電的電源線。所以在移動較大文件等時候就需要接上ps/2取電電源線(需注意的是ps/2介面不支持即插即用)。
3.5寸的硬碟盒一般都自帶外置電源,所以供電基本不存在問題。ieee1394介面最大可提供1.5a電流,所以也無須外接電源。

4、移動硬碟盒的材料、散熱及防震問題

5、主要品牌及市場劃分

移動硬碟盒市場各檔次產品劃分較為清晰,價格從不足40元到200多元的產品都有。移動硬碟盒的成本主要在晶元上,目前usb2.0介面移動硬碟盒中高檔產品一般使用in-system公司的isd300晶元和ali公司的ali m5621晶元,一些低價產品主要使用genesys logic公司的gl811晶元。高端產品性能穩定,兼容性好,一些產品還附帶usb hub等非常實用的功能。市場上質量較好的移動硬碟盒品牌有紐曼、移動之星、愛國者、百事靈、清華同方等。
雖然低價移動硬碟盒在性能上不及高端產品,但其低廉的價格還是得到不少追求性價比朋友的喜愛。

附錄:使用移動硬碟應注意的問題:

1、驅動和兼容問題

採用usb介面移動硬碟在win98以上的操作系統中是不需要驅動的,win98需要單獨安裝驅動。若系統不能找到usb設備時,應該看看bios設置中usb介面選項是否開啟(在chipset features setup中將onchip usb設置為enabled)。若移動硬碟不能正常使用,出現兼容性問題,多數情況下是主板bios的問題。只要下載最新bios來升級,一般就可以解決。
usb介面可向下兼容。如果在只支持usb1.1的電腦上使用usb2.0的移動硬碟,usb2.0移動硬碟將降為usb1.1使用,只是速度的降低,不會影響其他正常的使用。
如果將usb移動硬碟插在usb hub上使用也可能出現問題,因為一些usb hub對usb移動存儲設備支持不好。
如果需要為pc與mac兩個平台來交換文件,則應當選擇同時兼容這兩個平台的移動硬碟盒。

2、熱插拔

usb介面移動硬碟支持熱插拔,但在使用時最好先將usb設備關閉後再拔下usb連線。特別是不要在移動硬碟讀取或寫入數據時直接拔下usb移動硬碟,這很容易造成數據的丟失甚至硬碟的損壞。

3、供電

在這里再次提出供電的問題,usb介面移動硬碟的usb連接線既是數據線又擔負著為移動硬碟供電的作用,因此連接線不宜過長,否則也會產生供電不足的故障。另外也不要同時使用過多的usb設備。

4、防止震動

震動是硬碟最大的敵人,即使有移動硬碟盒的保護也要注意,使用時要將它放在平穩的環境下。而且不要在使用時挪動移動硬碟。

希望本文能對您的選購有所幫助,根據自己的需要,diy一款價低質高的移動硬碟,充分享受移動存儲的便捷與樂趣。

Ⅶ 希捷硬碟背面的格子和圓圈

這都是廠家或商家的做的標記。
希捷硬碟背後有方格格和圓圈的圖案,有很多硬碟上面會打點。據說新硬碟是不打點的,而返廠修過的硬碟上面會打很多點,有的硬碟上面會打得密密麻麻,像蜂窩一樣。

Ⅷ 移動硬碟插上去一直在轉圈讀不出來

那會不會是移動硬碟有問題了呢,如果移動硬碟有多個連介面,建議都插上試試,或者換台電腦插試試,要是都這樣,那麼就考慮硬碟問題吧。

Ⅸ 固態硬碟推薦

SD 固態硬碟(solid state disk),即固態電子存儲陣列硬碟。由控制單元和固態存儲單元(Flash晶元)組成。其介面的規范和定義、功能及使用方法上與普通硬碟的完全相同,在產品外形和尺寸上也完全與普通硬碟一致。由於固態硬碟比普通硬碟讀寫速度快,質量輕,能耗低以及體積小,因此越來越受到大眾的推崇。今天量產網就為大家總結下哪些固態硬碟好。

金泰克S300 120G固態硬碟特點就是價格便宜,讀寫速度也不錯,讀取能達到450M/S,寫入能到360M/S,比金士頓強,可惜品牌沒人家響,3年質保,以前是MLC快閃記憶體,現在不知道是不是變成TLC了;

採用了鋁合金金屬外殼,正反兩面均塗有磨砂質感塗層,但依 然有較強的金屬質感,並在四個角做了圓潤的處理,避免與身體基礎造成傷害,具有良好的導熱散熱性。

採用了慧榮SM2246EN主控,支持Trim功能、內 建ECC「錯誤檢查和糾正」技術、AES高級加密標准、NCQ原生命令隊列技術以及S.M.A.R.T自我監測技術。採用了4顆編號為 29F64B08NCMFS的英特爾原廠顆粒,單顆容量為64GB,分散在PCB正反兩面各兩顆,組成了256GB的總容量,其中16GB作為OP預留空 間,提升使用壽命。
這款金泰克S300 固態硬碟定位低於S500系列,但從性能的角度來看,表現的非常不錯,具備了和中端產品一較高下的水準。相比老大哥S500系列,S300 固態硬碟的規格進行了全面更新,首先是群聯主控更換為慧榮SM2246EN主控,再者是東芝19nm 顆粒更換為英特爾原廠20nm 快閃記憶體顆粒,其價格成本主要是由東芝顆粒更換成英特爾顆粒而產生的,雖然後者性能略差,但穩定性和壽命還是可圈可點,要知道它可是英特爾原廠顆粒。