A. 硬碟陣列是怎麼回事
磁碟陣列(Disk Array)是由一個硬碟控制器來控制多個硬碟的相互連接,使多個硬碟的讀寫同步,減少錯誤,增加效率和可靠度的技術。
B. 硬碟陣列有幾種方法
磁碟陣列有兩種方法可以實現:軟體陣列與硬體陣列。
1、軟體陣列是指通過網路操作系統自身提供的磁碟管理功能將連接的普通SCSI卡上的多塊硬碟配置成邏輯盤,組成陣列。軟體陣列可以提供數據冗餘功能,但是磁碟子系統的性能會有所降低。目前WINDOWS
NT和NET
WARE兩種操作系統都可以提供軟體陣列功能,其中WINDOWS
NT可以提供RAID
0、RAID
1、RAID
5。NET
WARE操作系統可以實現RAID
1功能。
2、硬體陣列是使用專門的磁碟陣列卡來實現的。現在的非入門級伺服器幾乎都提供磁碟陣列卡,不管是集成在主板上或非集成的都能輕松實現陣列功能。硬體陣列能夠提供在線擴容、動態修改陣列級別、自動數據恢復、驅動器漫遊、超高速緩沖等功能。它能提供性能、數據保護、可靠性、可用性和可管理性的解決方案。磁碟陣列卡擁有一個專門的處理器,一般是Intel的I960晶元,還擁有專門的存貯器,用於高速緩沖數據。這樣一來,伺服器對磁碟的操作就直接通過磁碟陣列卡來進行處理,因此不需要大量的CPU及系統內存資源,不會降低磁碟子系統的性能。陣列卡專用的處理單元來進行操作,它的性能要遠遠高於常規非陣列硬碟,並且更安全更穩定。
C. 如何設置硬碟陣列
1、首先按F10進入BIOS,選擇Advanced System Options,檢查RAID配置存儲控制器選項,然後單擊Save。
D. 硬碟磁碟陣列
什麼介面的硬碟阿?其實本身XP系統就支持軟RAID設置的,你進入控制面板-管理工具-計算機管理中設置!
具體方法可以參考http://www.hgjt.net/Article/Class6/Class20/200606/10237.html
現在一般新買的主板本身也都集成了硬RAID,無論是PC機還是伺服器做陣列都會對系統性能有提升!
E. 什麼是硬碟陣列
一般不叫硬碟陣列,叫磁碟陣列
磁碟陣列(Rendant Arrays of Inexpensive Disks,RAID),有「價格便宜且多餘的磁碟陣列」之意。原理是利用數組方式來作磁碟組,配合數據分散排列的設計,提升數據的安全性。磁碟陣列是由很多便宜、容量較小、穩定性較高、速度較慢磁碟,組合成一個大型的磁碟組,利用個別磁碟提供數據所產生加成效果提升整個磁碟系統效能。同時利用這項技術,將數據切割成許多區段,分別存放在各個硬碟上。磁碟陣列還能利用同位檢查(Parity Check)的觀念,在數組中任一顆硬碟故障時,仍可讀出數據,在數據重構時,將數據經計算後重新置入新硬碟中。
RAID技術主要包含RAID 0~RAID 7等數個規范,它們的側重點各不相同,常見的規范有如下幾種:
RAID 0:RAID 0連續以位或位元組為單位分割數據,並行讀/寫於多個磁碟上,因此具有很高的數據傳輸率,但它沒有數據冗餘,因此並不能算是真正的RAID結構。RAID 0隻是單純地提高性能,並沒有為數據的可靠性提供保證,而且其中的一個磁碟失效將影響到所有數據。因此,RAID 0不能應用於數據安全性要求高的場合。
RAID 1:它是通過磁碟數據鏡像實現數據冗餘,在成對的獨立磁碟上產生互 為備份的數據。當原始數據繁忙時,可直接從鏡像拷貝中讀取數據,因此RAID 1可以提高讀取性能。RAID 1是磁碟陣列中單位成本最高的,但提供了很高的數據安全性和可用性。當一個磁碟失效時,系統可以自動切換到鏡像磁碟上讀寫,而不需要重組失效的數據。
RAID 0+1: 也被稱為RAID 10標准,實際是將RAID 0和RAID 1標准結合的產物,在連續地以位或位元組為單位分割數據並且並行讀/寫多個磁碟的同時,為每一塊磁碟作磁碟鏡像進行冗餘。它的優點是同時擁有RAID 0的超凡速度和RAID 1的數據高可靠性,但是CPU佔用率同樣也更高,而且磁碟的利用率比較低。
RAID 2:將數據條塊化地分布於不同的硬碟上,條塊單位為位或位元組,並使用稱為「加重平均糾錯碼(海明碼)」的編碼技術來提供錯誤檢查及恢復。這種編碼技術需要多個磁碟存放檢查及恢復信息,使得RAID 2技術實施更復雜,因此在商業環境中很少使用。
RAID 3:它同RAID 2非常類似,都是將數據條塊化分布於不同的硬碟上,區別在於RAID 3使用簡單的奇偶校驗,並用單塊磁碟存放奇偶校驗信息。如果一塊磁碟失效,奇偶盤及其他數據盤可以重新產生數據;如果奇偶盤失效則不影響數據使用。RAID 3對於大量的連續數據可提供很好的傳輸率,但對於隨機數據來說,奇偶盤會成為寫操作的瓶頸。
RAID 4:RAID 4同樣也將數據條塊化並分布於不同的磁碟上,但條塊單位為塊或記錄。RAID 4使用一塊磁碟作為奇偶校驗盤,每次寫操作都需要訪問奇偶盤,這時奇偶校驗盤會成為寫操作的瓶頸,因此RAID 4在商業環境中也很少使用。
RAID 5:RAID 5不單獨指定的奇偶盤,而是在所有磁碟上交叉地存取數據及奇偶校驗信息。在RAID 5上,讀/寫指針可同時對陣列設備進行操作,提供了更高的數據流量。RAID 5更適合於小數據塊和隨機讀寫的數據。RAID 3與RAID 5相比,最主要的區別在於RAID 3每進行一次數據傳輸就需涉及到所有的陣列盤;而對於RAID 5來說,大部分數據傳輸只對一塊磁碟操作,並可進行並行操作。在RAID 5中有「寫損失」,即每一次寫操作將產生四個實際的讀/寫操作,其中兩次讀舊的數據及奇偶信息,兩次寫新的數據及奇偶信息。
RAID 6:與RAID 5相比,RAID 6增加了第二個獨立的奇偶校驗信息塊。兩個獨立的奇偶系統使用不同的演算法,數據的可靠性非常高,即使兩塊磁碟同時失效也不會影響數據的使用。但RAID 6需要分配給奇偶校驗信息更大的磁碟空間,相對於RAID 5有更大的「寫損失」,因此「寫性能」非常差。較差的性能和復雜的實施方式使得RAID 6很少得到實際應用。
RAID 7:這是一種新的RAID標准,其自身帶有智能化實時操作系統和用於存儲管理的軟體工具,可完全獨立於主機運行,不佔用主機CPU資源。RAID 7可以看作是一種存儲計算機(Storage Computer),它與其他RAID標准有明顯區別。除了以上的各種標准(如表1),我們可以如RAID 0+1那樣結合多種RAID規范來構築所需的RAID陣列,例如RAID 5+3(RAID 53)就是一種應用較為廣泛的陣列形式。用戶一般可以通過靈活配置磁碟陣列來獲得更加符合其要求的磁碟存儲系統。
RAID 5E(RAID 5 Enhencement): RAID 5E是在 RAID 5級別基礎上的改進,與RAID 5類似,數據的校驗信息均勻分布在各硬碟上,但是,在每個硬碟上都保留了一部分未使用的空間,這部分空間沒有進行條帶化,最多允許兩塊物理硬碟出現故障。看起來,RAID 5E和RAID 5加一塊熱備盤好象差不多,其實由於RAID 5E是把數據分布在所有的硬碟上,性能會與RAID5 加一塊熱備盤要好。當一塊硬碟出現故障時,有故障硬碟上的數據會被壓縮到其它硬碟上未使用的空間,邏輯盤保持RAID 5級別。
RAID 5EE: 與RAID 5E相比,RAID 5EE的數據分布更有效率,每個硬碟的一部分空間被用作分布的熱備盤,它們是陣列的一部分,當陣列中一個物理硬碟出現故障時,數據重建的速度會更快。 開始時RAID方案主要針對SCSI硬碟系統,系統成本比較昂貴。1993年,HighPoint公司推出了第一款IDE-RAID控制晶元,能夠利用相對廉價的IDE硬碟來組建RAID系統,從而大大降低了RAID的「門檻」。從此,個人用戶也開始關注這項技術,因為硬碟是現代個人計算機中發展最為「緩慢」和最缺少安全性的設備,而用戶存儲在其中的數據卻常常遠超計算機的本身價格。在花費相對較少的情況下,RAID技術可以使個人用戶也享受到成倍的磁碟速度提升和更高的數據安全性,現在個人電腦市場上的IDE-RAID控制晶元主要出自HighPoint和Promise公司,此外還有一部分來自AMI公司。 面向個人用戶的IDE-RAID晶元一般只提供了RAID 0、RAID 1和RAID 0+1(RAID 10)等RAID規范的支持,雖然它們在技術上無法與商用系統相提並論,但是對普通用戶來說其提供的速度提升和安全保證已經足夠了。隨著硬碟介面傳輸率的不斷提高,IDE-RAID晶元也不斷地更新換代,晶元市場上的主流晶元已經全部支持ATA 100標准,而HighPoint公司新推出的HPT 372晶元和Promise最新的PDC20276晶元,甚至已經可以支持ATA 133標準的IDE硬碟。在主板廠商競爭加劇、個人電腦用戶要求逐漸提高的今天,在主板上板載RAID晶元的廠商已經不在少數,用戶完全可以不用購置RAID卡,直接組建自己的磁碟陣列,感受磁碟狂飆的速度。
RAID 50:RAID50是RAID5與RAID0的結合。此配置在RAID5的子磁碟組的每個磁碟上進行包括奇偶信息在內的數據的剝離。每個RAID5子磁碟組要求三個硬碟。RAID50具備更高的容錯能力,因為它允許某個組內有一個磁碟出現故障,而不會造成數據丟失。而且因為奇偶位分部於RAID5子磁碟組上,故重建速度有很大提高。優勢:更高的容錯能力,具備更快數據讀取速率的潛力。需要注意的是:磁碟故障會影響吞吐量。故障後重建信息的時間比鏡像配置情況下要長。
F. 如何製作硬碟列陣
先弄清楚以下的問題:
RAID 0 又稱為Stripe(條帶化,串列)或Striping 它代表了所有RAID級別中最高的存儲性能。RAID 0提高存儲性能的原理是把連續的數據分散到多個磁碟上存取,這樣,系統有數據請求就可以被多個磁碟並行的執行,每個磁碟執行屬於它自己的那部分數據請求。這種數據上的並行操作可以充分利用匯流排的帶寬,顯著提高磁碟整體存取性能,RAID 0的速度是最快的。但是RAID 0沒有冗餘功能的,如果一個磁碟(物理)損壞,則所有的數據都無法使用。
RAID 1 又稱為Mirroring(鏡像數據的技術)兩組相同的磁碟系統互作鏡像,速度沒有提高,但是允許單個磁碟錯,可靠性最高,當主硬碟(物理)損壞時,鏡像硬碟則代替主硬碟的工作。但是其磁碟的利用率卻只有50%,
是所有RAID上磁碟利用率最低的一個級別。
RAID 0+1(由RAID 0和RAID 1陣列組成的技術) 又稱為stripe Mirroring (串列鏡像)RAID 0+1是存儲性能和數據安全兼顧的方案。它在提供與RAID 1一樣的數據安全保障的同時,也提供了與RAID 0近似的存儲性能,但存儲成本高。拿四個硬碟舉例,就是每兩個硬碟是一組,每組硬碟存儲一樣的數據,而兩組數據是由一組數據拆分的.
JBOD 又稱為spanning(捆綁) 不同容量的硬碟組成為一個大硬碟 小容量的磁碟延伸為大容量的單一磁碟,用戶不必規劃數據在各磁碟的分布,而且提高了磁碟空間的使用率,並使磁碟容量幾乎可作無限的延伸.
安裝好SATA硬碟之後,就要進入BIOS中打開南橋晶元的RAID功能。具體方法是:進入BIOS設置程序的「OnChip IDE Device」窗口,找到一個名為「SATA Mode」的選項,將它設置為「RAID」,然後保存BIOS設置並重新啟動電腦。
在BIOS中啟動了RAID功能後,南橋晶元內置的「Intel RAID Option ROM」便開始啟動,該軟體是Intel RAID應用程序,提供BIOS和DOS服務。在系統啟動POST(加電自檢)時,屏幕上會有一些提示信息,按「Ctrl+I」鍵便可進入Intel RAID Configuration Utility窗口.在該窗口中,窗口上半部分是主菜單,下半部分顯示的是已經安裝好的兩個硬碟的信息,例如硬碟型號、容量、是否已經組建RAID系統等。將游標移動到主菜單的「1.Create RAID Volume」上,然後按回車鍵,此時便進入創建RAID系統的主界面,首先將游標移動到「Name」選項上,在此輸入一個RAID卷的名稱,一般用默認的名稱即可;按「TAB」鍵,將游標停留在「RAID Level」選項上,在此按向上或向下的箭頭按鍵,可以選擇RAID的類型——RAID 0或者RAID 1;根據自己的實際需要選擇RAID類型(如果要提高磁碟性能,則選擇RAID 0;如果要更好的安全性,則選擇RAID 1)後,按「TAB」鍵將游標移動到「Strip Size」選項上,選擇串列值,一般選擇「128KB」。完成上述設置後,按「TAB」鍵,使游標停留在「Create Volume」上.按下回車鍵,此時會出現一條提示信息,詢問是否確認創建RAID系統.
請參考:http://www.digier.com/hd/2005-12/61264.html
G. 硬碟陣列
你說的是軟RAID,可以組建,最好用WIN7吧
H. 硬碟怎麼做陣列
硬RAID吧,這樣會有比較好的性能,首先主板要支持RAID,多買幾塊硬碟,組建一個RAID,設置在BIOS設置裡面進行,下面是幾種RAID的方式,看哪種比較適合你
RAID 0
我們在前文中已經提到RAID分為幾種不同的等級,其中,RAID 0是最簡單的一種形式。RAID 0可以把多塊硬碟連接在一起形成一個容量更大的存儲設備。最簡單的RAID 0技術只是提供更多的磁碟空間,不過我們也可以通過設置,使用RAID 0來提高磁碟的性能和吞吐量。RAID 0沒有冗餘或錯誤修復能力,但是實現成本是最低的。
RAID 0最簡單的實現方式就是把幾塊硬碟串聯在一起創建一個大的卷集。磁碟之間的連接既可以使用硬體的形式通過智能磁碟控制器實現,也可以使用操作系統中的磁碟驅動程序以軟體的方式實現,我們把4塊磁碟組合在一起形成一個獨立的邏輯驅動器,容量相當於任何任何一塊單獨硬碟的4倍。如圖中彩色區域所示,數據被依次寫入到各磁碟中。當一塊磁碟的空間用盡時,數據就會被自動寫入到下一塊磁碟中。
這種設置方式只有一個好處,那就是可以增加磁碟的容量。至於速度,則與其中任何一塊磁碟的速度相同,這是因為同一時間內只能對一塊磁碟進行I/O操作。如果其中的任何一塊磁碟出現故障,整個系統將會受到破壞,無法繼續使用。從這種意義上說,使用純RAID 0方式的可靠性僅相當於單獨使用一塊硬碟的1/4(因為本例中RAID 0使用了4塊硬碟)。
雖然我們無法改變RAID 0的可靠性問題,但是我們可以通過改變配置方式,提供系統的性能。與前文所述的順序寫入數據不同,我們可以通過創建帶區集,在同一時間內向多塊磁碟寫入數據。系統向邏輯設備發出的I/O指令被轉化為4項操作,其中的每一項操作都對應於一塊硬碟。我們從圖中可以清楚的看到通過建立帶區集,原先順序寫入的數據被分散到所有的四塊硬碟中同時進行讀寫。四塊硬碟的並行操作使同一時間內磁碟讀寫的速度提升了4倍。
在創建帶區集時,合理的選擇帶區的大小非常重要。如果帶區過大,可能一塊磁碟上的帶區空間就可以滿足大部分的I/O操作,使數據的讀寫仍然只局限在少數的一、兩塊硬碟上,不能充分的發揮出並行操作的優勢。另一方面,如果帶區過小,任何I/O指令都可能引發大量的讀寫操作,佔用過多的控制器匯流排帶寬。因此,在創建帶區集時,我們應當根據實際應用的需要,慎重的選擇帶區的大小。
我們已經知道,帶區集可以把數據均勻的分配到所有的磁碟上進行讀寫。如果我們把所有的硬碟都連接到一個控制器上的話,可能會帶來潛在的危害。這是因為當我們頻繁進行讀寫操作時,很容易使控制器或匯流排的負荷超載。為了避免出現上述問題,建議用戶可以使用多個磁碟控制器。
RAID 1
雖然RAID 0可以提供更多的空間和更好的性能,但是整個系統是非常不可靠的,如果出現故障,無法進行任何補救。所以,RAID 0一般只是在那些對數據安全性要求不高的情況下才被人們使用。
RAID 1和RAID 0截然不同,其技術重點全部放在如何能夠在不影響性能的情況下最大限度的保證系統的可靠性和可修復性上。RAID 1是所有RAID等級中實現成本最高的一種,盡管如此,人們還是選擇RAID 1來保存那些關鍵性的重要數據。
RAID 1又被稱為磁碟鏡像,每一個磁碟都具有一個對應的鏡像盤。對任何一個磁碟的數據寫入都會被復制鏡像盤中;系統可以從一組鏡像盤中的任何一個磁碟讀取數據。顯然,磁碟鏡像肯定會提高系統成本。因為我們所能使用的空間只是所有磁碟容量總和的一半。下圖顯示的是由4塊硬碟組成的磁碟鏡像,其中可以作為存儲空間使用的僅為兩塊硬碟(畫斜線的為鏡像部分)。
RAID 1下,任何一塊硬碟的故障都不會影響到系統的正常運行,而且只要能夠保證任何一對鏡像盤中至少有一塊磁碟可以使用,RAID 1甚至可以在一半數量的硬碟出現問題時不間斷的工作。當一塊硬碟失效時,系統會忽略該硬碟,轉而使用剩餘的鏡像盤讀寫數據。
通常,我們把出現硬碟故障的RAID系統稱為在降級模式下運行。雖然這時保存的數據仍然可以繼續使用,但是RAID系統將不再可靠。如果剩餘的鏡像盤也出現問題,那麼整個系統就會崩潰。因此,我們應當及時的更換損壞的硬碟,避免出現新的問題。
更換新盤之後,原有好盤中的數據必須被復制到新盤中。這一操作被稱為同步鏡像。同步鏡像一般都需要很長時間,尤其是當損害的硬碟的容量很大時更是如此。在同步鏡像的進行過程中,外界對數據的訪問不會受到影響,但是由於復制數據需要佔用一部分的帶寬,所以可能會使整個系統的性能有所下降。
因為RAID 1主要是通過二次讀寫實現磁碟鏡像,所以磁碟控制器的負載也相當大,尤其是在需要頻繁寫入數據的環境中。為了避免出現性能瓶頸,使用多個磁碟控制器就顯得很有必要。使用兩個磁碟控制器不僅可以改善性能,還可以進一步的提高數據的安全性和可用性。我們已經知道,RAID 1最多允許一半數量的硬碟出現故障,所以按照我們上圖中的設置方式(原盤和鏡像盤分別連接不同的磁碟控制),即使一個磁碟控制器出現問題,系統仍然可以使用另外一個磁碟控制器繼續工作。這樣,就可以把一些由於意外操作所帶來的損害降低到最低程度。
RAID 0+1
單獨使用RAID 1也會出現類似單獨使用RAID 0那樣的問題,即在同一時間內只能向一塊磁碟寫入數據,不能充分利用所有的資源。為了解決這一問題,我們可以在磁碟鏡像中建立帶區集。因為這種配置方式綜合了帶區集和鏡像的優勢,所以被稱為RAID 0+1。
熱插拔
一些面向高端應用的磁碟鏡像系統都可以提供磁碟的熱插拔功能。所謂熱插拔功能,就是允許用戶在不關閉系統,不切斷電源的情況下取出和更換損害的硬碟。如果沒有熱插拔功能,即使磁碟損壞不會造成數據的丟失,用戶仍然需要暫時關閉系統,以便能夠對硬碟進行更換。現在,使用熱插拔技術只要簡單的打開連接開關或者轉動手柄就可以直接取出硬碟,而系統仍然可以不間斷的正常運行。
校驗
RAID 3和RAID 5都分別使用了校驗的概念提供容錯能力。簡單的說,我們可以把校驗想像為一種二進制的校驗和,一個可以告訴你其它所有字位是否正確的特殊位。
在數據通信領域,奇偶校驗被用來確定數據是否被正確傳送。例如,對於每一個位元組,我們可以簡單計算數字位1的個數,並在位元組內加入附加校驗位。在數據的接收方,如果數字位1的個數為奇數,而我們使用的又是奇數校驗的話,則說明該位元組是正確的。同樣對偶數校驗也是如此。然而,如果數字位1的個數和校驗位的奇偶性不一致的話,則說明數據在傳送過程中出現了錯誤。
RAID系統也採用了相似的校驗方法,可以在磁碟系統中創建校驗塊,校驗塊中的每一位都用來對其它關聯塊中的所有對應位進行校驗。
在數據通訊領域,雖然校驗位可以告訴我們某個位元組是否正確,但是無法告訴我們到底是哪一位出現了問題。這就是說我們可以檢測錯誤,但是不能改正錯誤。對於RAID,這是遠遠不夠的。固然錯誤的檢測非常重要,但是如果不能對錯誤進行修復,我們就無法提高整個系統的可靠性。
I. 什麼是硬碟陣列
一般不叫硬碟陣列,叫磁碟陣列
磁碟陣列(,RAID),有「價格便宜且多餘的磁碟陣列」之意。原理是利用數組方式來作磁碟組,配合數據分散排列的設計,提升數據的安全性。磁碟陣列是由很多便宜、容量較小、穩定性較高、速度較慢磁碟,組合成一個大型的磁碟組,利用個別磁碟提供數據所產生加成效果提升整個磁碟系統效能。同時利用這項技術,將數據切割成許多區段,分別存放在各個硬碟上。磁碟陣列還能利用同位檢查(ParityCheck)的觀念,在數組中任一顆硬碟故障時,仍可讀出數據,在數據重構時,將數據經計算後重新置入新硬碟中。
RAID技術主要包含RAID0~RAID7等數個規范,它們的側重點各不相同,常見的規范有如下幾種:
RAID0:RAID0連續以位或位元組為單位分割數據,並行讀/寫於多個磁碟上,因此具有很高的數據傳輸率,但它沒有數據冗餘,因此並不能算是真正的RAID結構。RAID0隻是單純地提高性能,並沒有為數據的可靠性提供保證,而且其中的一個磁碟失效將影響到所有數據。因此,RAID0不能應用於數據安全性要求高的場合。
RAID1:它是通過磁碟數據鏡像實現數據冗餘,在成對的獨立磁碟上產生互為備份的數據。當原始數據繁忙時,可直接從鏡像拷貝中讀取數據,因此RAID1可以提高讀取性能。RAID1是磁碟陣列中單位成本最高的,但提供了很高的數據安全性和可用性。當一個磁碟失效時,系統可以自動切換到鏡像磁碟上讀寫,而不需要重組失效的數據。
RAID0+1:也被稱為RAID10標准,實際是將RAID0和RAID1標准結合的產物,在連續地以位或位元組為單位分割數據並且並行讀/寫多個磁碟的同時,為每一塊磁碟作磁碟鏡像進行冗餘。它的優點是同時擁有RAID0的超凡速度和RAID1的數據高可靠性,但是CPU佔用率同樣也更高,而且磁碟的利用率比較低。
RAID2:將數據條塊化地分布於不同的硬碟上,條塊單位為位或位元組,並使用稱為「加重平均糾錯碼(海明碼)」的編碼技術來提供錯誤檢查及恢復。這種編碼技術需要多個磁碟存放檢查及恢復信息,使得RAID2技術實施更復雜,因此在商業環境中很少使用。
RAID3:它同RAID2非常類似,都是將數據條塊化分布於不同的硬碟上,區別在於RAID3使用簡單的奇偶校驗,並用單塊磁碟存放奇偶校驗信息。如果一塊磁碟失效,奇偶盤及其他數據盤可以重新產生數據;如果奇偶盤失效則不影響數據使用。RAID3對於大量的連續數據可提供很好的傳輸率,但對於隨機數據來說,奇偶盤會成為寫操作的瓶頸。
RAID4:RAID4同樣也將數據條塊化並分布於不同的磁碟上,但條塊單位為塊或記錄。RAID4使用一塊磁碟作為奇偶校驗盤,每次寫操作都需要訪問奇偶盤,這時奇偶校驗盤會成為寫操作的瓶頸,因此RAID4在商業環境中也很少使用。
RAID5:RAID5不單獨指定的奇偶盤,而是在所有磁碟上交叉地存取數據及奇偶校驗信息。在RAID5上,讀/寫指針可同時對陣列設備進行操作,提供了更高的數據流量。RAID5更適合於小數據塊和隨機讀寫的數據。RAID3與RAID5相比,最主要的區別在於RAID3每進行一次數據傳輸就需涉及到所有的陣列盤;而對於RAID5來說,大部分數據傳輸只對一塊磁碟操作,並可進行並行操作。在RAID5中有「寫損失」,即每一次寫操作將產生四個實際的讀/寫操作,其中兩次讀舊的數據及奇偶信息,兩次寫新的數據及奇偶信息。
RAID6:與RAID5相比,RAID6增加了第二個獨立的奇偶校驗信息塊。兩個獨立的奇偶系統使用不同的演算法,數據的可靠性非常高,即使兩塊磁碟同時失效也不會影響數據的使用。但RAID6需要分配給奇偶校驗信息更大的磁碟空間,相對於RAID5有更大的「寫損失」,因此「寫性能」非常差。較差的性能和復雜的實施方式使得RAID6很少得到實際應用。
RAID7:這是一種新的RAID標准,其自身帶有智能化實時操作系統和用於存儲管理的軟體工具,可完全獨立於主機運行,不佔用主機CPU資源。RAID7可以看作是一種存儲計算機(StorageComputer),它與其他RAID標准有明顯區別。除了以上的各種標准(如表1),我們可以如RAID0+1那樣結合多種RAID規范來構築所需的RAID陣列,例如RAID5+3(RAID53)就是一種應用較為廣泛的陣列形式。用戶一般可以通過靈活配置磁碟陣列來獲得更加符合其要求的磁碟存儲系統。
RAID5E(RAID5Enhencement):RAID5E是在RAID5級別基礎上的改進,與RAID5類似,數據的校驗信息均勻分布在各硬碟上,但是,在每個硬碟上都保留了一部分未使用的空間,這部分空間沒有進行條帶化,最多允許兩塊物理硬碟出現故障。看起來,RAID5E和RAID5加一塊熱備盤好象差不多,其實由於RAID5E是把數據分布在所有的硬碟上,性能會與RAID5加一塊熱備盤要好。當一塊硬碟出現故障時,有故障硬碟上的數據會被壓縮到其它硬碟上未使用的空間,邏輯盤保持RAID5級別。
RAID5EE:與RAID5E相比,RAID5EE的數據分布更有效率,每個硬碟的一部分空間被用作分布的熱備盤,它們是陣列的一部分,當陣列中一個物理硬碟出現故障時,數據重建的速度會更快。開始時RAID方案主要針對SCSI硬碟系統,系統成本比較昂貴。1993年,HighPoint公司推出了第一款IDE-RAID控制晶元,能夠利用相對廉價的IDE硬碟來組建RAID系統,從而大大降低了RAID的「門檻」。從此,個人用戶也開始關注這項技術,因為硬碟是現代個人計算機中發展最為「緩慢」和最缺少安全性的設備,而用戶存儲在其中的數據卻常常遠超計算機的本身價格。在花費相對較少的情況下,RAID技術可以使個人用戶也享受到成倍的磁碟速度提升和更高的數據安全性,現在個人電腦市場上的IDE-RAID控制晶元主要出自HighPoint和Promise公司,此外還有一部分來自AMI公司。面向個人用戶的IDE-RAID晶元一般只提供了RAID0、RAID1和RAID0+1(RAID10)等RAID規范的支持,雖然它們在技術上無法與商用系統相提並論,但是對普通用戶來說其提供的速度提升和安全保證已經足夠了。隨著硬碟介面傳輸率的不斷提高,IDE-RAID晶元也不斷地更新換代,晶元市場上的主流晶元已經全部支持ATA100標准,而HighPoint公司新推出的HPT372晶元和Promise最新的PDC20276晶元,甚至已經可以支持ATA133標準的IDE硬碟。在主板廠商競爭加劇、個人電腦用戶要求逐漸提高的今天,在主板上板載RAID晶元的廠商已經不在少數,用戶完全可以不用購置RAID卡,直接組建自己的磁碟陣列,感受磁碟狂飆的速度。
RAID50:RAID50是RAID5與RAID0的結合。此配置在RAID5的子磁碟組的每個磁碟上進行包括奇偶信息在內的數據的剝離。每個RAID5子磁碟組要求三個硬碟。RAID50具備更高的容錯能力,因為它允許某個組內有一個磁碟出現故障,而不會造成數據丟失。而且因為奇偶位分部於RAID5子磁碟組上,故重建速度有很大提高。優勢:更高的容錯能力,具備更快數據讀取速率的潛力。需要注意的是:磁碟故障會影響吞吐量。故障後重建信息的時間比鏡像配置情況下要長。
J. 硬碟陣列怎麼做
第一步
1備份好硬碟中的數據
2准備好一張帶Fdisk與Format命令的Windows 98啟動盤[軟盤或者帶啟動的98安裝盤都行]
第二步
將兩塊硬碟的跳線設置為Master,分別接上IDE3、IDE4口(它們由主板上的HighPoint370晶元控制)順序不考慮
第三步
對BIOS進行設置,打開ATA RAID CONTROLLER。我的板子是進入INTEGRATED PERIPHERALS選項並開啟ATA100 RAID IDE CONTROLLER 最後設置軟碟機或光碟機作為首選項。
第四步
接下來的設置步驟是創建RAID 0的核心內容。
1.系統BIOS設置完成以後重啟電腦,開機檢測時將不會再報告發現硬碟。
2.磁碟的管理將由HighPoint 370晶元接管。
3.下面是非常關鍵的HighPoint 370 BIOS設置,在HighPoint 370磁碟掃描界面同時按下「Ctrl」和「H」。
4.進入HighPoint 370 BIOS設置界面後第一個要做的工作就是選擇「Create RAID」創建RAID。
5.在「Array Mode(陣列模式)」中進行RAID模式選擇,這里能夠看到RAID 0、RAID 1、RAID 0+1和Span的選項 選擇RAID 0項。
6.RAID模式選擇完成會自動退出到上一級菜單進行「Disk Drives(磁碟驅動器)」選擇 直接回車就行了。
7.下一項設置是條帶單位大小,預設值為64kB不用修改
8.接著是「Start Create(開始創建)」的選項,在你按下「Y」之前,確認硬碟數據是不是備份好了 一旦開始創建RAID,硬碟上的所有數據都會被清除。
9.創建完成以後是指定BOOT啟動盤,任選一個吧。
按「Esc」鍵退出,當然少不了按下「Y」來確認一下。
第五步
再次重啟電腦以後,看到「Striping(RAID 0)for Array #0」字樣了。這時候兩塊硬碟就被做成列陣了 就象對一塊盤格式化一樣 插入啟動盤來格式化和分區
第六步
對於採用RAID的電腦,操作系統的安裝和普通情況下不一樣, Windows XP完成第一步「文件復制」重啟以後,安裝程序會以英文提示「按下F6安裝SCSI設備或RAID磁碟」,這時候就要按下F6 出現安裝選擇,選擇「S」安裝RAID控制晶元驅動 按下「S」鍵會提示插入RAID晶元驅動盤。回車,安裝程序自動搜索驅動盤上的程序,選擇「WinXP」那一個並回車。
接下來是正常的系統安裝,和普通安裝沒有任何區別。
安裝完畢 進入系統 RAID 0 就安裝好了