當前位置:首頁 » 硬碟大全 » golang裝飾模式緩存
擴展閱讀
webinf下怎麼引入js 2023-08-31 21:54:13
堡壘機怎麼打開web 2023-08-31 21:54:11

golang裝飾模式緩存

發布時間: 2023-02-22 12:49:04

1. golang本地緩存和redis對比

1.Redis特性 Redis 與其他 key - value 緩存產品有以下三個特點: Redis支持數據的持久化,可以將內存中的數據保存在磁碟中,重啟的時候可以再次...

2. golang內存擴容

一般來說當內存空間span不足時,需要進行擴容。而在擴容前需要將當前沒有剩餘空間的內存塊相關狀態解除,以便後續的垃圾回收期能夠進行掃描和回收,接著在從中間部件(central)提取新的內存塊放回數組中。

需要注意由於中間部件有scan和noscan兩種類型,則申請的內存空間最終獲取的可能是其兩倍,並由heap堆進行統一管理。中間部件central是通過兩個鏈表來管理其分配的所有內存塊:
1、empty代表「無法使用」狀態,沒有剩餘的空間或被移交給緩存的內存塊
2、noempty代表剩餘的空間,並這些內存塊能夠提供服務

由於golang垃圾回收器使用的累增計數器(heap.sweepgen)來表達代齡的:

從上面內容可以看到每次進行清理操作時 該計數器 +2
再來看下mcentral的構成

當通過mcentral進行空間span獲取時,第一步需要到noempty列表檢查剩餘空間的內存塊,這裡面有一點需要說明主要是垃圾回收器的掃描過程和清理過程是同時進行的,那麼為了獲取更多的可用空間,則會在將分配的內存塊移交給cache部件前,先完成清理的操作。第二步當noempty沒有返回時,則需要檢查下empty列表(由於empty里的內存塊有可能已被標記為垃圾,這樣可以直接清理,對應的空間則可直接使用了)。第三步若是noempty和empty都沒有申請到,這時需要堆進行申請內存的

通過上面的源碼也可以看到中間部件central自身擴容操作與大對象內存分配差不多類似。

在golang中將長度小於16bytes的對象稱為微小對象(tiny),最常見的就是小字元串,一般會將這些微小對象組合起來,並用單塊內存存儲,這樣能夠有效的減少內存浪費。
當微小對象需要分配空間span,首先緩存部件會按指定的規格(tiny size class)取出一塊內存,若容量不足,則重新提取一塊;前面也提到會將微小對象進行組合,而這些組合的微小對象是不能包含指針的,因為垃圾回收的原因,一般都是當前存儲單元里所有的微小對象都不可達時,才會將該塊內存進行回收。
而當從緩沖部件cache中獲取空間span時, 是通過偏移位置(tinyoffset)先來判斷剩餘空間是否滿足需求。若是可以的話則以此計算並返回內存地址;若是空間不足,則提取新的內存塊,直接返回起始地址便可; 最後在對比新舊兩塊內存,空間大的那塊則會被保留。

3. (十一)golang 內存分析

編寫過C語言程序的肯定知道通過malloc()方法動態申請內存,其中內存分配器使用的是glibc提供的ptmalloc2。 除了glibc,業界比較出名的內存分配器有Google的tcmalloc和Facebook的jemalloc。二者在避免內存碎片和性能上均比glic有比較大的優勢,在多線程環境中效果更明顯。
Golang中也實現了內存分配器,原理與tcmalloc類似,簡單的說就是維護一塊大的全局內存,每個線程(Golang中為P)維護一塊小的私有內存,私有內存不足再從全局申請。另外,內存分配與GC(垃圾回收)關系密切,所以了解GC前有必要了解內存分配的原理。

為了方便自主管理內存,做法便是先向系統申請一塊內存,然後將內存切割成小塊,通過一定的內存分配演算法管理內存。 以64位系統為例,Golang程序啟動時會向系統申請的內存如下圖所示:

預申請的內存劃分為spans、bitmap、arena三部分。其中arena即為所謂的堆區,應用中需要的內存從這里分配。其中spans和bitmap是為了管理arena區而存在的。
arena的大小為512G,為了方便管理把arena區域劃分成一個個的page,每個page為8KB,一共有512GB/8KB個頁;
spans區域存放span的指針,每個指針對應一個page,所以span區域的大小為(512GB/8KB)乘以指針大小8byte = 512M
bitmap區域大小也是通過arena計算出來,不過主要用於GC。

span是用於管理arena頁的關鍵數據結構,每個span中包含1個或多個連續頁,為了滿足小對象分配,span中的一頁會劃分更小的粒度,而對於大對象比如超過頁大小,則通過多頁實現。

根據對象大小,劃分了一系列class,每個class都代表一個固定大小的對象,以及每個span的大小。如下表所示:

上表中每列含義如下:
class: class ID,每個span結構中都有一個class ID, 表示該span可處理的對象類型
bytes/obj:該class代表對象的位元組數
bytes/span:每個span佔用堆的位元組數,也即頁數乘以頁大小
objects: 每個span可分配的對象個數,也即(bytes/spans)/(bytes/obj)waste
bytes: 每個span產生的內存碎片,也即(bytes/spans)%(bytes/obj)上表可見最大的對象是32K大小,超過32K大小的由特殊的class表示,該class ID為0,每個class只包含一個對象。

span是內存管理的基本單位,每個span用於管理特定的class對象, 跟據對象大小,span將一個或多個頁拆分成多個塊進行管理。src/runtime/mheap.go:mspan定義了其數據結構:

以class 10為例,span和管理的內存如下圖所示:

spanclass為10,參照class表可得出npages=1,nelems=56,elemsize為144。其中startAddr是在span初始化時就指定了某個頁的地址。allocBits指向一個點陣圖,每位代表一個塊是否被分配,本例中有兩個塊已經被分配,其allocCount也為2。next和prev用於將多個span鏈接起來,這有利於管理多個span,接下來會進行說明。

有了管理內存的基本單位span,還要有個數據結構來管理span,這個數據結構叫mcentral,各線程需要內存時從mcentral管理的span中申請內存,為了避免多線程申請內存時不斷的加鎖,Golang為每個線程分配了span的緩存,這個緩存即是cache。src/runtime/mcache.go:mcache定義了cache的數據結構

alloc為mspan的指針數組,數組大小為class總數的2倍。數組中每個元素代表了一種class類型的span列表,每種class類型都有兩組span列表,第一組列表中所表示的對象中包含了指針,第二組列表中所表示的對象不含有指針,這么做是為了提高GC掃描性能,對於不包含指針的span列表,沒必要去掃描。根據對象是否包含指針,將對象分為noscan和scan兩類,其中noscan代表沒有指針,而scan則代表有指針,需要GC進行掃描。mcache和span的對應關系如下圖所示:

mchache在初始化時是沒有任何span的,在使用過程中會動態的從central中獲取並緩存下來,跟據使用情況,每種class的span個數也不相同。上圖所示,class 0的span數比class1的要多,說明本線程中分配的小對象要多一些。

cache作為線程的私有資源為單個線程服務,而central則是全局資源,為多個線程服務,當某個線程內存不足時會向central申請,當某個線程釋放內存時又會回收進central。src/runtime/mcentral.go:mcentral定義了central數據結構:

lock: 線程間互斥鎖,防止多線程讀寫沖突
spanclass : 每個mcentral管理著一組有相同class的span列表
nonempty: 指還有內存可用的span列表
empty: 指沒有內存可用的span列表
nmalloc: 指累計分配的對象個數線程從central獲取span步驟如下:

將span歸還步驟如下:

從mcentral數據結構可見,每個mcentral對象只管理特定的class規格的span。事實上每種class都會對應一個mcentral,這個mcentral的集合存放於mheap數據結構中。src/runtime/mheap.go:mheap定義了heap的數據結構:

lock: 互斥鎖
spans: 指向spans區域,用於映射span和page的關系
bitmap:bitmap的起始地址
arena_start: arena區域首地址
arena_used: 當前arena已使用區域的最大地址
central: 每種class對應的兩個mcentral
從數據結構可見,mheap管理著全部的內存,事實上Golang就是通過一個mheap類型的全局變數進行內存管理的。mheap內存管理示意圖如下:

系統預分配的內存分為spans、bitmap、arean三個區域,通過mheap管理起來。接下來看內存分配過程。

針對待分配對象的大小不同有不同的分配邏輯:
(0, 16B) 且不包含指針的對象: Tiny分配
(0, 16B) 包含指針的對象:正常分配
[16B, 32KB] : 正常分配
(32KB, -) : 大對象分配其中Tiny分配和大對象分配都屬於內存管理的優化范疇,這里暫時僅關注一般的分配方法。
以申請size為n的內存為例,分配步驟如下:

Golang內存分配是個相當復雜的過程,其中還摻雜了GC的處理,這里僅僅對其關鍵數據結構進行了說明,了解其原理而又不至於深陷實現細節。1、Golang程序啟動時申請一大塊內存並劃分成spans、bitmap、arena區域
2、arena區域按頁劃分成一個個小塊。
3、span管理一個或多個頁。
4、mcentral管理多個span供線程申請使用
5、mcache作為線程私有資源,資源來源於mcentral。

4. golang中bufio包

一、介紹go標准庫中的bufio
最近用golang寫了一個處理文件的腳本,由於其中涉及到了文件讀寫,開始使用golang中的 io 包,後來發現golang 中提供了一個bufio的包,使用這個包可以大幅提高文件讀寫的效率,於是在網上搜索同樣的文件讀寫為什麼bufio 要比io 的讀寫更快速呢?根據網上的資料和閱讀源碼,以下來詳細解釋下bufio的高效如何實現的。

bufio 包介紹
bufio包實現了有緩沖的I/O。它包裝一個io.Reader或io.Writer介面對象,創建另一個也實現了該介面,且同時還提供了緩沖和一些文本I/O的幫助函數的對象。

以上為官方包的介紹,在其中我們能了解到的信息如下:

bufio 是通過緩沖來提高效率

簡單的說就是,把文件讀取進緩沖(內存)之後再讀取的時候就可以避免文件系統的io 從而提高速度。同理,在進行寫操作時,先把文件寫入緩沖(內存),然後由緩沖寫入文件系統。看完以上解釋有人可能會表示困惑了,直接把 內容->文件 和 內容->緩沖->文件相比, 緩沖區好像沒有起到作用嘛。其實緩沖區的設計是為了存儲多次的寫入,最後一口氣把緩沖區內容寫入文件。下面會詳細解釋

bufio 封裝了io.Reader或io.Writer介面對象,並創建另一個也實現了該介面的對象

io.Reader或io.Writer 介面實現read() 和 write() 方法,對於實現這個介面的對象都是可以使用這兩個方法的

註明:介紹內容來自博主 LiangWenT
,原文鏈接: https://blog.csdn.net/LiangWenT/article/details/78995468 ,在查找資料時,發現這篇博客的內容很好理解

bufio包實現了緩存IO。它包裝了io.Reader和io.Write對象,創建了另外的Reader和Writer對象,它們也實現了io.Reader和io.Write介面,具有緩存。注意:緩存是放在主存中,既然是保存在主存里,斷電會丟失數據,那麼要及時保存數據。

二、常用內容
1、Reader類型

NewReaderSize

作用:NewReaderSize將rd封裝成一個帶緩存的bufio.Reader對象。緩存大小由size指定(如果小於16則會被設為16)。如果rd的基類型就是有足夠緩存的bufio.Reader類型,則直接將rd轉換為基類型返回。
NewReader

funcReader相當於NewReaderSize(rd, 4096)
Peek

Peek返回緩存的一個切片,該切片引用緩存中前n個位元組的數據,該操作不會將數據讀出,只是引用,引用的數據在下一次讀取操作之前有效的。如果切片長度小於n,則返回一個錯誤信息說明原因。如果n大於緩存的總大小,則返回ErrBufferFull。
Read

Read從b中數據到p中,返回讀出的位元組數和遇到的錯誤。如果緩存不為空,則只能讀出緩沖中的數據,不會從底層io.Reader中提取數據,如果緩存為空,則:
1、len(p) >= 緩存大小,則跳過緩存,直接從底層io.Reader中讀出到p中
2、len(p)< 緩存大小,則先將數據從底層io.Reader中讀取到緩存中,再從緩存讀取到p中。
Buffered

Buffered返回緩存中未讀取的數據的長度。
Discard

Discard跳過後續的n個位元組的數據,返回跳過的位元組數。

Writer類型和方法
write結構

NewWriteSize

NewWriterSize將wr封裝成一個帶緩存的bufio.Writer對象,緩存大小由size指定(如果小於4096則會被設置未4096)。
NewWrite

NewWriter相等於NewWriterSize(wr, 4096)

WriteString

WriteString功能同Write,只不過寫入的是字元串
WriteRune

WriteRune向b寫入r的UTF-8編碼,返回r的編碼長度。
Flush

Available

Available 返回緩存中未使用的空間的長度
Buffered

Buffered返回緩存中未提交的數據長度
Reset

Reset將b的底層Write重新指定為w,同時丟棄緩存中的所有數據,復位所有標記和錯誤信息。相當於創建了一個新的bufio.Writer。

GO中還提供了Scanner類型,處理一些比較簡單的場景。如處理按行讀取輸入序列或空格分隔的詞等。
內容來自: https://blog.csdn.net/wangshubo1989/article/details/70177928

參考鏈接:
1) https://blog.csdn.net/LiangWenT/article/details/78995468
2) https://blog.csdn.net/wangshubo1989/article/details/70177928

5. golang sync.pool對象復用 並發原理 緩存池

在go http每一次go serve(l)都會構建Request數據結構。在大量數據請求或高並發的場景中,頻繁創建銷毀對象,會導致GC壓力。解決辦法之一就是使用對象復用技術。在http協議層之下,使用對象復用技術創建Request數據結構。在http協議層之上,可以使用對象復用技術創建(w,*r,ctx)數據結構。這樣即可以回快TCP層讀包之後的解析速度,也可也加快請求處理的速度。

先上一個測試:

結論是這樣的:

貌似使用池化,性能弱爆了???這似乎與net/http使用sync.pool池化Request來優化性能的選擇相違背。這同時也說明了一個問題,好的東西,如果濫用反而造成了性能成倍的下降。在看過pool原理之後,結合實例,將給出正確的使用方法,並給出預期的效果。

sync.Pool是一個 協程安全 臨時對象池 。數據結構如下:

local 成員的真實類型是一個 poolLocal 數組,localSize 是數組長度。這涉及到Pool實現,pool為每個P分配了一個對象,P數量設置為runtime.GOMAXPROCS(0)。在並發讀寫時,goroutine綁定的P有對象,先用自己的,沒有去偷其它P的。go語言將數據分散在了各個真正運行的P中,降低了鎖競爭,提高了並發能力。

不要習慣性地誤認為New是一個關鍵字,這里的New是Pool的一個欄位,也是一個閉包名稱。其API:

如果不指定New欄位,對象池為空時會返回nil,而不是一個新構建的對象。Get()到的對象是隨機的。

原生sync.Pool的問題是,Pool中的對象會被GC清理掉,這使得sync.Pool只適合做簡單地對象池,不適合作連接池。

pool創建時不能指定大小,沒有數量限制。pool中對象會被GC清掉,只存在於兩次GC之間。實現是pool的init方法注冊了一個poolCleanup()函數,這個方法在GC之前執行,清空pool中的所有緩存對象。

為使多協程使用同一個POOL。最基本的想法就是每個協程,加鎖去操作共享的POOL,這顯然是低效的。而進一步改進,類似於ConcurrentHashMap(JDK7)的分Segment,提高其並發性可以一定程度性緩解。

注意到pool中的對象是無差異性的,加鎖或者分段加鎖都不是較好的做法。go的做法是為每一個綁定協程的P都分配一個子池。每個子池又分為私有池和共享列表。共享列表是分別存放在各個P之上的共享區域,而不是各個P共享的一塊內存。協程拿自己P里的子池對象不需要加鎖,拿共享列表中的就需要加鎖了。

Get對象過程:

Put過程:

如何解決Get最壞情況遍歷所有P才獲取得對象呢:

方法1止前sync.pool並沒有這樣的設置。方法2由於goroutine被分配到哪個P由調度器調度不可控,無法確保其平衡。

由於不可控的GC導致生命周期過短,且池大小不可控,因而不適合作連接池。僅適用於增加對象重用機率,減少GC負擔。2

執行結果:

單線程情況下,遍歷其它無元素的P,長時間加鎖性能低下。啟用協程改善。

結果:

測試場景在goroutines遠大於GOMAXPROCS情況下,與非池化性能差異巨大。

測試結果

可以看到同樣使用*sync.pool,較大池大小的命中率較高,性能遠高於空池。

結論:pool在一定的使用條件下提高並發性能,條件1是協程數遠大於GOMAXPROCS,條件2是池中對象遠大於GOMAXPROCS。歸結成一個原因就是使對象在各個P中均勻分布。

池pool和緩存cache的區別。池的意思是,池內對象是可以互換的,不關心具體值,甚至不需要區分是新建的還是從池中拿出的。緩存指的是KV映射,緩存里的值互不相同,清除機制更為復雜。緩存清除演算法如LRU、LIRS緩存演算法。

池空間回收的幾種方式。一些是GC前回收,一些是基於時鍾或弱引用回收。最終確定在GC時回收Pool內對象,即不迴避GC。用java的GC解釋弱引用。GC的四種引用:強引用、弱引用、軟引用、虛引用。虛引用即沒有引用,弱引用GC但有空間則保留,軟引用GC即清除。ThreadLocal的值為弱引用的例子。

regexp 包為了保證並發時使用同一個正則,而維護了一組狀態機。

fmt包做字串拼接,從sync.pool拿[]byte對象。避免頻繁構建再GC效率高很多。

6. Golang 語言深入理解:channel

本文是對 Gopher 2017 中一個非常好的 Talk�: [Understanding Channel](GopherCon 2017: Kavya Joshi - Understanding Channels) 的學習筆記,希望能夠通過對 channel 的關鍵特性的理解,進一步掌握其用法細節以及 Golang 語言設計哲學的管窺蠡測。

channel 是可以讓一個 goroutine 發送特定值到另一個 gouroutine 的通信機制。

原生的 channel 是沒有緩存的(unbuffered channel),可以用於 goroutine 之間實現同步。

關閉後不能再寫入,可以讀取直到 channel 中再沒有數據,並返回元素類型的零值。

gopl/ch3/netcat3

首先從 channel 是怎麼被創建的開始:

在 heap 上分配一個 hchan 類型的對象,並將其初始化,然後返回一個指向這個 hchan 對象的指針。

理解了 channel 的數據結構實現,現在轉到 channel 的兩個最基本方法: sends 和 receivces ,看一下以上的特性是如何體現在 sends 和 receives 中的:

假設發送方先啟動,執行 ch <- task0 :

如此為 channel 帶來了 goroutine-safe 的特性。

在這樣的模型里, sender goroutine -> channel -> receiver goroutine 之間, hchan 是唯一的共享內存,而這個唯一的共享內存又通過 mutex 來確保 goroutine-safe ,所有在隊列中的內容都只是副本。
這便是著名的 golang 並發原則的體現:

發送方 goroutine 會阻塞,暫停,並在收到 receive 後才恢復。

goroutine 是一種 用戶態線程 , 由 Go runtime 創建並管理,而不是操作系統,比起操作系統線程來說,goroutine更加輕量。
Go runtime scheler 負責將 goroutine 調度到操作系統線程上。

runtime scheler 怎麼將 goroutine 調度到操作系統線程上?

當阻塞發生時,一次 goroutine 上下文切換的全過程:

然而,被阻塞的 goroutine 怎麼恢復過來?

阻塞發生時,調用 runtime sheler 執行 gopark 之前,G1 會創建一個 sudog ,並將它存放在 hchan 的 sendq 中。 sudog 中便記錄了即將被阻塞的 goroutine G1 ,以及它要發送的數據元素 task4 等等。
接收方 將通過這個 sudog 來恢復 G1

接收方 G2 接收數據, 並發出一個 receivce ,將 G1 置為 runnable :

同樣的, 接收方 G2 會被阻塞,G2 會創建 sudoq ,存放在 recvq ,基本過程和發送方阻塞一樣。
不同的是,發送方 G1如何恢復接收方 G2,這是一個非常神奇的實現。

理論上可以將 task 入隊,然後恢復 G2, 但恢復 G2後,G2會做什麼呢?
G2會將隊列中的 task 復制出來,放到自己的 memory 中,基於這個思路,G1在這個時候,直接將 task 寫到 G2的 stack memory 中!

這是違反常規的操作,理論上 goroutine 之間的 stack 是相互獨立的,只有在運行時可以執行這樣的操作。
這么做純粹是出於性能優化的考慮,原來的步驟是:

優化後,相當於減少了 G2 獲取鎖並且執行 mem 的性能消耗。

channel 設計背後的思想可以理解為 simplicity 和 performance 之間權衡抉擇,具體如下:

queue with a lock prefered to lock-free implementation:

比起完全 lock-free 的實現,使用鎖的隊列實現更簡單,容易實現

7. 嵌入式golang佔用內存高

嵌入式golang佔用內存高可能問題在於緩存。
清空日誌後比較驚喜地發現,內存瞬間暴降至20M。
嵌入式系統由硬體和軟體組成.是能夠獨立進行運作的器件。其軟體內容只包括軟體運行環境及其操作系統。硬體內容包括信號處理器、存儲器、通信模塊等在內的多方面的內容。相比於一般的計算機處理系統而言,嵌入式系統存在較大的差異性,它不能實現大容量的存儲功能,因為沒有與之相匹配的大容量介質,大部分採用的存儲介質有E-PROM、EEPROM等,軟體部分以API編程介面作為開發平台的核心。嵌入式系統最核心的層次是中央處理單元部分,它包含運算器和控制器模塊,在cpu的基礎上進一步配上存儲器模塊、電源模塊、復位模塊等就構成了通常所說的最小系統。由於技術的進步,集成電路生產商通常會把許多外設做進同一個集成電路中,這樣在使用上更加方便,這樣一個晶元通常稱之為微控制器。在微控制器的基礎上進一步擴展電源感測與檢測、執行器模塊以及配套軟體並構成一個具有特定功能的完整單元,就稱之為一個嵌入式系統或嵌入式應用。

8. golang怎麼使用redis,最基礎的有效的方法

  1. 與memcached一樣,為了保證效率,數據都是緩存在內存中。

  2. 區別的是Redis會周期性的把更新的數據寫入磁碟或者把修改操作寫入追加的記錄文件,並且在此基礎上實現了master-slave(主從)同步。數據可以從主伺服器向任意數量的從伺服器上同步,從伺服器可以是關聯其他從伺服器的主伺服器。

  3. 這使得Redis可執行單層樹復制。從盤可以有意無意的對數據進行寫操作。

  4. 由於完全實現了發布/訂閱機制,使得從資料庫在任何地方同步樹時,可訂閱一個頻道並接收主伺服器完整的消息發布記錄。同步對讀取操作的可擴展性和數據冗餘很有幫助。