當前位置:首頁 » 硬碟大全 » 網路緩存數據的原理
擴展閱讀
webinf下怎麼引入js 2023-08-31 21:54:13
堡壘機怎麼打開web 2023-08-31 21:54:11

網路緩存數據的原理

發布時間: 2023-06-07 13:44:57

A. 網路中的緩存是什麼

CPU緩存(Cache Memory)位於CPU與內存之間的臨時存儲器,它的容量比內存小但交換速度快。在緩存中的數據是內存中的一小部分,但這一小部分是短時間內CPU即將訪問的,當CPU調用大量數據時,就可避開內存直接從緩存中調用,從而加快讀取速度。由此可見,在CPU中加入緩存是一種高效的解決方案,這樣整個內存儲器(緩存+內存)就變成了既有緩存的高速度,又有內存的大容量的存儲系統了。緩存對CPU的性能影響很大,主要是因為CPU的數據交換順序和CPU與緩存間的帶寬引起的。

緩存是為了解決CPU速度和內存速度的速度差異問題。內存中被CPU訪問最頻繁的數據和指令被復制入CPU中的緩存,這樣CPU就可以不經常到象「蝸牛」一樣慢的內存中去取數據了,CPU只要到緩存中去取就行了,而緩存的速度要比內存快很多。

這里要特別指出的是:
1.因為緩存只是內存中少部分數據的復製品,所以CPU到緩存中尋找數據時,也會出現找不到的情況(因為這些數據沒有從內存復制到緩存中去),這時CPU還是會到內存中去找數據,這樣系統的速度就慢下來了,不過CPU會把這些數據復制到緩存中去,以便下一次不要再到內存中去取。

2.因為隨著時間的變化,被訪問得最頻繁的數據不是一成不變的,也就是說,剛才還不頻繁的數據,此時已經需要被頻繁的訪問,剛才還是最頻繁的數據,現在又不頻繁了,所以說緩存中的數據要經常按照一定的演算法來更換,這樣才能保證緩存中的數據是被訪問最頻繁的。

緩存的工作原理
[編輯本段]
緩存的工作原理是當CPU要讀取一個數據時,首先從緩存中查找,如果找到就立即讀取並送給CPU處理;如果沒有找到,就用相對慢的速度從內存中讀取並送給CPU處理,同時把這個數據所在的數據塊調入緩存中,可以使得以後對整塊數據的讀取都從緩存中進行,不必再調用內存。

正是這樣的讀取機制使CPU讀取緩存的命中率非常高(大多數CPU可達90%左右),也就是說CPU下一次要讀取的數據90%都在緩存中,只有大約10%需要從內存讀取。這大大節省了CPU直接讀取內存的時間,也使CPU讀取數據時基本無需等待。總的來說,CPU讀取數據的順序是先緩存後內存。

一級緩存和二級緩存
[編輯本段]
為了分清這兩個概念,我們先了解一下RAM 。RAM和ROM相對的,RAM是掉電以後,其中的信息就消失那一種,ROM在掉電以後信息也不會消失那一種。

RAM又分兩種,一種是靜態RAM,SRAM;一種是動態RAM,DRAM。前者的存儲速度要比後者快得多,我們現在使用的內存一般都是動態RAM。

有的菜鳥就說了,為了增加系統的速度,把緩存擴大不就行了嗎,擴大的越大,緩存的數據越多,系統不就越快了嗎?緩存通常都是靜態RAM,速度是非常的快, 但是靜態RAM集成度低(存儲相同的數據,靜態RAM的體積是動態RAM的6倍), 價格高(同容量的靜態RAM是動態RAM的四倍), 由此可見,擴大靜態RAM作為緩存是一個非常愚蠢的行為, 但是為了提高系統的性能和速度,我們必須要擴大緩存, 這樣就有了一個折中的方法,不擴大原來的靜態RAM緩存,而是增加一些高速動態RAM做為緩存, 這些高速動態RAM速度要比常規動態RAM快,但比原來的靜態RAM緩存慢, 我們把原來的靜態ram緩存叫一級緩存,而把後來增加的動態RAM叫二級緩存。

一級緩存和二級緩存中的內容都是內存中訪問頻率高的數據的復製品(映射),它們的存在都是為了減少高速CPU對慢速內存的訪問。 通常CPU找數據或指令的順序是:先到一級緩存中找,找不到再到二級緩存中找,如果還找不到就只有到內存中找了。

緩存的技術發展
[編輯本段]
最早先的CPU緩存是個整體的,而且容量很低,英特爾公司從Pentium時代開始把緩存進行了分類。當時集成在CPU內核中的緩存已不足以滿足CPU的需求,而製造工藝上的限制又不能大幅度提高緩存的容量。因此出現了集成在與CPU同一塊電路板上或主板上的緩存,此時就把 CPU內核集成的緩存稱為一級緩存,而外部的稱為二級緩存。一級緩存中還分數據緩存(Data Cache,D-Cache)和指令緩存(Instruction Cache,I-Cache)。二者分別用來存放數據和執行這些數據的指令,而且兩者可以同時被CPU訪問,減少了爭用Cache所造成的沖突,提高了處理器效能。英特爾公司在推出Pentium 4處理器時,用新增的一種一級追蹤緩存替代指令緩存,容量為12KμOps,表示能存儲12K條微指令。

隨著CPU製造工藝的發展,二級緩存也能輕易的集成在CPU內核中,容量也在逐年提升。現在再用集成在CPU內部與否來定義一、二級緩存,已不確切。而且隨著二級緩存被集成入CPU內核中,以往二級緩存與CPU大差距分頻的情況也被改變,此時其以相同於主頻的速度工作,可以為CPU提供更高的傳輸速度。

二級緩存是CPU性能表現的關鍵之一,在CPU核心不變化的情況下,增加二級緩存容量能使性能大幅度提高。而同一核心的CPU高低端之分往往也是在二級緩存上有差異,由此可見二級緩存對於CPU的重要性。

CPU在緩存中找到有用的數據被稱為命中,當緩存中沒有CPU所需的數據時(這時稱為未命中),CPU才訪問內存。從理論上講,在一顆擁有二級緩存的CPU中,讀取一級緩存的命中率為80%。也就是說CPU一級緩存中找到的有用數據占數據總量的80%,剩下的20%從二級緩存中讀取。由於不能准確預測將要執行的數據,讀取二級緩存的命中率也在80%左右(從二級緩存讀到有用的數據占總數據的16%)。那麼還有的數據就不得不從內存調用,但這已經是一個相當小的比例了。目前的較高端的CPU中,還會帶有三級緩存,它是為讀取二級緩存後未命中的數據設計的—種緩存,在擁有三級緩存的CPU中,只有約5%的數據需要從內存中調用,這進一步提高了CPU的效率。

為了保證CPU訪問時有較高的命中率,緩存中的內容應該按一定的演算法替換。一種較常用的演算法是「最近最少使用演算法」(LRU演算法),它是將最近一段時間內最少被訪問過的行淘汰出局。因此需要為每行設置一個計數器,LRU演算法是把命中行的計數器清零,其他各行計數器加1。當需要替換時淘汰行計數器計數值最大的數據行出局。這是一種高效、科學的演算法,其計數器清零過程可以把一些頻繁調用後再不需要的數據淘汰出緩存,提高緩存的利用率。

CPU產品中,一級緩存的容量基本在4KB到64KB之間,二級緩存的容量則分為128KB、256KB、512KB、1MB、2MB、4MB等。一級緩存容量各產品之間相差不大,而二級緩存容量則是提高CPU性能的關鍵。二級緩存容量的提升是由CPU製造工藝所決定的,容量增大必然導致CPU內部晶體管數的增加,要在有限的CPU面積上集成更大的緩存,對製造工藝的要求也就越高。
現在主流的CPU二級緩存都在2MB左右,其中英特爾公司07年相繼推出了台式機用的4MB、6MB二級緩存的高性能CPU,不過價格也是相對比較高的,對於對配置要求不是太高的朋友,一般的2MB二級緩存的雙核CPU基本也可以滿足日常上網需要了。

B. CPU緩存的工作原理

CPU要讀取一個數據時,首先從Cache中查找,如果找到就立即讀取並送給CPU處理;如果沒有找到,就用相對慢的速度從內存中讀取並送給CPU處理,同時把這個數據所在的數據塊調入Cache中,可以使得以後對整塊數據的讀取都從Cache中進行,不必再調用內存。
正是這樣的讀取機制使CPU讀取Cache的命中率非常高(大多數CPU可達90%左右),也就是說CPU下一次要讀取的數據90%都在Cache中,只有大約10%需要從內存讀取。這大大節省了CPU直接讀取內存的時間,也使CPU讀取數據時基本無需等待。總的來說,CPU讀取數據的順序是先Cache後內存。 前面是把Cache作為一個整體來考慮的,下面分類分析。Intel從Pentium開始將Cache分開,通常分為一級高速緩存L1和二級高速緩存L2。在以往的觀念中,L1 Cache是集成在CPU中的,被稱為片內Cache。在L1中還分數據Cache(D-Cache)和指令Cache(I-Cache)。它們分別用來存放數據和執行這些數據的指令,而且兩個Cache可以同時被CPU訪問,減少了爭用Cache所造成的沖突,提高了處理器效能。
在P4處理器中使用了一種先進的一級指令Cache——動態跟蹤緩存。它直接和執行單元及動態跟蹤引擎相連,通過動態跟蹤引擎可以很快地找到所執行的指令,並且將指令的順序存儲在追蹤緩存里,這樣就減少了主執行循環的解碼周期,提高了處理器的運算效率。
以前的L2 Cache沒集成在CPU中,而在主板上或與CPU集成在同一塊電路板上,因此也被稱為片外Cache。但從PⅢ開始,由於工藝的提高L2 Cache被集成在CPU內核中,以相同於主頻的速度工作,結束了L2 Cache與CPU大差距分頻的歷史,使L2 Cache與L1 Cache在性能上平等,得到更高的傳輸速度。L2Cache只存儲數據,因此不分數據Cache和指令Cache。在CPU核心不變化的情況下,增加L2 Cache的容量能使性能提升,同一核心的CPU高低端之分往往也是在L2 Cache上做手腳,可見L2 Cache的重要性。CPU的L1 Cache與L2 Cache惟一區別在於讀取順序。 CPU在Cache中找到有用的數據被稱為命中,當Cache中沒有CPU所需的數據時(這時稱為未命中),CPU才訪問內存。從理論上講,在一顆擁有2級Cache的CPU中,讀取L1 Cache的命中率為80%。也就是說CPU從L1 Cache中找到的有用數據占數據總量的80%,剩下的20%從L2 Cache讀取。在一些高端領域的CPU(像Intel的Itanium)中,我們常聽到L3 Cache,它是為讀取L2 Cache後未命中的數據設計的—種Cache。
為了保證CPU訪問時有較高的命中率Cache中的內容應該按一定的演算法替換,其計數器清零過程可以把一些頻繁調用後再不需要的數據淘汰出Cache,提高Cache的利用率。緩存技術的發展
總之,在傳輸速度有較大差異的設備間都可以利用Cache作為匹配來調節差距,或者說是這些設備的傳輸通道。在顯示系統、硬碟和光碟機,以及網路通訊中,都需要使用Cache技術。但Cache均由靜態RAM組成,結構復雜,成本不菲,使用現有工藝在有限的面積內不可能做得很大,不過,這也正是技術前進的源動力,有需要才有進步! 隨著CPU製造工藝的發展,二級緩存也能輕易的集成在CPU內核中,容量也在逐年提升。用集成在CPU內部與否來定義一、二級緩存,已不確切。而且隨著二級緩存被集成入CPU內核中,以往二級緩存與CPU大差距分頻的情況也被改變,此時其以相同於主頻的速度工作,可以為CPU提供更高的傳輸速度。同一核心的CPU高低端之分往往也是在二級緩存上有差異,由此可見二級緩存對於CPU的重要性。
CPU產品中,一級緩存的容量基本在4KB到64KB之間,二級緩存的容量則分為128KB、256KB、512KB、1MB、2MB等。一級緩存容量各產品之間相差不大,而二級緩存容量則是提高CPU性能的關鍵。二級緩存容量的提升是由CPU製造工藝所決定的,容量增大必然導致CPU內部晶體管數的增加,要在有限的CPU面積上集成更大的緩存,對製造工藝的要求也就越高。
雙核心CPU的二級緩存比較特殊,和以前的單核心CPU相比,最重要的就是兩個內核的緩存所保存的數據要保持一致,否則就會出現錯誤,為了解決這個問題不同的CPU使用了不同的辦法。

C. 聯網緩存是什麼情況

緩存最初是指用於數據交換的緩沖區(稱為緩存)。當一個硬體要讀取數據時,它會先從緩存中尋找需要的數據,如果找到就直接執行,如果找不到就從內存中尋找。因為緩存的運行速度比內存快得多,所以緩存的作用就是幫助硬體運行得更快。
網路緩存,和普通緩存有點不同,是指把網路上的東西下載到存儲卡上,然後讀取。
或者用手機上網,看到的一切,其實都是下載到硬碟或者內存里,然後顯示或者播放。

看視頻也是一樣,需要邊下載邊播放。提前下載,叫緩沖,下載這些東西就是緩存。

D. 路由器為什麼會緩存數據,一般都會緩存什麼樣的數據

當下路由器其主要系統性能指吞吐率 利用率 丟包率 延遲 緩存大小 實現復雜性等
當鏈路上發生擁塞時能夠對新進入的數據包進行緩存
從而降低丟包率 維持高鏈路利用率
簡單的說路由器緩存是一種可以加快你訪問網頁速度的臨時文件存儲空間

E. 手機緩存原理是什麼

手機緩存原理如下:
1.假如入我們要訪問一個網站的主頁,它的html標簽有個manifest屬性。
2.頁面從伺服器端返回,包括動態資源和靜態資源,同時靜態資源會採用瀏覽器常規的緩存方式緩存起來。
3.當瀏覽器解析頁面時,發現他的html標簽有一個manifest屬性,瀏覽器會在後台把manifest文件中要cache片段所指定的資源下載並緩存在application
cache中(在這種情況cache中的資源會再次下載)
4.這時候如果你把瀏覽器設置為離線瀏覽,你在manifest文件的network片段中指定需要聯網訪問的資源,這時會不可用,但是在cache片段的資源沒有影響。
4.1
這時候你訪問cache中的資源,會直接從appcache中取得緩存中的內容
4.2這時候你訪問network中的資源,會顯示fallback中指定的資源
下面你如果取消離線模式,重新連上網,後續的過程如下
1.返回線上模式
2.你在伺服器端改變一個文件的內容【如cache.html】
3.這時候重新載入cache.html,頁面上會顯示從appcache中載入的原來的內容,即使你聯網了,內容仍然沒有改變,這是因為一旦一個文件在appcache中緩存,以後會永遠呈現第一次記載的內容,
4.這時候瀏覽器會檢查manifest文件是否更新,如果沒有更新,就不會做任何事。
注意:只有manifest文件改變,緩存中要更新的文件才能更新

F. 高速緩存的工作原理是什麼

高速緩存內存標識位於主內存中的重復指令和數據,並將其復制到其內存中。CPU不再為相同的指令和數據重復訪問較慢的主內存,而是訪問更快的緩存。

緩存有時稱為CPU內存,通常運行在高性能的SRAM內存模塊上。CPU可以訪問更快的緩存內存來運行性能敏感的操作。高速緩存內存通常集成在主板下,或者在不同的晶元上,通過匯流排與CPU互連。

(6)網路緩存數據的原理擴展閱讀:

在CPU裡面內置了高速緩存可以提高CPU的運行效率。

內置的L1高速緩存的容量和結構對CPU的性能影響較大,不過高速緩沖存儲器均由靜態RAM組成,結構較復雜,在CPU管芯面積不能太大的情況下,L1級高速緩存的容量不可能做得太大。採用回寫(Write Back)結構的高速緩存。

它對讀和寫*作均有可提供緩存。而採用寫通(Write-through)結構的高速緩存,僅對讀*作有效。在486以上的計算機中基本採用了回寫式高速緩存。

在流行的處理器中,奔騰Ⅲ和Celeron處理器擁有32KB的L1高速緩存,奔騰4為8KB,而AMD的Duron和Athlon處理器的L1高速緩存高達128KB。

G. 緩存伺服器的緩存伺服器原理

Web緩存伺服器的應用模式主要是正向代理和反向代理。正向代理(Proxy)模式是代理網路用戶訪問internet,客戶端將本來要直接發送到internet上源伺服器的連接請求發送給代理伺服器處理。正向代理的目的是加速用戶在使用瀏覽器訪問Internet時的請求響應時間,並提高廣域網線路的利用率。正向代理瀏覽器無需和該站點建立聯系,只訪問到Web緩存即可。通過正向代理,大大提高了後續用戶的訪問速度,使他們無需再穿越Internet,只要從本地Web緩存就可以獲取所需要的信息,避免了帶寬問題,同時可以大量減少重復請求在網路上的傳輸,從而降低網路流量,節省資費。
反向代理(Reverse Proxy)模式是針對Web伺服器加速功能的,在該模式中,緩存伺服器放置在web應用伺服器的前面,當用戶訪問web應用伺服器的時候,首先經過緩存伺服器,並將用戶的請求和應用伺服器應答的內容寫入緩存伺服器中,從而為後續用戶的訪問提供更快的響應。其工作原理如下圖所示。

H. 請問什麼叫網路緩存怎麼刪除網路緩存求解……謝謝

網路緩存是用來解決降低互聯網流量和提高終端用戶響應時間的網路技術

也可以叫做網頁緩存技術

是搜索引擎經行蜘蛛爬行後,備份一份純文本的備份網頁,但是可能不保存css樣式,網頁快照就會出現,沒有樣式表或者部分錯位

  1. 因為緩存只是內存中少部分數據的復製品,所以CPU到緩存中尋找數據時,也會出現找不到的情況(因為這些數據沒有從內存復制到緩存中去),這時CPU還是會到內存中去找數據,這樣系統的速度就慢下來了,不過CPU會把這些數據復制到緩存中去,以便下一次不要再到內存中去取。

    2.因為隨著時間的變化,被訪問得最頻繁的數據不是一成不變的,也就是說,剛才還不頻繁的數據,此時已經需要被頻繁的訪問,剛才還是最頻繁的數據,現在又不頻繁了,所以說緩存中的數據要經常按照一定的演算法來更換,這樣才能保證緩存中的數據是被訪問最頻繁的

    3.關於一級緩存和二級緩存
    為了分清這兩個概念,我們先了解一下RAM

    ram和ROM相對的,RAM是掉電以後,其中才信息就消失那一種,ROM在掉電以後信息也不會消失那一種

    RAM又分兩種,

    一種是靜態RAM,SRAM;一種是動態RAM,DRAM。前者的存儲速度要比後者快得多,我們現在使用的內存一般都是動態RAM




清理緩存:

1、點擊打開一個IE。

2、點擊菜單欄中的"工具"菜單中的"internet選項"

3、在彈出的對話框中點擊"刪除文件".

4、在彈出的對話框中"刪除所有離線內容"打勾,之後 點確定. 5、點擊確定後,滑鼠可能會變成比較忙的狀態,這是因為緩存較多的緣故,一般情況下十秒左右滑鼠就會恢復正常。之後再點擊右下角的"確定"退出。這樣電腦IE的緩存就清除完畢了。 另外還可以用windos優化大師刪除


I. 路由器為什麼會緩存數據

因為它有儲存器呀,當然可以進行緩存了。現在有專門的那種帶硬碟的路由器這樣就是在你空閑的時候,他就可以幫你下載你需要的資料,例如晚上速度又快,又不影響你平時的使用。