『壹』 CPU的緩存 線程 外頻 倍頻是什麼意思啊
1.主頻,倍頻,外頻:主頻是CPU的時鍾頻率(CPU Clock Speed)即系統匯流排的工作頻率。一般說來,主頻越高,CPU的速度越快。由於內部結構不同,並非所有的時鍾頻率相同的CPU的性能都一樣。外頻即系統匯流排的工作頻率;倍頻則是指CPU外頻與主頻相差的倍數。三者關系是:主頻=外頻x倍頻。
2.內存匯流排速度(Memory-Bus Speed): 指CPU與二級(L2)高速緩存和內存之間的通信速度。
3.擴展匯流排速度(Expansion-Bus Speed): 指安裝在微機系統上的局部匯流排如VESA或PCI匯流排介面卡的工作速度。
4.工作電壓(Supply Voltage): 指CPU正常工作所需的電壓。早期CPU的工作電壓一般為5V,隨著CPU主頻的提高,CPU工作電壓有逐步下降的趨勢,以解決發熱過高的問題。
5.地址匯流排寬度:地址匯流排寬度決定了CPU可以訪問的物理地址空間,對於486以上的微機系統,地址線的寬度為32位,最多可以直接訪問4096 MB的物理空間。
6.數據匯流排寬度:數據匯流排寬度決定了CPU與二級高速緩存、內存以及輸入/輸出設備之間一次數據傳輸的信息量。
7.內置協處理器:含有內置協處理器的CPU,可以加快特定類型的數值計算,某些需要進行復雜計算的軟體系統,如高版本的AUTO CAD就需要協處理器支持。
8.超標量:是指在一個時鍾周期內CPU可以執行一條以上的指令。Pentium級以上CPU均具有超標量結構;而486以下的CPU屬於低標量結構,即在這類CPU內執行一條指令至少需要一個或一個以上的時鍾周期。
9.L1高速緩存即一級高速緩存:內置高速緩存可以提高CPU的運行效率,這也正是486DLC比386DX-40快的原因。內置的L1高速緩存的容量和結構對CPU的性能影響較大,這也正是一些公司力爭加大L1級高速緩沖存儲器容量的原因。不過高速緩沖存儲器均由靜態RAM組成,結構較復雜,在CPU管芯面積不能太大的情況下,L1級高速緩存的容量不可能做得太大。
10.採用回寫(Write Back)結構的高速緩存:它對讀和寫操作均有效,速度較快。而採用寫通(Write-through)結構的高速緩存,僅對讀操作有效。
CPU依靠指令來計算和控制系統,每款CPU在設計時就規定了一系列與其硬體電路相配合的指令系統。指令的強弱也是CPU的重要指標,指令集是提高微處理器效率的最有效工具之一。
從現階段的主流體系結構講,指令集可分為復雜指令集和精簡指令集兩部分,而從具體運用看,如Intel的MMX(Multi Media Extended)、SSE、 SSE2(Streaming-Single instruction multiple data-Extensions 2)、SEE3和AMD的3DNow!等都是CPU的擴展指令集,分別增強了CPU的多媒體、圖形圖象和Internet等的處理能力。我們通常會把CPU的擴展指令集稱為"CPU的指令集"。SSE3指令集也是目前規模最小的指令集,此前MMX包含有57條命令,SSE包含有50條命令,SSE2包含有144條命令,SSE3包含有13條命令。目前SSE3也是最先進的指令集。
CPU重要參數介紹:
1)前端匯流排:英文名稱叫Front Side Bus,一般簡寫為FSB。前端匯流排是CPU跟外界溝通的唯一通道,處理器必須通過它才能獲得數據,也只能通過它來將運算結果傳送出其他對應設備。前端匯流排的速度越快,CPU的數據傳輸就越迅速。前端匯流排的速度主要是用前端匯流排的頻率來衡量,前端匯流排的頻率有兩個概念:一就是匯流排的物理工作頻率(即我們所說的外頻),二就是有效工作頻率(即我們所說的FSB頻率),它直接決定了前端匯流排的數據傳輸速度。由於INTEL跟AMD採用了不同的技術,所以他們之間FSB頻率跟外頻的關系式也就不同了:現時的INTEL處理器的兩者的關系是:FSB頻率=外頻X4;而AMD的就是:FSB頻率=外頻X2。舉個例子:P4 2.8C的FSB頻率是800MHZ,由那公式可以知道該型號的外頻是200MHZ了;又如BARTON核心的Athlon XP2500+ ,它的外頻是166MHZ,根據公式,我們知道它的FSB頻率就是333MHZ了!目前的Pentium 4處理器已經有了800MHZ的前端匯流排頻率,而AMD處理器的最高FSB頻率為400MHZ,這一點Intel處理器還是比較有優勢的。
2)二級緩存:也就是L2 Cache,我們平時簡稱L2。主要功能是作為後備數據和指令的存儲。L2的容量的大小對處理器的性能影響很大,尤其是商業性能方面。L2因為需要佔用大量的晶體管,是CPU晶體管總數中佔得最多的一個部分,高容量的L2成本相當高!所以INTEL和AMD都是以L2容量的差異來作為高端和低端產品的分界標准!現在市面上的CPU的L2有低至64K,也有高達1024K的,當然它們之間的價格也有十分大的差異。
3)製造工藝:我們經常說的0.18微米、0.13微米製程,就是指製造工藝。製造工藝直接關繫到CPU的電氣性能。而0.18微米、0.13微米這個尺度就是指的是CPU核心中線路的寬度。線寬越小,CPU的功耗和發熱量就越低,並可以工作在更高的頻率上了。所以0.18微米的CPU能夠達到的最高頻率比0.13微米CPU能夠達到的最高頻率低,同時發熱量更大都是這個道理。現在主流的CPU基本都是採用0.13微米這種成熟的製造工藝,最新推出的CPU已經已經發展到0.09微米了,隨著技術的成熟,不久的將來肯定是0.09微米製造工藝的天下了。
4)流水線:流水線也是一個比較重要的概念。CPU的流水線指的就是處理器內核中運算器的設計。這好比我們現實生活中工廠的生產流水線。處理器的流水線的結構就是把一個復雜的運算分解成很多個簡單的基本運算,然後由專門設計好的單元完成運算。CPU流水線長度越長,運算工作就越簡單,處理器的工作頻率就越高,不過CPU的效能就越差,所以說流水線長度並不是越長越好的。由於CPU的流水線長度很大程度上決定了CPU所能達到的最高頻率,所以現在INTEL為了提高CPU的頻率,而設計了超長的流水線設計。Willamette和Northwood核心的流水線長度是20工位,而如今上市不久的Prescott核心的P4則達到了讓人咋舌的30(如果算上前端處理,那就是31)工位。而現在AMD的Clawhammer K8,流水線長度僅為11工位,當然處理器能上到的最高頻率也會比P4相對低一點,所以現在市面上高端的AMD系列處理器的頻率一般在2G左右,跟P4的3G左右還是有一定的距離,但是處理效率並不低。
5)超線程技術(Hyper-Threading,簡寫為HT):這是Intel針對Pentium4指令效能比較低這個問題而開發的。超線程是一種同步多線程執行技術,採用此技術的CPU內部集成了兩個邏輯處理器單元,相當於兩個處理器實體,可以同時處理兩個獨立的線程。通俗一點說就是能把一個CPU虛擬成兩個,相當於兩個CPU同時運作,超線程實際上就是讓單個CPU能作為兩個CPU使用,從而達到了加快運算速度的目的。
主流CPU基本參數
了解完上面幾個基本的概念後,我們接著介紹一下CPU的基本參數。
而目前PC台式機市場上主要有INTEL跟AMD兩大CPU製造廠商,兩家廠商各有特色,中、低、端的產品線都很齊全,下面我們一起來了解一下目前主流的CPU。