當前位置:首頁 » 硬碟大全 » 什麼是緩存預熱和熱備
擴展閱讀
webinf下怎麼引入js 2023-08-31 21:54:13
堡壘機怎麼打開web 2023-08-31 21:54:11

什麼是緩存預熱和熱備

發布時間: 2023-07-27 06:49:18

『壹』 cdn預熱需要多久

沒有具體的時間。
什麼是CDN刷新與預熱?
1.(1)什麼是刷新
淘汰cdn節點上的舊文件,重新獲取文件的新版本。
(2)什麼是預熱
首次發布的文件,主動從源站推送到CDN,讓用戶訪問到CDN時不用回客戶的源站命中。
2.為什麼要刷新?
(1)CDN節點緩存的資源沒有過期,但是基於客戶的業務要求,需要更新CDN節點上緩存資源。遇到這種場景我們應該怎麼辦?刷新功能就登場了,刷新就是強制刪除CDN節點緩存內容。用戶請求這些資源時,CDN節點需要重新回源拉取資源,保證響應的資源與源站一致。
(2)常見的場景:比如A公司游戲包發布後,發現有bug需要修復,為了降低影響,需要把CDN節點上緩存的舊游戲安裝包都刪除。
(3)刷新類型分為目錄刷新和URL刷新。URL刷新是直接將節點上緩存的資源刪除。對於目錄刷新,會將節點上的文件資源過期,會同源站對比Last-Modified時間,比如節點上的目錄文件的Last-Modified為:Mon, 26 Dec 2018 11:11:00 GMT ,源站文件的Last-Modified為Mon, 28 Dec 2018 11:11:00 GMT.則此時源站會告訴節點:你的文件比我的文件老,我已經更新文件了,快來取最新的資源吧,此時會將源站新的資源更新到節點上,否則,源站返回304,告訴節點,你節點上的資源已經和我源站上的資源是一致,為最新的了,無需更新。

『貳』 高並發,你真的理解透徹了嗎


高並發,幾乎是每個程序員都想擁有的經驗。原因很簡單:隨著流量變大,會遇到各種各樣的技術問題,比如介面響應超時、CPU load升高、GC頻繁、死鎖、大數據量存儲等等,這些問題能推動我們在技術深度上不斷精進。

在過往的面試中,如果候選人做過高並發的項目,我通常會讓對方談談對於高並發的理解,但是能系統性地回答好此問題的人並不多。

大概分成這樣幾類:

1、對數據化的指標沒有概念 :不清楚選擇什麼樣的指標來衡量高並發系統?分不清並發量和QPS,甚至不知道自己系統的總用戶量、活躍用戶量,平峰和高峰時的QPS和TPS等關鍵數據。

3、理解片面,把高並發設計等同於性能優化 :大談並發編程、多級緩存、非同步化、水平擴容,卻忽視高可用設計、服務治理和運維保障。

4、掌握大方案,卻忽視最基本的東西 :能講清楚垂直分層、水平分區、緩存等大思路,卻沒意識去分析數據結構是否合理,演算法是否高效,沒想過從最根本的IO和計算兩個維度去做細節優化。

這篇文章,我想結合自己的高並發項目經驗,系統性地總結下高並發需要掌握的知識和實踐思路,希望對你有所幫助。內容分成以下3個部分:


高並發意味著大流量,需要運用技術手段抵抗流量的沖擊,這些手段好比操作流量,能讓流量更平穩地被系統所處理,帶給用戶更好的體驗。

我們常見的高並發場景有:淘寶的雙11、春運時的搶票、微博大V的熱點新聞等。除了這些典型事情,每秒幾十萬請求的秒殺系統、每天千萬級的訂單系統、每天億級日活的信息流系統等,都可以歸為高並發。

很顯然,上面談到的高並發場景,並發量各不相同, 那到底多大並發才算高並發呢?

1、不能只看數字,要看具體的業務場景。不能說10W QPS的秒殺是高並發,而1W QPS的信息流就不是高並發。信息流場景涉及復雜的推薦模型和各種人工策略,它的業務邏輯可能比秒殺場景復雜10倍不止。因此,不在同一個維度,沒有任何比較意義。

2、業務都是從0到1做起來的,並發量和QPS只是參考指標,最重要的是:在業務量逐漸變成原來的10倍、100倍的過程中,你是否用到了高並發的處理方法去演進你的系統,從架構設計、編碼實現、甚至產品方案等維度去預防和解決高並發引起的問題?而不是一味的升級硬體、加機器做水平擴展。

此外,各個高並發場景的業務特點完全不同:有讀多寫少的信息流場景、有讀多寫多的交易場景, 那是否有通用的技術方案解決不同場景的高並發問題呢?

我覺得大的思路可以借鑒,別人的方案也可以參考,但是真正落地過程中,細節上還會有無數的坑。另外,由於軟硬體環境、技術棧、以及產品邏輯都沒法做到完全一致,這些都會導致同樣的業務場景,就算用相同的技術方案也會面臨不同的問題,這些坑還得一個個趟。

因此,這篇文章我會將重點放在基礎知識、通用思路、和我曾經實踐過的有效經驗上,希望讓你對高並發有更深的理解。


先搞清楚高並發系統設計的目標,在此基礎上再討論設計方案和實踐經驗才有意義和針對性。

高並發絕不意味著只追求高性能,這是很多人片面的理解。從宏觀角度看,高並發系統設計的目標有三個:高性能、高可用,以及高可擴展。

1、高性能:性能體現了系統的並行處理能力,在有限的硬體投入下,提高性能意味著節省成本。同時,性能也反映了用戶體驗,響應時間分別是100毫秒和1秒,給用戶的感受是完全不同的。

2、高可用:表示系統可以正常服務的時間。一個全年不停機、無故障;另一個隔三差五齣線上事故、宕機,用戶肯定選擇前者。另外,如果系統只能做到90%可用,也會大大拖累業務。

3、高擴展:表示系統的擴展能力,流量高峰時能否在短時間內完成擴容,更平穩地承接峰值流量,比如雙11活動、明星離婚等熱點事件。

這3個目標是需要通盤考慮的,因為它們互相關聯、甚至也會相互影響。

比如說:考慮系統的擴展能力,你會將服務設計成無狀態的,這種集群設計保證了高擴展性,其實也間接提升了系統的性能和可用性。

再比如說:為了保證可用性,通常會對服務介面進行超時設置,以防大量線程阻塞在慢請求上造成系統雪崩,那超時時間設置成多少合理呢?一般,我們會參考依賴服務的性能表現進行設置。

再從微觀角度來看,高性能、高可用和高擴展又有哪些具體的指標來衡量?為什麼會選擇這些指標呢?

2.2.1 性能指標

通過性能指標可以度量目前存在的性能問題,同時作為性能優化的評估依據。一般來說,會採用一段時間內的介面響應時間作為指標。

1、平均響應時間:最常用,但是缺陷很明顯,對於慢請求不敏感。比如1萬次請求,其中9900次是1ms,100次是100ms,則平均響應時間為1.99ms,雖然平均耗時僅增加了0.99ms,但是1%請求的響應時間已經增加了100倍。

2、TP90、TP99等分位值:將響應時間按照從小到大排序,TP90表示排在第90分位的響應時間, 分位值越大,對慢請求越敏感。

3、吞吐量:和響應時間呈反比,比如響應時間是1ms,則吞吐量為每秒1000次。

通常,設定性能目標時會兼顧吞吐量和響應時間,比如這樣表述:在每秒1萬次請求下,AVG控制在50ms以下,TP99控制在100ms以下。對於高並發系統,AVG和TP分位值必須同時要考慮。

另外,從用戶體驗角度來看,200毫秒被認為是第一個分界點,用戶感覺不到延遲,1秒是第二個分界點,用戶能感受到延遲,但是可以接受。

因此,對於一個 健康 的高並發系統,TP99應該控制在200毫秒以內,TP999或者TP9999應該控制在1秒以內。

2.2.2 可用性指標

高可用性是指系統具有較高的無故障運行能力,可用性 = 正常運行時間 / 系統總運行時間,一般使用幾個9來描述系統的可用性。

對於高並發系統來說,最基本的要求是:保證3個9或者4個9。原因很簡單,如果你只能做到2個9,意味著有1%的故障時間,像一些大公司每年動輒千億以上的GMV或者收入,1%就是10億級別的業務影響。

2.2.3 可擴展性指標

面對突發流量,不可能臨時改造架構,最快的方式就是增加機器來線性提高系統的處理能力。

對於業務集群或者基礎組件來說,擴展性 = 性能提升比例 / 機器增加比例,理想的擴展能力是:資源增加幾倍,性能提升幾倍。通常來說,擴展能力要維持在70%以上。

但是從高並發系統的整體架構角度來看,擴展的目標不僅僅是把服務設計成無狀態就行了,因為當流量增加10倍,業務服務可以快速擴容10倍,但是資料庫可能就成為了新的瓶頸。

像MySQL這種有狀態的存儲服務通常是擴展的技術難點,如果架構上沒提前做好規劃(垂直和水平拆分),就會涉及到大量數據的遷移。

因此,高擴展性需要考慮:服務集群、資料庫、緩存和消息隊列等中間件、負載均衡、帶寬、依賴的第三方等,當並發達到某一個量級後,上述每個因素都可能成為擴展的瓶頸點。

了解了高並發設計的3大目標後,再系統性總結下高並發的設計方案,會從以下兩部分展開:先總結下通用的設計方法,然後再圍繞高性能、高可用、高擴展分別給出具體的實踐方案。

通用的設計方法主要是從「縱向」和「橫向」兩個維度出發,俗稱高並發處理的兩板斧:縱向擴展和橫向擴展。

3.1.1 縱向擴展(scale-up)

它的目標是提升單機的處理能力,方案又包括:

1、提升單機的硬體性能:通過增加內存、 CPU核數、存儲容量、或者將磁碟 升級成SSD 等堆硬體的方式來提升。

2、提升單機的軟體性能:使用緩存減少IO次數,使用並發或者非同步的方式增加吞吐量。

3.1.2 橫向擴展(scale-out)

因為單機性能總會存在極限,所以最終還需要引入橫向擴展,通過集群部署以進一步提高並發處理能力,又包括以下2個方向:

1、做好分層架構:這是橫向擴展的提前,因為高並發系統往往業務復雜,通過分層處理可以簡化復雜問題,更容易做到橫向擴展。

上面這種圖是互聯網最常見的分層架構,當然真實的高並發系統架構會在此基礎上進一步完善。比如會做動靜分離並引入CDN,反向代理層可以是LVS+Nginx,Web層可以是統一的API網關,業務服務層可進一步按垂直業務做微服務化,存儲層可以是各種異構資料庫。

2、各層進行水平擴展:無狀態水平擴容,有狀態做分片路由。業務集群通常能設計成無狀態的,而資料庫和緩存往往是有狀態的,因此需要設計分區鍵做好存儲分片,當然也可以通過主從同步、讀寫分離的方案提升讀性能。

下面再結合我的個人經驗,針對高性能、高可用、高擴展3個方面,總結下可落地的實踐方案。

3.2.1 高性能的實踐方案

1、集群部署,通過負載均衡減輕單機壓力。

2、多級緩存,包括靜態數據使用CDN、本地緩存、分布式緩存等,以及對緩存場景中的熱點key、緩存穿透、緩存並發、數據一致性等問題的處理。

3、分庫分表和索引優化,以及藉助搜索引擎解決復雜查詢問題。

4、考慮NoSQL資料庫的使用,比如HBase、TiDB等,但是團隊必須熟悉這些組件,且有較強的運維能力。

5、非同步化,將次要流程通過多線程、MQ、甚至延時任務進行非同步處理。

6、限流,需要先考慮業務是否允許限流(比如秒殺場景是允許的),包括前端限流、Nginx接入層的限流、服務端的限流。

7、對流量進行 削峰填谷 ,通過 MQ承接流量。

8、並發處理,通過多線程將串列邏輯並行化。

9、預計算,比如搶紅包場景,可以提前計算好紅包金額緩存起來,發紅包時直接使用即可。

10、 緩存預熱 ,通過非同步 任務 提前 預熱數據到本地緩存或者分布式緩存中。

11、減少IO次數,比如資料庫和緩存的批量讀寫、RPC的批量介面支持、或者通過冗餘數據的方式幹掉RPC調用。

12、減少IO時的數據包大小,包括採用輕量級的通信協議、合適的數據結構、去掉介面中的多餘欄位、減少緩存key的大小、壓縮緩存value等。

13、程序邏輯優化,比如將大概率阻斷執行流程的判斷邏輯前置、For循環的計算邏輯優化,或者採用更高效的演算法。

14、各種池化技術的使用和池大小的設置,包括HTTP請求池、線程池(考慮CPU密集型還是IO密集型設置核心參數)、資料庫和Redis連接池等。

15、JVM優化,包括新生代和老年代的大小、GC演算法的選擇等,盡可能減少GC頻率和耗時。

16、鎖選擇,讀多寫少的場景用樂觀鎖,或者考慮通過分段鎖的方式減少鎖沖突。

上述方案無外乎從計算和 IO 兩個維度考慮所有可能的優化點,需要有配套的監控系統實時了解當前的性能表現,並支撐你進行性能瓶頸分析,然後再遵循二八原則,抓主要矛盾進行優化。

3.2.2 高可用的實踐方案

1、對等節點的故障轉移,Nginx和服務治理框架均支持一個節點失敗後訪問另一個節點。

2、非對等節點的故障轉移,通過心跳檢測並實施主備切換(比如redis的哨兵模式或者集群模式、MySQL的主從切換等)。

3、介面層面的超時設置、重試策略和冪等設計。

4、降級處理:保證核心服務,犧牲非核心服務,必要時進行熔斷;或者核心鏈路出問題時,有備選鏈路。

5、限流處理:對超過系統處理能力的請求直接拒絕或者返回錯誤碼。

6、MQ場景的消息可靠性保證,包括procer端的重試機制、broker側的持久化、consumer端的ack機制等。

7、灰度發布,能支持按機器維度進行小流量部署,觀察系統日誌和業務指標,等運行平穩後再推全量。

8、監控報警:全方位的監控體系,包括最基礎的CPU、內存、磁碟、網路的監控,以及Web伺服器、JVM、資料庫、各類中間件的監控和業務指標的監控。

9、災備演練:類似當前的「混沌工程」,對系統進行一些破壞性手段,觀察局部故障是否會引起可用性問題。

高可用的方案主要從冗餘、取捨、系統運維3個方向考慮,同時需要有配套的值班機制和故障處理流程,當出現線上問題時,可及時跟進處理。

3.2.3 高擴展的實踐方案

1、合理的分層架構:比如上面談到的互聯網最常見的分層架構,另外還能進一步按照數據訪問層、業務邏輯層對微服務做更細粒度的分層(但是需要評估性能,會存在網路多一跳的情況)。

2、存儲層的拆分:按照業務維度做垂直拆分、按照數據特徵維度進一步做水平拆分(分庫分表)。

3、業務層的拆分:最常見的是按照業務維度拆(比如電商場景的商品服務、訂單服務等),也可以按照核心介面和非核心介面拆,還可以按照請求源拆(比如To C和To B,APP和H5 )。


高並發確實是一個復雜且系統性的問題,由於篇幅有限,諸如分布式Trace、全鏈路壓測、柔性事務都是要考慮的技術點。另外,如果業務場景不同,高並發的落地方案也會存在差異,但是總體的設計思路和可借鑒的方案基本類似。

高並發設計同樣要秉承架構設計的3個原則:簡單、合適和演進。"過早的優化是萬惡之源",不能脫離業務的實際情況,更不要過度設計,合適的方案就是最完美的。

作者簡介:985碩士,前亞馬遜工程師,現大廠技術管理者。

『叄』 1.16.5伺服器優化技術有哪些

伺服器優化技術主要有分布式緩存、非同步操作、使用集群以及代碼。
網站性能優化第一定律:優先考慮使用緩存優化性能。
緩存原理
(1)什麼是緩存?(將數據存儲在相對較高訪問速度的介質中,以供系統處理)
(2)緩存的優點:訪問速度快,如果需要計算可以減少計算時間
(3)緩存的本質是一張以鍵值對存儲的內存hash表
(4)主要用來存儲:讀寫比例高,很少變化的數據
(5)網站的訪問遵循28定律
合理使用緩存應該注意以下問題
(1)頻繁更新的數據(數據還沒有讀就已經失效,一般要求讀寫比在2:1以上才有意義)
(2)沒有熱點數據(無疑浪費資源)
(3)數據不一致與臟讀(緩存被載入的過程中可能會產生數據不一致,有效時間過程數據在內存中就會變成臟數據)
(4)緩存的可用性(如果太過依賴緩存,容易產生雪崩。使用緩存熱備並不能提高緩存的可用性,使用集群可以提高可用性)
(5)緩存預熱(LRU計算時間過長,有的數據需要提前載入)
(6)緩存穿透(解決部分數據無法命中,而加重資料庫壓力的問題,一般設置空值)分布式緩存架構
(1)JBoss Cache:數據相同
(2)Memcached:數據不同互不通信
(3)Memcached5大優點:協議簡單、通用性強(支持各種語言)、Libevent網路通信、內存管理高效、互不通信。

『肆』 預熱pso緩存要多久

少則一個小時,多則半天。預熱時間取決於你訓練的輪數,你的數據量,你的機器的硬體配置。

預熱只是載入一組數據的時間,以便使緩存中填充有效數據。如果您要對通常具有較高高速緩存命中率的系統進行性能測試,而沒有預熱,您將得到錯誤的數字,因為在您的使用場景中通常會造成高速緩存命中的事實不是,而且會拖累您的數字。

PSO簡介:

PSO一是指工藝認證(Process Sign-Off),此為客戶對供應商/代工廠進行的生產工藝流程的審核;二是指微粒群優化演算法。

當Link完了之後,生成一個program,我們會拿到這個data,把它存下來,存在一個文件里。我做了一個虛擬的文件系統,這個虛擬文件的key就是那段program的data。存下來以後,當第一次運行游戲時這個文件是空的。

每次都會Link,然後存進去。當第二次運行的時候,情況就會變好了。以前曾經Link過的,我直接在文件里找到,通過這個Program載入進來,也不需要去設置Shader,也不需要Link,直接就可以用了。

『伍』 pso緩存是什麼意思

PSO一是指工藝認證(Process Sign-Off),此為客戶對供應商/代工廠進行的生產工藝流程的審核;二是指微粒群優化演算法。

當Link完了之後,生成一個program,我們會拿到這個data,把它存下來,存在一個文件里。我做了一個虛擬的文件系統,這個虛擬文件的key就是那段program的data。存下來以後,當第一次運行游戲時這個文件是空的。

每次都會Link,然後存進去。當第二次運行的時候,情況就會變好了。以前曾經Link過的,我直接在文件里找到,通過這個Program載入進來,也不需要去設置Shader,也不需要Link,直接就可以用了。

第三個是多個PSOcachefile。UE4自己有一個功能是對PSO的緩存,原來是叫Shadercache,後來改成pipelinecache。他只有一個文件,我們改進了這個功能。在錄的時候,我們可以錄很多個文件。

比如我們在打Boss戰的時候,那個Boss以前從沒出來過。他一出來,不管你是Link還是怎麼樣,反正他會卡頓。因為就算是你Link了,他往顯卡送的那一刻,往鏡頭送那一刻,他也會有一定的時間開銷。然後當那個Boss從來沒出現過。

一出來就卡一下,這個效果不太好。還有就是我們游戲運行Loading完了之後,我們需要播一個CG,那個CG有很多也是游戲不太用到的資源,它也會卡一下。我們還是想用引擎的PSO功能,記錄的功能,然後把它預熱一下。

但是一個不夠,尤其是出現怪物的時候。然後我們就做了一個錄不同的PSO的cache。PSOcache需要錄渲染所有的參數,Shader,各種參數都錄下來。錄下來之後當你需要播這些、需要畫這些文件的時候,它會在後台給你把這些東西跑一遍。

這樣的話,當你真正渲染模型的時候就不會卡頓,我們做了多個這樣的文件。比如說,在這個Loading條結束的時候,我們需要播CG,那在Loading條結束的時候,就載入這個場景所對應的記錄好的文件。當這個CG播放的時候就會非常的平滑。

沒有一絲的卡頓。對於boss也是這樣,快到播boss的時候,我們也在後台把這個cache文件載入進來,做一下這樣的預熱,就會達到非常好的平滑效果。今天的分享大概就是這些,非常感謝。