對於互聯網業務來說,傳統的直接訪問資料庫方式,主要通過數據分片、一主多從等方式來扛住讀寫流量,但隨著數據量的積累和流量的激增,僅依賴資料庫來承接所有流量,不僅成本高、效率低、而且還伴隨著穩定性降低的風險。
鑒於大部分業務通常是讀多寫少(讀取頻率遠遠高於更新頻率),甚至存在讀操作數量高出寫操作多個數量級的情況。因此, 在架構設計中,常採用增加緩存層來提高系統的響應能力 ,提升數據讀寫性能、減少資料庫訪問壓力,從而提升業務的穩定性和訪問體驗。
根據 CAP 原理,分布式系統在可用性、一致性和分區容錯性上無法兼得,通常由於分區容錯無法避免,所以一致性和可用性難以同時成立。對於緩存系統來說, 如何保證其數據一致性是一個在應用緩存的同時不得不解決的問題 。
需要明確的是,緩存系統的數據一致性通常包括持久化層和緩存層的一致性、以及多級緩存之間的一致性,這里我們僅討論前者。持久化層和緩存層的一致性問題也通常被稱為雙寫一致性問題,「雙寫」意為數據既在資料庫中保存一份,也在緩存中保存一份。
對於一致性來說,包含強一致性和弱一致性 ,強一致性保證寫入後立即可以讀取,弱一致性則不保證立即可以讀取寫入後的值,而是盡可能的保證在經過一定時間後可以讀取到,在弱一致性中應用最為廣泛的模型則是最終一致性模型,即保證在一定時間之後寫入和讀取達到一致的狀態。對於應用緩存的大部分場景來說,追求的則是最終一致性,少部分對數據一致性要求極高的場景則會追求強一致性。
為了達到最終一致性,針對不同的場景,業界逐步形成了下面這幾種應用緩存的策略。
— 1 —
Cache-Aside
Cache-Aside 意為旁路緩存模式,是應用最為廣泛的一種緩存策略。下面的圖示展示了它的讀寫流程,來看看它是如何保證最終一致性的。在讀請求中,首先請求緩存,若緩存命中(cache hit),則直接返回緩存中的數據;若緩存未命中(cache miss),則查詢資料庫並將查詢結果更新至緩存,然後返回查詢出的數據(demand-filled look-aside )。在寫請求中,先更新資料庫,再刪除緩存(write-invalidate)。
1、為什麼刪除緩存,而不是更新緩存?
在 Cache-Aside 中,對於讀請求的處理比較容易理解,但在寫請求中,可能會有讀者提出疑問,為什麼要刪除緩存,而不是更新緩存?站在符合直覺的角度來看,更新緩存是一個容易被理解的方案,但站在性能和安全的角度,更新緩存則可能會導致一些不好的後果。
首先是性能 ,當該緩存對應的結果需要消耗大量的計算過程才能得到時,比如需要訪問多張資料庫表並聯合計算,那麼在寫操作中更新緩存的動作將會是一筆不小的開銷。同時,當寫操作較多時,可能也會存在剛更新的緩存還沒有被讀取到,又再次被更新的情況(這常被稱為緩存擾動),顯然,這樣的更新是白白消耗機器性能的,會導致緩存利用率不高。
而等到讀請求未命中緩存時再去更新,也符合懶載入的思路,需要時再進行計算。刪除緩存的操作不僅是冪等的,可以在發生異常時重試,而且寫-刪除和讀-更新在語義上更加對稱。
其次是安全 ,在並發場景下,在寫請求中更新緩存可能會引發數據的不一致問題。參考下面的圖示,若存在兩個來自不同線程的寫請求,首先來自線程 1 的寫請求更新了資料庫(step 1),接著來自線程 2 的寫請求再次更新了資料庫(step 3),但由於網路延遲等原因,線程 1 可能會晚於線程 2 更新緩存(step 4 晚於 step 3),那麼這樣便會導致最終寫入資料庫的結果是來自線程 2 的新值,寫入緩存的結果是來自線程 1 的舊值,即緩存落後於資料庫,此時再有讀請求命中緩存(step 5),讀取到的便是舊值。
2、為什麼先更新資料庫,而不是先刪除緩存?
另外,有讀者也會對更新資料庫和刪除緩存的時序產生疑問,那麼為什麼不先刪除緩存,再更新資料庫呢?在單線程下,這種方案看似具有一定合理性,這種合理性體現在刪除緩存成功。
但更新資料庫失敗的場景下,盡管緩存被刪除了,下次讀操作時,仍能將正確的數據寫回緩存,相對於 Cache-Aside 中更新資料庫成功,刪除緩存失敗的場景來說,先刪除緩存的方案似乎更合理一些。那麼,先刪除緩存有什麼問題呢?
問題仍然出現在並發場景下,首先來自線程 1 的寫請求刪除了緩存(step 1),接著來自線程 2 的讀請求由於緩存的刪除導致緩存未命中,根據 Cache-Aside 模式,線程 2 繼而查詢資料庫(step 2),但由於寫請求通常慢於讀請求,線程 1 更新資料庫的操作可能會晚於線程 2 查詢資料庫後更新緩存的操作(step 4 晚於 step 3),那麼這樣便會導致最終寫入緩存的結果是來自線程 2 中查詢到的舊值,而寫入資料庫的結果是來自線程 1 的新值,即緩存落後於資料庫,此時再有讀請求命中緩存( step 5 ),讀取到的便是舊值。
另外,先刪除緩存,由於緩存中數據缺失,加劇資料庫的請求壓力,可能會增大緩存穿透出現的概率。
3、如果選擇先刪除緩存,再更新資料庫,那如何解決一致性問題呢?
為了避免「先刪除緩存,再更新資料庫」這一方案在讀寫並發時可能帶來的緩存臟數據,業界又提出了延時雙刪的策略,即在更新資料庫之後,延遲一段時間再次刪除緩存,為了保證第二次刪除緩存的時間點在讀請求更新緩存之後,這個延遲時間的經驗值通常應稍大於業務中讀請求的耗時。
延遲的實現可以在代碼中 sleep 或採用延遲隊列。顯而易見的是,無論這個值如何預估,都很難和讀請求的完成時間點准確銜接,這也是延時雙刪被詬病的主要原因。
4、那麼 Cache-Aside 存在數據不一致的可能嗎?
在 Cache-Aside 中,也存在數據不一致的可能性。在下面的讀寫並發場景下,首先來自線程 1 的讀請求在未命中緩存的情況下查詢資料庫(step 1),接著來自線程 2 的寫請求更新資料庫(step 2),但由於一些極端原因,線程 1 中讀請求的更新緩存操作晚於線程 2 中寫請求的刪除緩存的操作(step 4 晚於 step 3),那麼這樣便會導致最終寫入緩存中的是來自線程 1 的舊值,而寫入資料庫中的是來自線程 2 的新值,即緩存落後於資料庫,此時再有讀請求命中緩存(step 5),讀取到的便是舊值。
這種場景的出現,不僅需要緩存失效且讀寫並發執行,而且還需要讀請求查詢資料庫的執行早於寫請求更新資料庫,同時讀請求的執行完成晚於寫請求。足以見得,這種 不一致場景產生的條件非常嚴格,在實際的生產中出現的可能性較小 。
除此之外,在並發環境下,Cache-Aside 中也存在讀請求命中緩存的時間點在寫請求更新資料庫之後,刪除緩存之前,這樣也會導致讀請求查詢到的緩存落後於資料庫的情況。
雖然在下一次讀請求中,緩存會被更新,但如果業務層面對這種情況的容忍度較低,那麼可以採用加鎖在寫請求中保證「更新資料庫&刪除緩存」的串列執行為原子性操作(同理也可對讀請求中緩存的更新加鎖)。 加鎖勢必會導致吞吐量的下降,故採取加鎖的方案應該對性能的損耗有所預期。
— 2 —
補償機制
我們在上面提到了,在 Cache-Aside 中可能存在更新資料庫成功,但刪除緩存失敗的場景,如果發生這種情況,那麼便會導致緩存中的數據落後於資料庫,產生數據的不一致的問題。
其實,不僅 Cache-Aside 存在這樣的問題,在延時雙刪等策略中也存在這樣的問題。針對可能出現的刪除失敗問題,目前業界主要有以下幾種補償機制。
1、刪除重試機制
由於同步重試刪除在性能上會影響吞吐量,所以常通過引入消息隊列,將刪除失敗的緩存對應的 key 放入消息隊列中,在對應的消費者中獲取刪除失敗的 key ,非同步重試刪除。這種方法在實現上相對簡單,但由於刪除失敗後的邏輯需要基於業務代碼的 trigger 來觸發 ,對業務代碼具有一定入侵性。
鑒於上述方案對業務代碼具有一定入侵性,所以需要一種更加優雅的解決方案,讓緩存刪除失敗的補償機制運行在背後,盡量少的耦合於業務代碼。一個簡單的思路是通過後台任務使用更新時間戳或者版本作為對比獲取資料庫的增量數據更新至緩存中,這種方式在小規模數據的場景可以起到一定作用,但其擴展性、穩定性都有所欠缺。
一個相對成熟的方案是基於 Mysql 資料庫增量日誌進行解析和消費,這里較為流行的是阿里巴巴開源的作為 MySQL binlog 增量獲取和解析的組件 canal(類似的開源組件還有 Maxwell、Databus 等)。
canal sever 模擬 MySQL slave 的交互協議,偽裝為 MySQL slave,向 MySQL master 發送 mp 協議,MySQL master 收到 mp 請求,開始推送 binary log 給 slave (即 canal sever ),canal sever 解析 binary log 對象(原始為 byte 流),可由 canal client 拉取進行消費,同時 canal server 也默認支持將變更記錄投遞到 MQ 系統中,主動推送給其他系統進行消費。
在 ack 機制的加持下,不管是推送還是拉取,都可以有效的保證數據按照預期被消費。當前版本的 canal 支持的 MQ 有 Kafka 或者 RocketMQ。另外, canal 依賴 ZooKeeper 作為分布式協調組件來實現 HA ,canal 的 HA 分為兩個部分:
那麼,針對緩存的刪除操作便可以在 canal client 或 consumer 中編寫相關業務代碼來完成。這樣,結合資料庫日誌增量解析消費的方案以及 Cache-Aside 模型,在讀請求中未命中緩存時更新緩存(通常這里會涉及到復雜的業務邏輯),在寫請求更新資料庫後刪除緩存,並基於日誌增量解析來補償資料庫更新時可能的緩存刪除失敗問題,在絕大多數場景下,可以有效的保證緩存的最終一致性。
另外需要注意的是,還應該隔離事務與緩存,確保資料庫入庫後再進行緩存的刪除操作。 比如考慮到資料庫的主從架構,主從同步及讀從寫主的場景下,可能會造成讀取到從庫的舊數據後便更新了緩存,導致緩存落後於資料庫的問題,這就要求對緩存的刪除應該確保在資料庫操作完成之後。所以,基於 binlog 增量日誌進行數據同步的方案,可以通過選擇解析從節點的 binlog,來避免主從同步下刪除緩存過早的問題。
3、數據傳輸服務 DTS
— 3 —
Read-Through
Read-Through 意為讀穿透模式,它的流程和 Cache-Aside 類似,不同點在於 Read-Through 中多了一個訪問控制層,讀請求只和該訪問控制層進行交互,而背後緩存命中與否的邏輯則由訪問控制層與數據源進行交互,業務層的實現會更加簡潔,並且對於緩存層及持久化層交互的封裝程度更高,更易於移植。
— 4 —
Write-Through
Write-Through 意為直寫模式,對於 Write-Through 直寫模式來說,它也增加了訪問控制層來提供更高程度的封裝。不同於 Cache-Aside 的是,Write-Through 直寫模式在寫請求更新資料庫之後,並不會刪除緩存,而是更新緩存。
這種方式的 優勢在於讀請求過程簡單 ,不需要查詢資料庫更新緩存等操作。但其劣勢也非常明顯,除了上面我們提到的更新資料庫再更新緩存的弊端之外,這種方案還會造成更新效率低,並且兩個寫操作任何一次寫失敗都會造成數據不一致。
如果要使用這種方案, 最好可以將這兩個操作作為事務處理,可以同時失敗或者同時成功,支持回滾,並且防止並發環境下的不一致 。另外,為了防止緩存擾動的頻發,也可以給緩存增加 TTL 來緩解。
站在可行性的角度,不管是 Write-Through 模式還是 Cache-Aside 模式,理想狀況下都可以通過分布式事務保證緩存層數據與持久化層數據的一致性,但在實際項目中,大多都對一致性的要求存在一些寬容度,所以在方案上往往有所折衷。
Write-Through 直寫模式適合寫操作較多,並且對一致性要求較高的場景,在應用 Write-Through 模式時,也需要通過一定的補償機制來解決它的問題。首先,在並發環境下,我們前面提到了先更新資料庫,再更新緩存會導致緩存和資料庫的不一致,那麼先更新緩存,再更新資料庫呢?
這樣的操作時序仍然會導致下面這樣線程 1 先更新緩存,最後更新資料庫的情況,即由於線程 1 和 線程 2 的執行不確定性導致資料庫和緩存的不一致。這種由於線程競爭導致的緩存不一致,可以通過分布式鎖解決,保證對緩存和資料庫的操作僅能由同一個線程完成。對於沒有拿到鎖的線程,一是通過鎖的 timeout 時間進行控制,二是將請求暫存在消息隊列中順序消費。
在下面這種並發執行場景下,來自線程 1 的寫請求更新了資料庫,接著來自線程 2 的讀請求命中緩存,接著線程 1 才更新緩存,這樣便會導致線程 2 讀取到的緩存落後於資料庫。同理,先更新緩存後更新資料庫在寫請求和讀請求並發時,也會出現類似的問題。面對這種場景,我們也可以加鎖解決。
另在,在 Write-Through 模式下,不管是先更新緩存還是先更新資料庫,都存在更新緩存或者更新資料庫失敗的情況,上面提到的重試機制和補償機制在這里也是奏效的。
— 5 —
Write-Behind
Write behind 意為非同步回寫模式,它也具有類似 Read-Through/Write-Through 的訪問控制層,不同的是,Write behind 在處理寫請求時,只更新緩存而不更新資料庫,對於資料庫的更新,則是通過批量非同步更新的方式進行的,批量寫入的時間點可以選在資料庫負載較低的時間進行。
在 Write-Behind 模式下,寫請求延遲較低,減輕了資料庫的壓力,具有較好的吞吐性。但資料庫和緩存的一致性較弱,比如當更新的數據還未被寫入資料庫時,直接從資料庫中查詢數據是落後於緩存的。同時,緩存的負載較大,如果緩存宕機會導致數據丟失,所以需要做好緩存的高可用。顯然,Write behind 模式下適合大量寫操作的場景,常用於電商秒殺場景中庫存的扣減。
— 6 —
Write-Around
如果一些非核心業務,對一致性的要求較弱,可以選擇在 cache aside 讀模式下增加一個緩存過期時間,在寫請求中僅僅更新資料庫,不做任何刪除或更新緩存的操作,這樣,緩存僅能通過過期時間失效。這種方案實現簡單,但緩存中的數據和資料庫數據一致性較差,往往會造成用戶的體驗較差,應慎重選擇。
— 7 —
總結
在解決緩存一致性的過程中,有多種途徑可以保證緩存的最終一致性,應該根據場景來設計合適的方案,讀多寫少的場景下,可以選擇採用「Cache-Aside 結合消費資料庫日誌做補償」的方案,寫多的場景下,可以選擇採用「Write-Through 結合分布式鎖」的方案 ,寫多的極端場景下,可以選擇採用「Write-Behind」的方案。
❷ SpringCache優化、緩存一致性、多級緩存
先記錄一些綱要
1、SpringCache是寫庫之後更新的策略,對緩存一致性的不太友好
2、繼承RedisCacheManager重寫createRedisCache,繼承RedisCache重寫put
3、緩存一致性有兩個方案,一個是先寫庫再刪除緩存、第二個是先刪除緩存再寫庫。
先寫庫再刪除緩存配合超時時間一般沒啥問題,極端的情況遇到緩存失效,線程讀庫和加緩存之間,完成了一次寫庫和刪緩存的操作,導致加的緩存是舊的。總結就是讀中加入了一次寫。A讀庫 B寫庫 B刪緩存 A加緩存。
先刪緩存再寫庫的話,是寫中加入了一次讀。A刪緩存 B讀庫 B加緩存 A寫庫A。這個概率比上面的大。
這兩種方案的問題的解決方式是一樣的,就是延時雙刪策略。即:
刪緩存 寫庫 延時再次刪除緩存(需超過一次讀庫的時間,可以新啟線程完成)
或者 寫庫 刪緩存 延時再次刪除緩存(需超過一次讀庫的時間,可以新啟線程完成)
如果有主從讀寫分離,需要將延時再加上主從同步的時間。
還有個第二次刪除失敗的問題,這個問題可以通過消息中間件,反復嘗試進行。或者通過訂閱binlog,反復進行。
多級緩存可以參考阿里開源的JetCache的實現
後面會給出demo和源碼解析。
❸ 微服務架構的分布式事務問題如何處理
分布式系統架構中,分布式事務問題是一個繞不過去的挑戰。而微服務架構的流行,讓分布式事問題日益突出!
下面我們以電商購物支付流程中,在各大參與者系統中可能會遇到分布式事務問題的場景進行詳細的分析!
❹ chcahe 如何保證分布式緩存數據一致性
VPLEX的技術核心是「分布式緩存一致性」,下圖則是「分布式緩存一致性」技術的工作機制示意:正是因為這項核心技術優勢,使得VPLEX方案和目前所有廠商的虛擬化方案截然不同,並能夠實現異地的數據中心整合。對跨數據中心的所有負載實現跨引擎的平攤或者實時遷移,來自任何一個主機的I/O請求可以通過任何一個引擎得到響應。
緩存一致性的記錄目錄使用少量的元數據,記錄下哪個數據塊屬於哪個引擎更新的,以及在何時更新過,並通過4K大小的數據塊告訴在集群中的所有其他的引擎。在整個過程中實際發生的溝通過程,遠遠比實際上正在更新數據塊少很多。
分布式緩存一致性數據流示意圖:上方是一個目錄,記錄下左側的主機讀取緩存A的操作,並分發給所有引擎,右側主機需要讀取該數據塊時,會先通過目錄查詢,確定該數據塊所屬的引擎位置,讀取請求會直接發送給引擎,並直接從數據塊所在的緩存上讀取。
當一個讀請求進入時,VPLEX會自動檢查目錄,查找該數據塊所屬的引擎,一旦確定該數據塊所屬的引擎位置,讀的請求會直接發送給該引擎。一旦一個寫入動作完成,並且目錄表被修改,這時另一個讀請求從另一個引擎過來,VPLEX會檢查目錄,並且直接從該引擎的緩存上讀取。如果該數據仍然在緩存上,則完全沒必要去磁碟上讀取。
如上圖,來自圖中左側主機的操作,由Cache A服務,會記錄一個更新狀態,並分發給所有所有引擎知道。如果讀取的需求來自最右側的伺服器,首先通過目錄查詢。通過這種技術可以實現所有引擎一致性工作,而且這個技術不僅可以跨引擎還可以跨VPLEX集群,而VPLEX集群可以跨區域,因此緩存一致性也可以跨區域部署。
分布式緩存一致性技術使VPLEX相比傳統的虛擬化方案擁有更高的性能和可靠性,並實現異地數據中心的虛擬化整合
對傳統的虛擬化架構來說,如果虛擬化的I/O集群中有一個節點壞了,那麼性能就會降低一半,而且實際情況降低不止一半。因為壞了一個節點,這個節點緩存一般會被寫進去。因為沒有緩存,操作會直接寫到硬碟里。如果圖中中心這個節點壞掉,那主機所有的可用性都沒有了。而VPLEX如果有一個引擎或者一個控制器壞掉了,那這個引擎的負載會均攤到其他活動引擎上。這樣總體來講用戶可以維持可預知性能,性能降低也不那麼明顯。
❺ 怎麼實現redis的資料庫的緩存(redis實現緩存的流程)
大致為兩種措施:
一、腳本同步:
1、自己寫腳本將資料庫數據寫入到redis/memcached。
2、這就涉及到實時數據變更的問題(mysqlrowbinlog的實時分析),binlog增量訂閱Alibaba的canal,以及緩存層數據丟失/失效後的數據同步恢復問題。
二、純賀業務層實現:
1、先讀取nosql緩存層,沒有數據再讀取mysql層,並寫入數據到nosql。
2、nosql層做好多節點分布式(一致性hash),以及節點失效後替代方案(多層hash尋找相鄰替代節點),和數據震盪恢復了。
redis實現資料庫緩存的分析:
對於變化頻率非常快的數據來說,如果還選擇傳統的靜態緩存方式(Memocached、FileSystem等)展示數據,可能在緩存的存取上會有很大的開銷則褲差,並不能很好的滿足需要,而Redis這樣基於內存的NoSQL資料庫,就非常適合擔任實時數據的容器。
但是往往又有數據可靠性的需求,採用MySQL作為數據存儲,不會因為內存問題而引起數據丟失,同時也可以利用關系資料庫的特性實現很多功能。所以就會很自然的想到是否可以採用MySQL作為數據存孫皮儲引擎,Redis則作為Cache。
MySQL到Redis數據復制方案,無論MySQL還是Redis,自身都帶有數據同步的機制,比較常用的MySQL的Master/Slave模式,就是由Slave端分析Master的binlog來實現的,這樣的數據復制其實還是一個非同步過程,只不過當伺服器都在同一內網時,非同步的延遲幾乎可以忽略。那麼理論上也可用同樣方式,分析MySQL的binlog文件並將數據插入Redis。
因此這里選擇了一種開發成本更加低廉的方式,借用已經比較成熟的MySQLUDF,將MySQL數據首先放入Gearman中,然後通過一個自己編寫的PHPGearmanWorker,將數據同步到Redis。比分析binlog的方式增加了不少流程,但是實現成本更低,更容易操作。
❻ java多線程下如何保證數據的一致性
以mysql來說,可能出現臟讀、不可重復讀以及幻讀,mysql默認設置是可重復讀,即一次事務中不會讀取到不同的數據。
可以做如下操作:
1)打開兩個客戶端,均設置為RR;
2)在一個事務中,查詢某個操作查到某份數據;比如是某個欄位version=1存在數據;
3)在另一個事務中,刪除這份version=1的數據;刪除後,在2所屬的事務中查詢數據是沒有變化的,還是存在version=1的數據;
4)當我們在2所屬的事務中繼續更新數據,那麼會發現更新不了,明明我們就看到了這份version=1的數據;
緩存一致性:
緩存一致,與什麼一致?是與資料庫一致,對外查詢每個時刻一致;所以在針對於緩存與資料庫之間該先更新哪一個呢?可能有人覺得我先更新資料庫,再更新緩存不就行了嗎?但是有想過個問題嗎?
當用戶已經支付成功了,更新到資料庫,但是呢?你還在緩存中顯示未支付,在用戶點擊頻率很高並且資料庫壓力過大,來不及同步到緩存時,那你是不是很尷尬,這就是典型的不一致了。此時用戶再支付,那你又告訴他已經支付了,那他會把你罵死的
那該怎麼來做呢?我們可以這樣,先更新緩存再更新資料庫,那麼存在什麼問題呢?
1)緩存更新成功,但是資料庫更新失敗,而被其它的並發線程訪問到
2)緩存淘汰成功,但是資料庫更新失敗,這也會引發後期數據不一致
❼ 緩存一致性協議
鎖緩存行有一套協議叫做 緩存一致性協議 。緩存一致性協議有MSI、MESI、MOSI、Synapse、Firefly以及DragonProtocol等等。
MESI分別代表緩存行數據的4中狀態,通過對這四種狀態的切換,來達到對緩存數據進行管理的目的
假設有三個CPU-A、B、C,對應三個緩存分別是cache-a、b、c。在主內存中定義了x的引用值0
單核讀取
MESI優化和引入的問題:各CPU緩存行的狀態是通過消息傳遞來進行的。如果CPU0要對一個在緩存中共享的變數進行寫入,首先需要發送一個失效的消息給到其他緩存了該數據的CPU,並且要等到他們的確認回執。CPU0在這段時間內都會一直處於阻塞狀態,會導致各種各樣的性能問題和穩定性問題。
為了避免阻塞帶來的資源浪費,在CPU中引入了Store Buffer。
CPU在寫入共享數據時,直接把數據寫入到Store Buffer中,同時發送Invalidate消息,然後繼續去處理其他指令。當收到其他所有CPU發送了Invalidate Acknowledge消息時,再將Store Buffer中的數據存儲到Cache Line中,最後再從Cache Line同步到主內存。