當前位置:首頁 » 硬碟大全 » 硬碟結構
擴展閱讀
webinf下怎麼引入js 2023-08-31 21:54:13
堡壘機怎麼打開web 2023-08-31 21:54:11

硬碟結構

發布時間: 2023-08-27 18:57:15

硬碟的內部由哪幾部分組成

  1. 硬碟正面。又稱固定面板,它與底板結合成一個密封的整體。固定面板上有一個帶有過濾器的小小透氣孔,該氣孔主要使硬碟內部氣壓與大氣氣壓保持一致,這是讓磁碟碟片和磁頭在硬碟內部穩定工作的關鍵因素。

    ㈡ 硬碟的結構特點是什麼

    結構特點:
    1、硬碟外部結構
    各種硬碟的外觀結構都是相似的。
    (1)介面
    硬碟介麵包括電源插口和數據介面兩部分。數據介面分為ATA介面、SCSI介面。
    (2)電路板
    硬碟控制電路板一般是六層板,採用貼片式元件焊接,包括主軸調速電路、磁頭驅動與伺服定位電路、讀/寫電路、控制與介面電路等。在電路板上還安裝有高速緩存晶元,通常為8MB。
    (3)固定蓋板
    固定蓋板實際是硬碟的面板。面板上標注有產品的型號、產地、設置數據等,和底板結合成一個密封的整體,保證硬碟片和機構的穩定運行。2、硬碟的內部結構
    硬碟的盤體裡面是一個無塵空間,下面是鋁制的基座,基座上安裝著主軸電機、碟片、磁頭電機、磁頭晶元、磁頭、定位夾具等。磁頭、磁頭晶元、音圈電機一般安裝在一起構成磁頭組件。
    盤體由磁頭組件和碟片構成
    1、磁頭組件:主要作用是讀取數據。磁頭主要出現的故障是:變形、移位和老化
    2、碟片:主要作用是存儲數據。碟片主要故障是產生壞道和重要數據丟失。

    ㈢ 電腦硬碟的構造

    結構
    硬碟(hard disk)是計算機中最重要的存儲器之一。計算機需要正常運行所需的大部分軟體都存儲在硬碟上。因為硬碟存儲的容量較大,區別於內存、光碟。硬碟是電腦上使用使用堅硬的旋轉碟片為基礎的存儲設備。它在平整的磁性表面存儲和檢索數字數據。

    物理結構

    磁頭是硬碟中最昂貴的部件,也是硬碟技術中最重要和最關鍵的一環。傳統的磁頭是讀寫合一的電磁感應式磁頭,但是,硬碟的讀、寫卻是兩種截然不同的操作,為此,這種二合一磁頭在設計時必須要同時兼顧到讀/寫兩種特性,從而造成了硬碟設計上的局限。

    硬碟
    而MR磁頭(Magnetoresistive heads),即磁阻磁頭,採用的是分離式的磁頭結構:寫入磁頭仍採用傳統的磁感應磁頭(MR磁頭不能進行寫操作),讀取磁頭則採用新型的MR磁頭,即所謂的感應寫、磁阻讀。這樣,在設計時就可以針對兩者的不同特性分別進行優化,以得到最好的讀/寫性能。另外,MR磁頭是通過阻值變化而不是電流變化去感應信號幅度,因而對信號變化相當敏感,讀取數據的准確性也相應提高。而且由於讀取的信號幅度與磁軌寬度無關,故磁軌可以做得很窄,從而提高了碟片密度,達到200MB/英寸2,而使用傳統的磁頭只能達到20MB/英寸2,這也是MR磁頭被廣泛應用的最主要原因。MR磁頭已得到廣泛應用,而採用多層結構和磁阻效應更好的材料製作的GMR磁頭(Giant Magnetoresistive heads)也逐漸普及。

    磁軌

    當磁碟旋轉時,磁頭若保持在一個位置上,則每個磁頭都會在磁碟表面劃出一個圓形軌跡,這些圓形軌跡就叫做磁軌。這些磁軌用肉眼是根本看不到的,因為它們僅是盤面上以特殊方式磁化了的一些磁化區,

    垂直記錄時磁顆粒狀態表示
    磁碟上的信息便是沿著這樣的軌道存放的。相鄰磁軌之間並不是緊挨著的,這是因為磁化單元相隔太近時磁性會相互產生影響,同時也為磁頭的讀寫帶來困難。一張1.44MB的3.5英寸軟盤,一面有80個磁軌,而硬碟上的磁軌密度則遠遠大於此值,通常一面有成千上萬個磁軌。

    磁碟表面塗有做為紀錄使用的磁性介質,其在顯微鏡下呈現出來的便是一個個磁顆粒。微小的磁顆粒極性可以被磁頭快速的改變,並且在改變之後可以穩定的保持,系統通過磁通量以及磁阻的變化來分辨二進制中的0或者1。也正是因為所有的操作均是在微觀情況下進行,所以如果硬碟在高速運行的同時受到外力的震盪,將會有可能因為磁頭拍擊磁碟表面而造成不可挽回的數據損失。除此之外,磁顆粒的單軸異向性和體積會明顯的磁顆粒的熱穩定性,而熱穩定性的高低則決定了磁顆粒狀態的穩定性,也就是決定了所儲存數據的正確性和穩定性。但是,磁顆粒的單軸異向性和體積也不能一味地提高,它們受限於磁頭能提供的寫入場以及介質信噪比的限制。

    扇區

    磁碟上的每個磁軌被等分為若干個弧段,這些弧段便是磁碟的扇區,每個扇區可以存放512個位元組的信息,磁碟驅動器在向磁碟讀取和寫入數據時,要以扇區為單位。1.44MB3.5英寸的軟盤,每個磁軌分為18個扇區。

    柱面

    硬碟通常由重疊的一組碟片構成,每個盤面都被劃分為數目相等的磁軌,並從外緣的「0」開始編號,具有相同編號的磁軌形成一個圓柱,稱之為磁碟的柱面。磁碟的柱面數與一個盤面上的磁軌數是相等的。由於每個盤面都有自己的磁頭,因此,盤面數等於總的磁頭數。所謂硬碟的CHS,即Cylinder(柱面)、Head(磁頭)、Sector(扇區),只要知道了硬碟的CHS的數目,即可確定硬碟的容量,硬碟的容量=柱面數磁頭數扇區數512B。

    邏輯結構

    硬碟的容量還非常小的時候,人們採用與軟盤類似的結構生產硬碟。也就是硬碟碟片的每一條磁軌都具有相同的扇區數。由此產生了所謂的3D參數 (Disk Geometry). 既磁頭數(Heads),柱面數(Cylinders),扇區數(Sectors),以及相應的定址方式。

    其中:磁頭數(Heads)表示硬碟總共有幾個磁頭,也就是有幾面碟片, 最大為 255 (用 8 個二進制位存儲);柱面數(Cylinders) 表示硬碟每一面碟片上有幾條磁軌,最大為 1023(用 10 個二進制位存儲);每個扇區一般是 512個位元組, 理論上講這不是必須的,但好像沒有取別的值的。所以磁碟最大容量為:255 * 1023 * 63 * 512 / 1048576 = 8024 GB ( 1M =1048576 Bytes )或硬碟廠商常用的單位:255 * 1023 * 63 * 512 / 1000000 = 8414 GB ( 1M =1000000 Bytes )

    在 CHS定址方式中,磁頭,柱面,扇區的取值范圍分別為 0到 Heads - 1。0 到 Cylinders - 1。 1 到 Sectors (注意是從 1 開始)。

    基本 Int 13H 調用簡介

    BIOS Int 13H 調用是 BIOS提供的磁碟基本輸入輸出中斷調用,它可以完成磁碟(包括硬碟和軟盤)的復位,讀寫,校驗,定位,診,格式化等功能。它使用的就是CHS 定址方式, 因此最大識能訪問 8 GB 左右的硬碟 (本文中如不作特殊說明,均以 1M = 1048576 位元組為單位)。

    ㈣ 硬碟的結構是什麼

    1、磁頭
    磁頭是硬碟中最昂貴的部件,也是硬碟技術中最重要和最關鍵的一環。傳統的磁頭是讀寫合一的電磁感應式磁頭,但是,硬碟的讀、寫卻是兩種截然不同的操作,為此,這種二合一磁頭在設計時必須要同時兼顧到讀/寫兩種特性,從而造成了硬碟設計上的局限。而MR磁頭(Magnetoresistive
    heads),即磁阻磁頭,採用的是分離式的磁頭結構:寫入磁頭仍採用傳統的磁感應磁頭(MR磁頭不能進行寫操作),讀取磁頭則採用新型的MR磁頭,即所謂的感應寫、磁阻讀。這樣,在設計時就可以針對兩者的不同特性分別進行優化,以得到最好的讀/寫性能。另外,MR磁頭是通過阻值變化而不是電流變化去感應信號幅度,因而對信號變化相當敏感,讀取數據的准確性也相應提高。而且由於讀取的信號幅度與磁軌寬度無關,故磁軌可以做得很窄,從而提高了碟片密度,達到200MB/英寸2,而使用傳統的磁頭只能達到20MB/英寸2,這也是MR磁頭被廣泛應用的最主要原因。目前,MR磁頭已得到廣泛應用,而採用多層結構和磁阻效應更好的材料製作的GMR磁頭(Giant
    Magnetoresistive
    heads)也逐漸普及。
    2、磁軌
    當磁碟旋轉時,磁頭若保持在一個位置上,則每個磁頭都會在磁碟表面劃出一個圓形軌跡,這些圓形軌跡就叫做磁軌。這些磁軌用肉眼是根本看不到的,因為它們僅是盤面上以特殊方式磁化了的一些磁化區,磁碟上的信息便是沿著這樣的軌道存放的。相鄰磁軌之間並不是緊挨著的,這是因為磁化單元相隔太近時磁性會相互產生影響,同時也為磁頭的讀寫帶來困難。一張1.44MB的3.5英寸軟盤,一面有80個磁軌,而硬碟上的磁軌密度則遠遠大於此值,通常一面有成千上萬個磁軌。
    3、扇區
    磁碟上的每個磁軌被等分為若干個弧段,這些弧段便是磁碟的扇區,每個扇區可以存放512個位元組的信息,磁碟驅動器在向磁碟讀取和寫入數據時,要以扇區為單位。1.44MB3.5英寸的軟盤,每個磁軌分為18個扇區。
    4、柱面
    硬碟通常由重疊的一組碟片構成,每個盤面都被劃分為數目相等的磁軌,並從外緣的「0」開始編號,具有相同編號的磁軌形成一個圓柱,稱之為磁碟的柱面。磁碟的柱面數與一個盤面上的磁軌數是相等的。由於每個盤面都有自己的磁頭,因此,盤面數等於總的磁頭數。所謂硬碟的CHS,即Cylinder(柱面)、Head(磁頭)、Sector(扇區),只要知道了硬碟的CHS的數目,即可確定硬碟的容量,硬碟的容量=柱面數*磁頭數*扇區數*512B。

    ㈤ SSD固態硬碟內部結構由什麼組成

    固態硬碟(Solid State Drive),簡稱SSD(固盤),是用固態電子存儲晶元陣列而製成的硬碟,但是很多用戶對於固態硬碟的內部結構就不甚了解吧,如果你有興趣的話,可以看看我給大家科普的固態硬碟內部結構知識。

    SSD主要由電子晶元及電路板組成:

    根據固態硬碟的定義,我們可以知道固態硬碟的內部結構,其實就是由三大塊主控晶元、快閃記憶體顆粒、緩存單元構成,那麼接下來,我們逐一來看。

    1、固態硬碟大腦:主控晶元

    正如同CPU之於PC一樣,主控晶元其實也和CPU一樣,是整個固態硬碟的核心器件,其作用一是合理調配數據在各個快閃記憶體晶元上的負荷,二則是承擔了整個數據中轉,連接快閃記憶體晶元和外部SATA介面。

    不同的主控之間能力相差非常大,在數據處理能力、演算法上,對快閃記憶體晶元的讀取寫入控制上會有非常大的不同,直接會導致固態硬碟產品在性能上產生很大的差距。

    慧榮主控

    當前主流的主控晶元廠商有 marvell 邁威(俗稱“馬牌”)、SandForce、siliconmotion慧榮、phison群聯、jmicron智微等。而這幾大主控廠商,又都有著自己的相應特點,應用於不同層級的固態產品。

    以台系廠商siliconmotion慧榮為例,此款主控晶元主要特點在於能夠為固態硬碟廠商提供包括軟體和硬體在內的一體化主控方案,包括主控晶元、電路板以及存儲單元,能夠極大的提升產品的更新速度和使用壽命,並且不存在兼容等問題。

    2、核心器件:快閃記憶體顆粒單元

    作為硬碟,存儲單元絕對是核心器件。在固態硬碟裡面,快閃記憶體顆粒則替代了機械磁碟成為了存儲單元。

    快閃記憶體(Flash Memory)本質上是一種長壽命的非易失性(在斷電情況下仍能保持所存儲的數據信息)的存儲器,數據刪除不是以單個的位元組為單位而是以固定的區塊為單位。

    固態硬碟中快閃記憶體顆粒占據大部分比重

    在固態硬碟中,NAND快閃記憶體因其具有非易失性存儲的特性,即斷電後仍能保存數據,被大范圍運用。

    根據NAND快閃記憶體中電子單元密度的差異,又可以分為SLC(單層次存儲單元)、MLC(雙層存儲單元)以及TLC(三層存儲單元),此三種存儲單元在壽命以及造價上有著明顯的區別。

    SLC(單層式存儲),單層電子結構,寫入數據時電壓變化區間小,壽命長,讀寫次數在10萬次以上,造價高,多用於企業級高端產品。

    MLC(多層式存儲),使用高低電壓的而不同構建的雙層電子結構,壽命長,造價可接受,多用民用高端產品,讀寫次數在5000左右。

    TLC(三層式存儲),是MLC快閃記憶體延伸,TLC達到3bit/cell。存儲密度最高,容量是MLC的1.5倍。 造價成本最低, 使命壽命低,讀寫次數在1000~2000左右,是當下主流廠商首選快閃記憶體顆粒。

    海力士16nm TLC快閃記憶體顆粒

    當前,固態硬碟市場中,主流的快閃記憶體顆粒廠商主要有toshiba東芝、samsung三星、Intel英特爾、micron美光、skhynix海力士、sandisk閃迪等。

    東芝快閃記憶體顆粒

    由於快閃記憶體顆粒是固態硬碟中的核心器件,也是主要的存儲單元,因而它的製造成本占據了整個產品的70%以上的比重,極端一點說,選擇固態硬碟實際上就是在選擇快閃記憶體顆粒。

    3、錦上添花:緩存晶元

    緩存晶元,是固態硬碟三大件中,最容易被人忽視的一塊,也是廠商最不願意投入的一塊。和主控晶元、快閃記憶體顆粒相比,緩存晶元的作用確實沒有那麼明顯,在用戶群體的認知度也沒有那麼深入,相應的就無法以此為噱頭進行鼓吹。

    實際上,緩存晶元的存在意義還是有的,特別是在進行常用文件的隨機性讀寫上,以及碎片文件的快速讀寫上。

    南亞緩存

    由於固態硬碟內部的磨損機制,就導致固態硬碟在讀寫小文件和常用文件時,會不斷進行數據的整塊的寫入緩存,然而導出到快閃記憶體顆粒,這個過程需要大量緩存維系。特別是在進行大數量級的碎片文件的讀寫進程,高緩存的作用更是明顯。

    相關閱讀:CPU、內存組裝注意事項

    Intel 平台請注意主板的CPU插槽是非常脆弱的,不要手賤去觸摸或其它利器刮。AMD平台請注意CPU針腳,不要歪了。

    打開主板蓋,取下保護塑膠片(圖中沒有,我的扔掉了,無法給大家展示),將CPU輕輕放入,注意卡槽,不要錯了方向。裝好之後蓋回,壓好。

    如果使用CPU 配的散熱器,底座已經有散熱硅膠,直接壓上。鎖好螺栓,檢查散熱器無法拔出來為裝好。

    如果使用自購散熱器,可能需要在CPU上面塗抹散熱硅膠。有底座的裝好底座。

    根據內存的缺口,插入內存條,插反了插不進去的,看清楚,聽到滴答一聲說明插到位了,兩邊的鎖扣扣住內存缺口。

    將CPU風扇的線,插到主板上標識為CPU_FAN的四針的插槽,注意整理線,不要卡住風扇的轉動。

    將裝好CPU、內存的主板放入機箱,對好機箱上的彈片孔,鎖上螺絲。固定螺絲較多,不要落下了。

    補充:組裝電腦有什麼優勢

    組裝電腦 優勢一:潛在價值,物有所值

    組裝電腦具有不少潛在的價值,如上論壇曬機器,上QQ群炫耀等。上網炫耀是電腦必備的能力,國內論壇高配置用戶較多,自己如果不炫耀一把心理會很不好受。 QQ群裡面也是,高配置的人往往就等於高水平,如果想要自己創建QQ群,那麼高配置幾乎是少不了的。

    組裝電腦 優勢二:注重晶元散熱,使用壽命長

    品牌機在設計的時候往往不會考慮到強力的散熱,這不僅僅是溫度的問題。過高 的溫度會影響晶元的使用壽命,導致PC提早出現致命性的損壞無法修復,提前退 休。

    組裝電腦 優勢三:價格低廉

    有的朋友會說,組裝電腦的價格怎麼可能便宜過品牌機呢?其實不然,面對市場競 爭的壓力,現在品牌機價格也不比當年,不少品牌廠位獲得更高的利潤,硬體紛紛跳水。推出價格平易近人,性能垃圾的產品,價格走平民化路線,讓更多小憤 青能夠接受廉價閹割PC。這台品牌機的價格幾乎能夠配兩台相同性能的PC

    組裝電腦 優勢四:搶進性能

    現在越來越多的品牌機廠商,想要獲得更大的市場份額不得不在廣告用詞上做文 章,4核心(低頻閹割)CPU,6GB(半殘雙通道低速)大容量內存,高性能(比集成顯卡高)獨立顯卡,大容量(共享,低速成本低)顯存等等……對於用戶來說,貨真價實的性能才是最重要的。

    ㈥ 機械硬碟的組成(基本概念)

    一個機械硬碟由下面五個部分組成(這里只包含核心部分,像金屬介質、磁化材料不會涉及)

    硬碟中一般會有多個碟片組成,每個碟片包含兩個面,每個盤面都對應地有一個讀/寫磁頭。受到硬碟整體體積和生產成本的限制,碟片數量都受到限制,一般都在5片以內,但隨著機械硬碟越來越大,碟片也有上百的,具體數量取決於硬碟廠商。碟片的編號自下向上從0開始,如最下邊的碟片有0面和1面,再上一個碟片就編號為2面和3面。

    下圖顯示的是一個盤面,盤面中一圈圈灰色同心圓為一條條磁軌,從圓心向外畫直線,可以將磁軌劃分為若干個弧段,每個磁軌上一個弧段被稱之為一個扇區(圖踐綠色部分)。扇區是磁碟的最小組成單元,通常是512位元組。(由於不斷提高磁碟的大小,部分廠商設定每個扇區的大小是4096位元組)

    硬碟通常由重疊的一組碟片構成,每個盤面都被劃分為數目相等的磁軌,並從外緣的「0」開始編號,具有相同編號的磁軌形成一個圓柱,稱之為磁碟的柱面。柱面,其實是個「虛」的東西!它是分開的。物理上不是一體的。只是在空間上,它類似於一個桶的桶壁一樣。磁碟的柱面數與一個盤面上的磁軌數是相等的。由於每個盤面都有自己的磁頭,因此,盤面數等於總的磁頭數。 如下圖

    存儲容量 = 磁頭數 × 磁軌(柱面)數 × 每道扇區數 × 每扇區位元組數
    圖3中磁碟是一個 3個圓盤6個磁頭,7個柱面(每個碟片7個磁軌) 的磁碟,圖3中每條磁軌有12個扇區,所以此磁碟的容量為:
    存儲容量 6 * 7 * 12 * 512 = 258048
    每個磁軌的扇區數一樣是說的老的硬碟,外圈的密度小,內圈的密度大,每圈可存儲的數據量是一樣的。新的硬碟數據的密度都一致,這樣磁軌的周長越長,扇區就越多,存儲的數據量就越大。

    尋道時間:磁頭從開始移動到數據所在磁軌所需要的時間,尋道時間越短,I/O操作越快,目前磁碟的平均尋道時間一般在3-15ms,一般都在10ms左右。
    旋轉延遲:碟片旋轉將請求數據所在扇區移至讀寫磁頭下方所需要的時間,旋轉延遲取決於磁碟轉速。普通硬碟一般都是7200rpm,慢的5400rpm。
    數據傳輸時間:完成傳輸所請求的數據所需要的時間。
    小結一下:從上面的指標來看、其實最重要的、或者說、我們最關心的應該只有兩個:尋道時間;旋轉延遲。
    讀寫一次磁碟信息所需的時間可分解為:尋道時間、延遲時間、傳輸時間。為提高磁碟傳輸效率,軟體應著重考慮減少尋道時間和延遲時間。

    雖然知道了機械硬碟的大致組成結構,但是要回答下面幾個問題,還是比較難的,需要進行更深入的研究:

    ㈦ 電腦硬碟有哪些組成部分

    1.盤體

    盤體從物理的角度分為磁面(Side)、磁軌(Track)、柱面(Cylinder)與扇區(Sector)等4個結構。磁面也就是組成盤體各碟片的上下兩畢虧個盤面,第一個碟片的第一面為0磁面,下一個為1磁面;第二個碟片的第一面為2磁面,以此類推??。磁軌也就是在格式化磁碟時碟片上被劃分出來的許多同心圓。最外層的磁軌為0道,並向著磁面中心增長。事實上,硬碟的盤體結構與大家熟悉的軟盤非常類似。只不過其碟片是由多個重疊在一起並由墊圈隔開的碟片組成,而且碟片採用金屬圓片(IBM曾經採用玻璃作為材料),表面極為平整光滑,並塗有磁性物質。

    2.讀寫磁頭組件

    讀寫磁頭組件由讀寫磁頭、傳動手臂、傳動軸三部分組成。在具體工作時,磁頭通過傳動手臂和傳動軸以固定半徑掃描碟片,以此來讀寫數據。磁頭是集成工藝製成的多個磁頭的組合,採用非接觸式結構。硬碟加電後,讀寫磁頭在高速旋轉的磁碟表面飛行,飛高間隙只有0.1~0.3μm,可以獲得極高的數據傳輸率。新型MR(Magnetoresistive heads) 磁阻磁頭採用讀寫分離的磁頭結構,寫操作時使用傳統的磁感應磁頭,讀操作則採用MR磁頭。

    3.磁頭驅動機構

    對於硬碟而言,磁頭驅動機構就好比是一個指揮官,它控制磁頭的讀寫,直接為傳動手臂與傳動軸傳送指令。磁頭驅動機構主要由音圈電機、磁頭驅動小車和防震動機構組成。磁頭驅動機構對磁頭進行正確的驅動,在很短的時間內精確定位到系統指令指定的磁軌上,保證數據讀寫的可靠性。一般而言,磁頭機構的電機有步進電機、力塌稿矩電機和音圈電機三種,現在硬碟多採用音圈電機驅動。音圈是中間插有與磁頭相連的磁棒的的線圈,當電流通過線圈時,磁棒就會發生位移,進而驅動裝載磁頭的小車,並根據控制器在盤面上磁頭位置的信息編碼來得到磁頭移動的距離,達到准確定位的目的。

    4.主軸組件

    硬碟的主軸組件主要是軸承和馬達,可以籠統地認為軸承決定一款硬碟的噪音表現,而馬達決定性能。當然,這樣說並不完全,但是基本上表達了這兩項內容在硬碟中的重要地位。從滾珠軸承到油浸軸承再到液態軸承,硬碟軸承處於不斷的改良當中,目前液態軸承已經成為絕對的主流市場。由團數孝於採用液體作為軸承,所以金屬之間不直接摩擦,這樣一來除了延長了主軸點解的壽命、減少發熱之外,最重要一點是實現了硬碟雜訊控制的突破。不過需要指出的是,採用液態軸承對於性能並沒有任何好處,甚至反而會延長尋道時間。對於PC設備而言,似乎噪音與性能是一對永遠難以平衡的矛盾。