當前位置:首頁 » 硬碟大全 » 緩存讀取寫入機制
擴展閱讀
webinf下怎麼引入js 2023-08-31 21:54:13
堡壘機怎麼打開web 2023-08-31 21:54:11

緩存讀取寫入機制

發布時間: 2022-04-13 20:34:28

① 什麼叫緩存

所謂的緩存,就是將程序或系統經常要調用的對象存在內存中,一遍其使用時可以快速調用,不必再去創建新的重復的實例。這樣做可以減少系統開銷,提高系統效率。

1、通過文件緩存;顧名思義文件緩存是指把數據存儲在磁碟上,不管你是以XML格式,序列化文件DAT格式還是其它文件格式;

2、內存緩存;也就是創建一個靜態內存區域,將數據存儲進去,例如我們B/S架構的將數據存儲在Application中或者存儲在一個靜態Map中。

3、本地內存緩存;就是把數據緩存在本機的內存中。

4、分布式緩存機制;可能存在跨進程,跨域訪問緩存數據

對於分布式的緩存,此時因為緩存的數據是放在緩存伺服器中的,或者說,此時應用程序需要跨進程的去訪問分布式緩存伺服器。

(1)緩存讀取寫入機制擴展閱讀

當我們在應用中使用跨進程的緩存機制,例如分布式緩存memcached或者微軟的AppFabric,此時數據被緩存在應用程序之外的進程中。

每次,當我們要把一些數據緩存起來的時候,緩存的API就會把數據首先序列化為位元組的形式,然後把這些位元組發送給緩存伺服器去保存。

同理,當我們在應用中要再次使用緩存的數據的時候,緩存伺服器就會將緩存的位元組發送給應用程序,而緩存的客戶端類庫接受到這些位元組之後就要進行反序列化的操作了,將之轉換為我們需要的數據對象。

② Cache的的工作原理是什麼

CACHE 快取

CACHE是一種加速內存或磁碟存取的裝置,可將慢速磁碟上的數據拷貝至快速的磁碟進行讀寫動作,以提升系統響應的速度。

其運作原理在於使用較快速的儲存裝置保留一份從慢速儲存裝置中所讀取數據且進行拷貝,當有需要再從較慢的儲存體中讀寫數據時,CACHE能夠使得讀寫的動作先在快速的裝置上完成,如此會使系統的響應較為快速。

舉例來說,存取內存 (RAM) 的速度較磁碟驅動器快非常多,所以我們可以將一部份的主存儲器保留當成磁碟CACHE,每當有磁碟讀取的需求時就把剛讀取的數據拷貝一份放在CACHE內存中,如果系統繼續要求讀取或寫入同一份數據或同一扇區 (sector) 時,系統可以直接從內存中的CACHE部分作讀寫的動作,這樣系統對磁碟的存取速度感覺上會快許多。

同樣的,靜態內存 (SRAM) 比動態內存 (DRAM) 的讀寫速度快,使用些靜態內存作為動態內存的CACHE,也可以提升讀寫的效率。

內存不全部使用SRAM取代DRAM 的原因,是因為SRAM的成本較DRAM高出許多。

使用CACHE的問題是寫入CACHE中的數據如果不立即寫回真正的儲存體,一但電源中斷或其它意外會導致數據流失;但若因而每次都將數據寫寫回真正的儲存體,又將會使得CACHE只能發揮加速讀取的功能,而不能加速寫入的速度,這樣的狀況使得CACHE寫入的方式分為兩類:

1. Write-Through: 每次遇到寫入時就將數據寫入真正的儲存體。

2. Write-Back: 遇到寫入時不一定回寫,只紀錄在CACHE內,並將該份數據標示為已更改(dirty),等系統有空或等到一定的時間後再將數據寫回真正的儲存體,這種做法是承擔一點風險來換取效率。

由於很多時候系統不只有重復讀寫同一塊區域,使用兩組各自獨立的CACHE效能通常比只使用一組較佳,這稱為 2-Ways Associate,同樣的,使用四組CACHE則稱為4ways Associate,但更多組的CACHE會使得演算法相對的復雜許多。

CACHE的效能依演算法的使用而有好壞之分,估量的單位通常使用命中率 (hits),命中率較高者較佳。

新式的CPU上也有內建的CACHE,稱為 LEVEL 1 (L1) 快取, 由於與 CPU 同頻率運作,能比在主機板上的 LEVEL 2 (L2) CACHE提供更快速的存取效能。

③ CPU緩存的工作原理

CPU要讀取一個數據時,首先從Cache中查找,如果找到就立即讀取並送給CPU處理;如果沒有找到,就用相對慢的速度從內存中讀取並送給CPU處理,同時把這個數據所在的數據塊調入Cache中,可以使得以後對整塊數據的讀取都從Cache中進行,不必再調用內存。
正是這樣的讀取機制使CPU讀取Cache的命中率非常高(大多數CPU可達90%左右),也就是說CPU下一次要讀取的數據90%都在Cache中,只有大約10%需要從內存讀取。這大大節省了CPU直接讀取內存的時間,也使CPU讀取數據時基本無需等待。總的來說,CPU讀取數據的順序是先Cache後內存。 前面是把Cache作為一個整體來考慮的,下面分類分析。Intel從Pentium開始將Cache分開,通常分為一級高速緩存L1和二級高速緩存L2。在以往的觀念中,L1 Cache是集成在CPU中的,被稱為片內Cache。在L1中還分數據Cache(D-Cache)和指令Cache(I-Cache)。它們分別用來存放數據和執行這些數據的指令,而且兩個Cache可以同時被CPU訪問,減少了爭用Cache所造成的沖突,提高了處理器效能。
在P4處理器中使用了一種先進的一級指令Cache——動態跟蹤緩存。它直接和執行單元及動態跟蹤引擎相連,通過動態跟蹤引擎可以很快地找到所執行的指令,並且將指令的順序存儲在追蹤緩存里,這樣就減少了主執行循環的解碼周期,提高了處理器的運算效率。
以前的L2 Cache沒集成在CPU中,而在主板上或與CPU集成在同一塊電路板上,因此也被稱為片外Cache。但從PⅢ開始,由於工藝的提高L2 Cache被集成在CPU內核中,以相同於主頻的速度工作,結束了L2 Cache與CPU大差距分頻的歷史,使L2 Cache與L1 Cache在性能上平等,得到更高的傳輸速度。L2Cache只存儲數據,因此不分數據Cache和指令Cache。在CPU核心不變化的情況下,增加L2 Cache的容量能使性能提升,同一核心的CPU高低端之分往往也是在L2 Cache上做手腳,可見L2 Cache的重要性。CPU的L1 Cache與L2 Cache惟一區別在於讀取順序。 CPU在Cache中找到有用的數據被稱為命中,當Cache中沒有CPU所需的數據時(這時稱為未命中),CPU才訪問內存。從理論上講,在一顆擁有2級Cache的CPU中,讀取L1 Cache的命中率為80%。也就是說CPU從L1 Cache中找到的有用數據占數據總量的80%,剩下的20%從L2 Cache讀取。在一些高端領域的CPU(像Intel的Itanium)中,我們常聽到L3 Cache,它是為讀取L2 Cache後未命中的數據設計的—種Cache。
為了保證CPU訪問時有較高的命中率Cache中的內容應該按一定的演算法替換,其計數器清零過程可以把一些頻繁調用後再不需要的數據淘汰出Cache,提高Cache的利用率。緩存技術的發展
總之,在傳輸速度有較大差異的設備間都可以利用Cache作為匹配來調節差距,或者說是這些設備的傳輸通道。在顯示系統、硬碟和光碟機,以及網路通訊中,都需要使用Cache技術。但Cache均由靜態RAM組成,結構復雜,成本不菲,使用現有工藝在有限的面積內不可能做得很大,不過,這也正是技術前進的源動力,有需要才有進步! 隨著CPU製造工藝的發展,二級緩存也能輕易的集成在CPU內核中,容量也在逐年提升。用集成在CPU內部與否來定義一、二級緩存,已不確切。而且隨著二級緩存被集成入CPU內核中,以往二級緩存與CPU大差距分頻的情況也被改變,此時其以相同於主頻的速度工作,可以為CPU提供更高的傳輸速度。同一核心的CPU高低端之分往往也是在二級緩存上有差異,由此可見二級緩存對於CPU的重要性。
CPU產品中,一級緩存的容量基本在4KB到64KB之間,二級緩存的容量則分為128KB、256KB、512KB、1MB、2MB等。一級緩存容量各產品之間相差不大,而二級緩存容量則是提高CPU性能的關鍵。二級緩存容量的提升是由CPU製造工藝所決定的,容量增大必然導致CPU內部晶體管數的增加,要在有限的CPU面積上集成更大的緩存,對製造工藝的要求也就越高。
雙核心CPU的二級緩存比較特殊,和以前的單核心CPU相比,最重要的就是兩個內核的緩存所保存的數據要保持一致,否則就會出現錯誤,為了解決這個問題不同的CPU使用了不同的辦法。

④ 計算機內存讀取寫入原理

當系統需要讀取主存時,則將地址信號放到地址匯流排上傳給主存,主存讀到地址信號後,解析信號並定位到指定存儲單元,然後將此存儲單元數據放到數據匯流排上,供其它部件讀取。

寫主存的過程類似,系統將要寫入單元地址和數據分別放在地址匯流排和數據匯流排上,主存讀取兩個匯流排的內容,做相應的寫操作。

這里可以看出,主存存取的時間僅與存取次數呈線性關系,因為不存在機械操作,兩次存取的數據的「距離」不會對時間有任何影響,例如,先取A0再取A1和先取A0再取D3的時間消耗是一樣的。

(4)緩存讀取寫入機制擴展閱讀

對於選擇內存來說,最重要的是穩定性和性能,而內存的做工水平直接會影響到性能、穩定以及超頻。

內存顆粒的好壞直接影響到內存的性能,可以說也是內存最重要的核心元件。所以大家在購買時,盡量選擇大廠生產出來的內存顆粒,一般常見的內存顆粒廠商有三星、現代、鎂光、南亞、茂矽等,它們都是經過完整的生產工序,因此在品質上都更有保障。

而採用這些頂級大廠內存顆粒的內存條品質性能,必然會比其他雜牌內存顆粒的產品要高出許多。

內存PCB電路板的作用是連接內存晶元引腳與主板信號線,因此其做工好壞直接關系著系統穩定性。

主流內存PCB電路板層數一般是6層,這類電路板具有良好的電氣性能,可以有效屏蔽信號干擾。而更優秀的高規格內存往往配備了8層PCB電路板,以起到更好的效能。

⑤ 硬碟的連續讀寫、隨機讀寫、緩存,在實際使用中,各體現在什麼方面

連續讀寫主要體現在復制大量文件或者說是復制少量但是容量比較大的文件的速度。
而隨機讀寫則主要體現在操作系統本身運行過程中(操作系統運行中有大量的隨機讀寫)
而緩存則是一種預讀機制,緩存越大,操作系統在調取一些使用頻率較高的文件時會預先載入到緩存中。

資料庫緩存機制是什麼緩存是如何作用資料庫

緩存的介質一般是內存,所以讀寫速度很快。但如果緩存中存放的數據量非常大時,也會用硬碟作為緩存介質。緩存的實現不僅僅要考慮存儲的介質,還要考慮到管理緩存的並發訪問和緩存數據的生命周期。

⑦ 緩存的工作原理

緩存的工作原理是當CPU要讀取一個數據時,首先從CPU緩存中查找,找到就立即讀取並送給CPU處理;沒有找到,就從速率相對較慢的內存中讀取並送給CPU處理,同時把這個數據所在的數據塊調入緩存中,可以使得以後對整塊數據的讀取都從緩存中進行,不必再調用內存。正是這樣的讀取機制使CPU讀取緩存的命中率非常高(大多數CPU可達90%左右),也就是說CPU下一次要讀取的數據90%都在CPU緩存中,只有大約10%需要從內存讀取。這大大節省了CPU直接讀取內存的時間,也使CPU讀取數據時基本無需等待。總的來說,CPU讀取數據的順序是先緩存後內存。
RAM(Random-Access Memory)和ROM(Read-Only Memory)相對的,RAM是掉電以後,其中的信息就消失那一種,ROM在掉電以後信息也不會消失那一種。RAM又分兩種,一種是靜態RAM,SRAM(Static RAM);一種是動態RAM,DRAM(Dynamic RAM)。前者的存儲速率要比後者快得多,使用的內存一般都是動態RAM。為了增加系統的速率,把緩存擴大就行了,擴的越大,緩存的數據越多,系統就越快了,緩存通常都是靜態RAM,速率是非常的快, 但是靜態RAM集成度低(存儲相同的數據,靜態RAM的體積是動態RAM的6倍), 價格高(同容量的靜態RAM是動態RAM的四倍), 由此可見,擴大靜態RAM作為緩存是一個非常愚蠢的行為, 但是為了提高系統的性能和速率,必須要擴大緩存, 這樣就有了一個折中的方法,不擴大原來的靜態RAM緩存,而是增加一些高速動態RAM做為緩存, 這些高速動態RAM速率要比常規動態RAM快,但比原來的靜態RAM緩存慢, 把原來的靜態RAM緩存叫一級緩存,而把後來增加的動態RAM叫二級緩存。

⑧ 緩存是什麼意思...

緩存是指可以進行高速數據交換的存儲器,它先於內存與CPU交換數據,因此速率很快。

緩存的工作原理是當CPU要讀取一個數據時,首先從CPU緩存中查找,找到就立即讀取並送給CPU處理;沒有找到,就從速率相對較慢的內存中讀取並送給CPU處理,同時把這個數據所在的數據塊調入緩存中,可以使得以後對整塊數據的讀取都從緩存中進行,不必再調用內存。

正是這樣的讀取機制使CPU讀取緩存的命中率非常高(大多數CPU可達90%左右),也就是說CPU下一次要讀取的數據90%都在CPU緩存中,只有大約10%需要從內存讀取。這大大節省了CPU直接讀取內存的時間,也使CPU讀取數據時基本無需等待。

主要意義

緩存工作的原則,就是「引用的局部性」,這可以分為時間局部性和空間局部性。空間局部性是指CPU在某一時刻需要某個數據,那麼很可能下一步就需要其附近的數據;時間局部性是指當某個數據被訪問過一次之後,過不了多久時間就會被再一次訪問。對於應用程序而言,不管是指令流還是數據流都會出現引用的局部性現象。

以上內容參考:網路-緩存