當前位置:首頁 » 編程語言 » sha256c語言
擴展閱讀
webinf下怎麼引入js 2023-08-31 21:54:13
堡壘機怎麼打開web 2023-08-31 21:54:11

sha256c語言

發布時間: 2022-02-01 22:02:03

Ⅰ 誰給個RSA和SHA1的c語言源代碼

轉自阿莫電子論壇

酷貼!3DES、AES、RC6、TEA、RSA、MD5、SHA1、SHA256加密源碼大聚齊

3樓提供的打包下載地址:

http://d1.amobbs.com/new2012/forum/201204/13/015602ieegsceensz7gn6a.rar/aes_rc6_rsa_tea_sha1_sha256_md5.rar

Ⅱ md5 是什麼文件用什麼文件打開

就是一種加密算發,用文本查看文件一般就可以打開。

md5的全稱是message-digest algorithm 5(信息-摘要演算法),在90年代初由mit laboratory for computer science和rsa data security inc的ronald l. rivest開發出來,經md2、md3和md4發展而來。

它的作用是讓大容量信息在用數字簽名軟體簽署私人密匙前被"壓縮"成一種保密的格式(就是把一個任意長度的位元組串變換成一定長的大整數)。

(2)sha256c語言擴展閱讀:

應用

用於密碼管理

當我們需要保存某些密碼信息以用於身份確認時,如果直接將密碼信息以明碼方式保存在資料庫中,不使用任何保密措施,系統管理員就很容易能得到原來的密碼信息,這些信息一旦泄露, 密碼也很容易被破譯。

電子簽名

MD5 演算法還可以作為一種電子簽名的方法來使用,使用 MD5演算法就可以為任何文件(不管其大小、格式、數量)產生一個獨一無二的「數字指紋」,藉助這個「數字指紋」,通過檢查文件前後 MD5 值是否發生了改變,就可以知道源文件是否被改動。

Ⅲ 如何安全的存儲用戶的密碼

保護密碼最好的的方式就是使用帶鹽的密碼hash(salted password hashing).對密碼進行hash操作是一件很簡單的事情,但是很多人都犯了錯。接下來我希望可以詳細的闡述如何恰當的對密碼進行hash,以及為什麼要這樣做。
重要提醒
如果你打算自己寫一段代碼來進行密碼hash,那麼趕緊停下吧。這樣太容易犯錯了。這個提醒適用於每一個人,不要自己寫密碼的hash演算法 !關於保存密碼的問題已經有了成熟的方案,那就是使用phpass或者本文提供的源碼。
什麼是hash
hash("hello") =
hash("hbllo") =
hash("waltz") =

Hash演算法是一種單向的函數。它可以把任意數量的數據轉換成固定長度的「指紋」,這個過程是不可逆的。而且只要輸入發生改變,哪怕只有一個bit,輸出的hash值也會有很大不同。這種特性恰好合適用來用來保存密碼。因為我們希望使用一種不可逆的演算法來加密保存的密碼,同時又需要在用戶登陸的時候驗證密碼是否正確。
在一個使用hash的賬號系統中,用戶注冊和認證的大致流程如下:
1, 用戶創建自己的賬號
2, 用戶密碼經過hash操作之後存儲在資料庫中。沒有任何明文的密碼存儲在伺服器的硬碟上。
3, 用戶登陸的時候,將用戶輸入的密碼進行hash操作後與資料庫里保存的密碼hash值進行對比。
4, 如果hash值完全一樣,則認為用戶輸入的密碼是正確的。否則就認為用戶輸入了無效的密碼。
5, 每次用戶嘗試登陸的時候就重復步驟3和步驟4。

在步驟4的時候不要告訴用戶是賬號還是密碼錯了。只需要顯示一個通用的提示,比如賬號或密碼不正確就可以了。這樣可以防止攻擊者枚舉有效的用戶名。
還需要注意的是用來保護密碼的hash函數跟數據結構課上見過的hash函數不完全一樣。比如實現hash表的hash函數設計的目的是快速,但是不夠安全。只有加密hash函數(cryptographic hash functions)可以用來進行密碼的hash。這樣的函數有SHA256, SHA512, RipeMD, WHIRLPOOL等。
一個常見的觀念就是密碼經過hash之後存儲就安全了。這顯然是不正確的。有很多方式可以快速的從hash恢復明文的密碼。還記得那些md5破解網站吧,只需要提交一個hash,不到一秒鍾就能知道結果。顯然,單純的對密碼進行hash還是遠遠達不到我們的安全需求。下一部分先討論一下破解密碼hash,獲取明文常見的手段。
如何破解hash
字典和暴力破解攻擊(Dictionary and Brute Force Attacks)
最常見的破解hash手段就是猜測密碼。然後對每一個可能的密碼進行hash,對比需要破解的hash和猜測的密碼hash值,如果兩個值一樣,那麼之前猜測的密碼就是正確的密碼明文。猜測密碼攻擊常用的方式就是字典攻擊和暴力攻擊。
Dictionary Attack

Trying apple : failed
Trying blueberry : failed
Trying justinbeiber : failed
...
Trying letmein : failed
Trying s3cr3t : success!

字典攻擊是將常用的密碼,單詞,短語和其他可能用來做密碼的字元串放到一個文件中,然後對文件中的每一個詞進行hash,將這些hash與需要破解的密碼hash比較。這種方式的成功率取決於密碼字典的大小以及字典的是否合適。
Brute Force Attack

Trying aaaa : failed
Trying aaab : failed
Trying aaac : failed
...
Trying acdb : failed
Trying acdc : success!

暴力攻擊就是對於給定的密碼長度,嘗試每一種可能的字元組合。這種方式需要花費大量的計算機時間。但是理論上只要時間足夠,最後密碼一定能夠破解出來。只是如果密碼太長,破解花費的時間就會大到無法承受。
目前沒有方式可以阻止字典攻擊和暴力攻擊。只能想辦法讓它們變的低效。如果你的密碼hash系統設計的是安全的,那麼破解hash唯一的方式就是進行字典或者暴力攻擊了。
查表破解(Lookup Tables)
對於特定的hash類型,如果需要破解大量hash的話,查表是一種非常有效而且快速的方式。它的理念就是預先計算(pre-compute)出密碼字典中每一個密碼的hash。然後把hash和對應的密碼保存在一個表裡。一個設計良好的查詢表結構,即使存儲了數十億個hash,每秒鍾仍然可以查詢成百上千個hash。
如果你想感受下查表破解hash的話可以嘗試一下在CraskStation上破解下下面的sha256 hash。

反向查表破解(Reverse Lookup Tables)
Searching for hash(apple) in users' hash list... : Matches [alice3, 0bob0, charles8]
Searching for hash(blueberry) in users' hash list... : Matches [usr10101, timmy, john91]
Searching for hash(letmein) in users' hash list... : Matches [wilson10, dragonslayerX, joe1984]
Searching for hash(s3cr3t) in users' hash list... : Matches [bruce19, knuth1337, john87]
Searching for hash(z@29hjja) in users' hash list... : No users used this password

這種方式可以讓攻擊者不預先計算一個查詢表的情況下同時對大量hash進行字典和暴力破解攻擊。
首先,攻擊者會根據獲取到的資料庫數據製作一個用戶名和對應的hash表。然後將常見的字典密碼進行hash之後,跟這個表的hash進行對比,就可以知道用哪些用戶使用了這個密碼。這種攻擊方式很有效果,因為通常情況下很多用戶都會有使用相同的密碼。
彩虹表 (Rainbow Tables)
彩虹表是一種使用空間換取時間的技術。跟查表破解很相似。只是它犧牲了一些破解時間來達到更小的存儲空間的目的。因為彩虹表使用的存儲空間更小,所以單位空間就可以存儲更多的hash。彩虹表已經能夠破解8位長度的任意md5hash。彩虹表具體的原理可以參考http://www.project-rainbowcrack.com/
下一章節我們會討論一種叫做「鹽」(salting)的技術。通過這種技術可以讓查表和彩虹表的方式無法破解hash。
加鹽(Adding Salt)
hash("hello") =
hash("hello" + "QxLUF1bgIAdeQX") =
hash("hello" + "bv5PehSMfV11Cd") =
hash("hello" + "YYLmfY6IehjZMQ") =

查表和彩虹表的方式之所以有效是因為每一個密碼的都是通過同樣的方式來進行hash的。如果兩個用戶使用了同樣的密碼,那麼一定他們的密碼hash也一定相同。我們可以通過讓每一個hash隨機化,同一個密碼hash兩次,得到的不同的hash來避免這種攻擊。
具體的操作就是給密碼加一個隨即的前綴或者後綴,然後再進行hash。這個隨即的後綴或者前綴成為「鹽」。正如上面給出的例子一樣,通過加鹽,相同的密碼每次hash都是完全不一樣的字元串了。檢查用戶輸入的密碼是否正確的時候,我們也還需要這個鹽,所以鹽一般都是跟hash一起保存在資料庫里,或者作為hash字元串的一部分。
鹽不需要保密,只要鹽是隨機的話,查表,彩虹表都會失效。因為攻擊者無法事先知道鹽是什麼,也就沒有辦法預先計算出查詢表和彩虹表。如果每個用戶都是使用了不同的鹽,那麼反向查表攻擊也沒法成功。
下一節,我們會介紹一些鹽的常見的錯誤實現。
錯誤的方式:短的鹽和鹽的復用
最常見的錯誤實現就是一個鹽在多個hash中使用或者使用的鹽很短。
鹽的復用(Salt Reuse)
不管是將鹽硬編碼在程序里還是隨機一次生成的,在每一個密碼hash里使用相同的鹽會使這種防禦方法失效。因為相同的密碼hash兩次得到的結果還是相同的。攻擊者就可以使用反向查表的方式進行字典和暴力攻擊。只要在對字典中每一個密碼進行hash之前加上這個固定的鹽就可以了。如果是流行的程序的使用了硬編碼的鹽,那麼也可能出現針對這種程序的這個鹽的查詢表和彩虹表,從而實現快速破解hash。
用戶每次創建或者修改密碼一定要使用一個新的隨機的鹽
短的鹽
如果鹽的位數太短的話,攻擊者也可以預先製作針對所有可能的鹽的查詢表。比如,3位ASCII字元的鹽,一共有95x95x95 = 857,375種可能性。看起來好像很多。假如每一個鹽製作一個1MB的包含常見密碼的查詢表,857,375個鹽才是837GB。現在買個1TB的硬碟都只要幾百塊而已。
基於同樣的理由,千萬不要用用戶名做為鹽。雖然對於每一個用戶來說用戶名可能是不同的,但是用戶名是可預測的,並不是完全隨機的。攻擊者完全可以用常見的用戶名作為鹽來製作查詢表和彩虹表破解hash。
根據一些經驗得出來的規則就是鹽的大小要跟hash函數的輸出一致。比如,SHA256的輸出是256bits(32bytes),鹽的長度也應該是32個位元組的隨機數據。
錯誤的方式:雙重hash和古怪的hash函數
這一節討論另外一個常見的hash密碼的誤解:古怪的hash演算法組合。人們可能解決的將不同的hash函數組合在一起用可以讓數據更安全。但實際上,這種方式帶來的效果很微小。反而可能帶來一些互通性的問題,甚至有時候會讓hash更加的不安全。本文一開始就提到過,永遠不要嘗試自己寫hash演算法,要使用專家們設計的標准演算法。有些人會覺得通過使用多個hash函數可以降低計算hash的速度,從而增加破解的難度。通過減慢hash計算速度來防禦攻擊有更好的方法,這個下文會詳細介紹。
下面是一些網上找到的古怪的hash函數組合的樣例。
md5(sha1(password))
md5(md5(salt) + md5(password))
sha1(sha1(password))
sha1(str_rot13(password + salt))
md5(sha1(md5(md5(password) + sha1(password)) + md5(password)))

不要使用他們!
注意:這部分的內容其實是存在爭議的!我收到過大量郵件說組合hash函數是有意義的。因為如果攻擊者不知道我們用了哪個函數,就不可能事先計算出彩虹表,並且組合hash函數需要更多的計算時間。
攻擊者如果不知道hash演算法的話自然是無法破解hash的。但是考慮到Kerckhoffs』s principle,攻擊者通常都是能夠接觸到源碼的(尤其是免費軟體和開源軟體)。通過一些目標系統的密碼–hash對應關系來逆向出演算法也不是非常困難。
如果你想使用一個標準的」古怪」的hash函數,比如HMAC,是可以的。但是如果你的目的是想減慢hash的計算速度,那麼可以讀一下後面討論的慢速hash函數部分。基於上面討論的因素,最好的做法是使用標準的經過嚴格測試的hash演算法。
hash碰撞(Hash Collisions)
因為hash函數是將任意數量的數據映射成一個固定長度的字元串,所以一定存在不同的輸入經過hash之後變成相同的字元串的情況。加密hash函數(Cryptographic hash function)在設計的時候希望使這種碰撞攻擊實現起來成本難以置信的高。但時不時的就有密碼學家發現快速實現hash碰撞的方法。最近的一個例子就是MD5,它的碰撞攻擊已經實現了。
碰撞攻擊是找到另外一個跟原密碼不一樣,但是具有相同hash的字元串。但是,即使在相對弱的hash演算法,比如MD5,要實現碰撞攻擊也需要大量的算力(computing power),所以在實際使用中偶然出現hash碰撞的情況幾乎不太可能。一個使用加鹽MD5的密碼hash在實際使用中跟使用其他演算法比如SHA256一樣安全。不過如果可以的話,使用更安全的hash函數,比如SHA256, SHA512, RipeMD, WHIRLPOOL等是更好的選擇。
正確的方式:如何恰當的進行hash
這部分會詳細討論如何恰當的進行密碼hash。第一個章節是最基礎的,這章節的內容是必須的。後面一個章節是闡述如何繼續增強安全性,讓hash破解變得異常困難。
基礎:使用加鹽hash
我們已經知道惡意黑客可以通過查表和彩虹表的方式快速的獲得hash對應的明文密碼,我們也知道了通過使用隨機的鹽可以解決這個問題。但是我們怎麼生成鹽,怎麼在hash的過程中使用鹽呢?
鹽要使用密碼學上可靠安全的偽隨機數生成器(Cryptographically Secure Pseudo-Random Number Generator (CSPRNG))來產生。CSPRNG跟普通的偽隨機數生成器比如C語言中的rand(),有很大不同。正如它的名字說明的那樣,CSPRNG提供一個高標準的隨機數,是完全無法預測的。我們不希望我們的鹽能夠被預測到,所以一定要使用CSPRNG。

Ⅳ C語言,三級上機,關於輸出亂碼

讀取過來的是字元而不是數字
比較時得加單引號

char是正負127吧?mod 256,就錯了

Ⅳ 隨機數演算法是什麼

在計算機中並沒有一個真正的隨機數發生器,但是可以做到使產生的數字重復率很低,這樣看起來好象是真正的隨機數,實現這一功能的程序叫偽隨機數發生器。有關如何產生隨機數的理論有許多如果要詳細地討論,需要厚厚的一本書的篇幅。不管用什麼方法實現隨機數發生器,都必須給它提供一個名為「種子」的初始值。而且這個值最好是隨機的,或者至少這個值是偽隨機的。「種子」的值通常是用快速計數寄存器或移位寄存器來生成的。下面講一講在C語言里所提供的隨機數發生器的用法。現在的C編譯器都提供了一個基於ANSI標準的偽隨機數發生器函數,用來生成隨機數。它們就是rand()和srand()函數。這二個函數的工作過程如下:」)首先給srand()提供一個種子,它是一個unsignedint類型,其取值范圍從0~65535;2)然後調用rand(),它會根據提供給srand()的種子值返回一個隨機數(在0到32767之間)3)根據需要多次調用rand(),從而不間斷地得到新的隨機數;4)無論什麼時候,都可以給srand()提供一個新的種子,從而進一步「隨機化」rand()的輸出結果。這個過程看起來很簡單,問題是如果你每次調用srand()時都提供相同的種子值,那麼,你將會得到相同的隨機數序列,這時看到的現象是沒有隨機數,而每一次的數都是一樣的了。例如,在以17為種子值調用srand()之後,在首次調用rand()時,得到隨機數94。在第二次和第三次調用rand()時將分別得到26602和30017,這些數看上去是很隨機的(盡管這只是一個很小的數據點集合),但是,在你再次以17為種子值調用srand()後,在對於rand()的前三次調用中,所得的返回值仍然是在對94,26602,30017,並且此後得到的返回值仍然是在對rand()的第一批調用中所得到的其餘的返回值。因此只有再次給srand()提供一個隨機的種子值,才能再次得到一個隨機數。下面的例子用一種簡單而有效的方法來產生一個相當隨機的「種子」值----當天的時間值:g#椋睿悖歟醯洌澹Γ歟簦唬螅簦洌椋錚瑁Γ紓簦弧。#椋睿悖歟醯洌澹Γ歟簦唬螅簦洌歟椋猓瑁Γ紓簦弧。#椋睿悖歟醯洌澹Γ歟簦唬螅螅Γ#矗罰唬簦穡澹螅瑁Γ紓簦弧。#椋睿悖歟醯洌澹Γ歟簦唬螅螅Γ#矗罰唬簦椋恚澹猓瑁Γ紓簦弧。觶錚椋洹。恚幔椋睿ǎ觶錚椋洌。。椋睿簟。椋弧。醯睿螅椋紓睿澹洹。椋睿簟。螅澹澹洌鄭幔歟弧。螅簦潁醯悖簟。簦椋恚澹狻。簦椋恚澹攏醯媯弧。媯簦椋恚澹ǎΓ幔恚穡唬簦椋恚澹攏醯媯弧。螅澹澹洌鄭幔歟劍ǎǎǎǎ醯睿螅椋紓睿澹洹。椋睿簦簦椋恚澹攏醯媯簦椋恚澹Γ幔恚穡唬埃疲疲疲疲。ǎ醯睿螅椋紓睿澹洹。椋睿簦簦椋恚澹攏醯媯恚椋歟歟椋簦恚蕖。ǎ醯睿螅椋紓睿澹洹。椋睿簦簦椋恚澹攏醯媯恚椋歟歟椋簦恚弧。螅潁幔睿洌ǎǎ醯睿螅椋紓睿澹洹。椋睿簦螅澹澹洌鄭幔歟弧。媯錚潁ǎ椋劍埃唬椋Γ歟簦唬保埃唬椋。穡潁椋睿簦媯ǎΓ瘢醯錚簦唬ィ叮洌Γ#梗玻唬睿Γ瘢醯錚簦籦egjrand());}上面的程序先是調用_ftime()來檢查當前時間yc並把它的值存入結構成員timeBuf.time中wae當前時間的值從1970年1月1日開始以秒計算aeh在調用了_ftime()之後在結構timeBuf的成員millitm中還存入了當前那一秒已經度過的毫秒數,但在DOS中這個數字實際上是以百分之一秒來計算的。然後,把毫秒數和秒數相加,再和毫秒數進行異或運算。當然也可以對這兩個結構成員進行更多的計算,以控制se......餘下全文>>

Ⅵ OpenSSL 是什麼意思,做什麼用的

分都沒有,真郁悶

openssl OpenSSL簡介
SSL是Secure Socket Layer(安全套接層協議)的縮寫,可以在Internet上提供秘密性傳輸。Netscape公司在推出第一個Web瀏覽器的同時,提出了SSL協議標准,目前已有3.0版本。SSL採用公開密鑰技術。其目標是保證兩個應用間通信的保密性和可靠性,可在伺服器端和用戶端同時實現支持。目前,利用公開密鑰技術的SSL協議,已成為Internet上保密通訊的工業標准。安全套接層協議能使用戶/伺服器應用之間的通信不被攻擊者竊聽,並且始終對伺服器進行認證,還可選擇對用戶進行認證。SSL協議要求建立在可靠的傳輸層協議(TCP)之上。SSL協議的優勢在於它是與應用層協議獨立無關的,高層的應用層協議(例如:HTTP,FTP,TELNET等)能透明地建立於SSL協議之上。SSL協議在應用層協議通信之前就已經完成加密演算法、通信密鑰的協商及伺服器認證工作。在此之後應用層協議所傳送的數據都會被加密,從而保證通信的私密性。通過以上敘述,SSL協議提供的安全信道有以下三個特性: 1.數據的保密性 信息加密就是把明碼的輸入文件用加密演算法轉換成加密的文件以實現數據的保密。加密的過程需要用到密匙來加密數據然後再解密。沒有了密鑰,就無法解開加密的數據。數據加密之後,只有密匙要用一個安全的方法傳送。加密過的數據可以公開地傳送。 2.數據的一致性 加密也能保證數據的一致性。例如:消息驗證碼(MAC),能夠校驗用戶提供的加密信息,接收者可以用MAC來校驗加密數據,保證數據在傳輸過程中沒有被篡改過。 3.安全驗證 加密的另外一個用途是用來作為個人的標識,用戶的密匙可以作為他的安全驗證的標識。SSL是利用公開密鑰的加密技術(RSA)來作為用戶端與伺服器端在傳送機密資料時的加密通訊協定。
什麼是OpenSSL
眾多的密碼演算法、公鑰基礎設施標准以及SSL協議,或許這些有趣的功能會讓你產生實現所有這些演算法和標準的想法。果真如此,在對你表示敬佩的同時,還是忍不住提醒你:這是一個令人望而生畏的過程。這個工作不再是簡單的讀懂幾本密碼學專著和協議文檔那麼簡單,而是要理解所有這些演算法、標准和協議文檔的每一個細節,並用你可能很熟悉的C語言字元一個一個去實現這些定義和過程。我們不知道你將需要多少時間來完成這項有趣而可怕的工作,但肯定不是一年兩年的問題。
首先,應該感謝Eric A. Young和Tim J. Hudson,他們自1995年開始編寫後來具有巨大影響的OpenSSL軟體包,更令我們高興的是,這是一個沒有太多限制的開放源代碼的軟體包,這使得我們可以利用這個軟體包做很多事情。Eric A. Young 和Tim J. Hudson是加拿大人,後來由於寫OpenSSL功成名就之後就到大公司里賺大錢去了。1998年,OpenSSL項目組接管了OpenSSL的開發工作,並推出了OpenSSL的0.9.1版,到目前為止,OpenSSL的演算法已經非常完善,對SSL2.0、SSL3.0以及TLS1.0都支持。
OpenSSL採用C語言作為開發語言,這使得OpenSSL具有優秀的跨平台性能,這對於廣大技術人員來說是一件非常美妙的事情,可以在不同的平台使用同樣熟悉的東西。OpenSSL支持Linux、Windows、BSD、Mac、VMS等平台,這使得OpenSSL具有廣泛的適用性。不過,對於目前新成長起來的C++程序員,可能對於C語言的代碼不是很習慣,但習慣C語言總比使用C++重新寫一個跟OpenSSL相同功能的軟體包輕松不少。
OpenSSL整個軟體包大概可以分成三個主要的功能部分:密碼演算法庫、SSL協議庫以及應用程序。OpenSSL的目錄結構自然也是圍繞這三個功能部分進行規劃的。
作為一個基於密碼學的安全開發包,OpenSSL提供的功能相當強大和全面,囊括了主要的密碼演算法、常用的密鑰和證書封裝管理功能以及SSL協議,並提供了豐富的應用程序供測試或其它目的使用。
1.對稱加密演算法
OpenSSL一共提供了8種對稱加密演算法,其中7種是分組加密演算法,僅有的一種流加密演算法是RC4。這7種分組加密演算法分別是AES、DES、Blowfish、CAST、IDEA、RC2、RC5,都支持電子密碼本模式(ECB)、加密分組鏈接模式(CBC)、加密反饋模式(CFB)和輸出反饋模式(OFB)四種常用的分組密碼加密模式。其中,AES使用的加密反饋模式(CFB)和輸出反饋模式(OFB)分組長度是128位,其它演算法使用的則是64位。事實上,DES演算法裡面不僅僅是常用的DES演算法,還支持三個密鑰和兩個密鑰3DES演算法。
2.非對稱加密演算法
OpenSSL一共實現了4種非對稱加密演算法,包括DH演算法、RSA演算法、DSA演算法和橢圓曲線演算法(EC)。DH演算法一般用戶密鑰交換。RSA演算法既可以用於密鑰交換,也可以用於數字簽名,當然,如果你能夠忍受其緩慢的速度,那麼也可以用於數據加密。DSA演算法則一般只用於數字簽名。
3.信息摘要演算法
OpenSSL實現了5種信息摘要演算法,分別是MD2、MD5、MDC2、SHA(SHA1)和RIPEMD。SHA演算法事實上包括了SHA和SHA1兩種信息摘要演算法,此外,OpenSSL還實現了DSS標准中規定的兩種信息摘要演算法DSS和DSS1。
4.密鑰和證書管理
密鑰和證書管理是PKI的一個重要組成部分,OpenSSL為之提供了豐富的功能,支持多種標准。
首先,OpenSSL實現了ASN.1的證書和密鑰相關標准,提供了對證書、公鑰、私鑰、證書請求以及CRL等數據對象的DER、PEM和BASE64的編解碼功能。OpenSSL提供了產生各種公開密鑰對和對稱密鑰的方法、函數和應用程序,同時提供了對公鑰和私鑰的DER編解碼功能。並實現了私鑰的PKCS#12和PKCS#8的編解碼功能。OpenSSL在標准中提供了對私鑰的加密保護功能,使得密鑰可以安全地進行存儲和分發。
在此基礎上,OpenSSL實現了對證書的X.509標准編解碼、PKCS#12格式的編解碼以及PKCS#7的編解碼功能。並提供了一種文本資料庫,支持證書的管理功能,包括證書密鑰產生、請求產生、證書簽發、吊銷和驗證等功能。
事實上,OpenSSL提供的CA應用程序就是一個小型的證書管理中心(CA),實現了證書簽發的整個流程和證書管理的大部分機制。
5.SSL和TLS協議
OpenSSL實現了SSL協議的SSLv2和SSLv3,支持了其中絕大部分演算法協議。OpenSSL也實現了TLSv1.0,TLS是SSLv3的標准化版,雖然區別不大,但畢竟有很多細節不盡相同。
雖然已經有眾多的軟體實現了OpenSSL的功能,但是OpenSSL裡面實現的SSL協議能夠讓我們對SSL協議有一個更加清楚的認識,因為至少存在兩點:一是OpenSSL實現的SSL協議是開放源代碼的,我們可以追究SSL協議實現的每一個細節;二是OpenSSL實現的SSL協議是純粹的SSL協議,沒有跟其它協議(如HTTP)協議結合在一起,澄清了SSL協議的本來面目。
6.應用程序
OpenSSL的應用程序已經成為了OpenSSL重要的一個組成部分,其重要性恐怕是OpenSSL的開發者開始沒有想到的。現在OpenSSL的應用中,很多都是基於OpenSSL的應用程序而不是其API的,如OpenCA,就是完全使用OpenSSL的應用程序實現的。OpenSSL的應用程序是基於OpenSSL的密碼演算法庫和SSL協議庫寫成的,所以也是一些非常好的OpenSSL的API使用範例,讀懂所有這些範例,你對OpenSSL的API使用了解就比較全面了,當然,這也是一項鍛煉你的意志力的工作。
OpenSSL的應用程序提供了相對全面的功能,在相當多的人看來,OpenSSL已經為自己做好了一切,不需要再做更多的開發工作了,所以,他們也把這些應用程序成為OpenSSL的指令。OpenSSL的應用程序主要包括密鑰生成、證書管理、格式轉換、數據加密和簽名、SSL測試以及其它輔助配置功能。
7.Engine機制 Engine機制的出現是在OpenSSL的0.9.6版的事情,開始的時候是將普通版本跟支持Engine的版本分開的,到了OpenSSL的0.9.7版,Engine機制集成到了OpenSSL的內核中,成為了OpenSSL不可缺少的一部分。 Engine機制目的是為了使OpenSSL能夠透明地使用第三方提供的軟體加密庫或者硬體加密設備進行加密。OpenSSL的Engine機製成功地達到了這個目的,這使得OpenSSL已經不僅僅使一個加密庫,而是提供了一個通用地加密介面,能夠與絕大部分加密庫或者加密設備協調工作。當然,要使特定加密庫或加密設備更OpenSSL協調工作,需要寫少量的介面代碼,但是這樣的工作量並不大,雖然還是需要一點密碼學的知識。Engine機制的功能跟Windows提供的CSP功能目標是基本相同的。目前,OpenSSL的0.9.7版本支持的內嵌第三方加密設備有8種,包括:CryptoSwift、nCipher、Atalla、Nuron、UBSEC、Aep、SureWare以及IBM 4758 CCA的硬體加密設備。現在還出現了支持PKCS#11介面的Engine介面,支持微軟CryptoAPI的介面也有人進行開發。當然,所有上述Engine介面支持不一定很全面,比如,可能支持其中一兩種公開密鑰演算法。
8.輔助功能
BIO機制是OpenSSL提供的一種高層IO介面,該介面封裝了幾乎所有類型的IO介面,如內存訪問、文件訪問以及Socket等。這使得代碼的重用性大幅度提高,OpenSSL提供API的復雜性也降低了很多。
OpenSSL對於隨機數的生成和管理也提供了一整套的解決方法和支持API函數。隨機數的好壞是決定一個密鑰是否安全的重要前提。
OpenSSL還提供了其它的一些輔助功能,如從口令生成密鑰的API,證書簽發和管理中的配置文件機制等等。如果你有足夠的耐心,將會在深入使用OpenSSL的過程慢慢發現很多這樣的小功能,讓你不斷有新的驚喜。

Ⅶ 大家好,我是個Unix新手,今天開發摸索著安裝freebsd8.2碰到一個問題難以解決,麻煩大家幫忙看以下,謝謝

統(OS),所以要學UNIX就從裝FreeBSD開始,不過不是從XP下裝的。

無論是BSD,還是Linux都是UNIX的一個版本(或者是簡化),Linux應該是衍化產品,BSD是一個不太開源的Linux。

是否何時要看你學習的目標,如果是安全,那就針對性地學UNIX。主要也是C語言、SHELL的學習。

任何一個版本都能讓你學到與XP(windows)系統不同的東西。

Ⅷ What is the output of "date -u +%W$(uname)|sha256sum|sed 's/\W//g'"求高手解答,在此感謝!

就是要去看書的呀

Ⅸ 如何在 CentOS 7 上安裝 Docker

在編譯docker代碼之前肯定需要研究一下docker的代碼結構以及官方推薦的方式,因為docker是開源的,所以很多第三方開發者參與。那麼官方肯定會給出開發環境搭建的文檔,所以拿到代碼肯定先研究官方的編譯方法。通過文檔和代碼了解到docker官方推薦的是在docker本身的容器裡面搭建環境和編譯,官方給出的是一個基於ubuntu的dockerfile。不過正是這個dockerfile可以清楚的知道需要為了編譯准備哪些依賴環境,為我們後面自己編譯提供了環境搭建的基礎。然後就嘗試了官方的編譯方案,結果各種網路問題導致編譯通不過,當然網上也有相應的解決方案,基本上就是替換一些依賴源(國外的被牆了)。但是就算編譯通過了也只是一個基於ubuntu的二進制文件,只能在ubuntu的相應的系統上運行。我們需要的是一個可以在centos7上運行的二進制文件,關鍵要搭建一個可以持續開發和編譯測試的環境。當然也可以製作一個centos7的dockerfile文件,對照著官方的ubuntu的dockerfile也很簡單。但是這些都是還需要有一個前提,就是需要先安裝一個以前版本的docker來啟動這個環境澀,好處也是杠杠的,可以在任何一台能夠運行docker的系統上進行開發和測試,而且可以進行持續集成。不過對於我們來說能夠編譯出一個穩定運行在centos7上的二進制文件即可,所以就嘗試直接在本地進行編譯,而不是通過docker的容器進行。
經過研究docker的官方編譯腳步,發現本地編譯也很簡單,只需要在docker源碼的目錄下執行如下命令即可:

./hack/make.sh binary

上面這條命令就只會生成docker的二進制文件,不過肯定不會這么順利的,執行這個命令你就會發現錯誤。如果第一次執行報的錯誤應該是找不到相應的go依賴包。那麼現在就開始解決第一個問題,go依賴包。
解決go依賴包最直接的方法就一個一個去github或者其他地方去下載到本地,但是這樣做很麻煩,docker依賴的go語言包很多,然後依賴包可能又依賴其他包。這里有一個簡單實用的辦法,也是go語言管理項目的方便之處。通過go get命令來自動下載,例如發現報錯的是docker某一個目錄下的依賴包,那麼可以如下執行:

go get -v ./src/github.com/docker/docker/...

這條命令執行以後整個docker目錄下源文件依賴的包都會被自動下載。如果發現其他目錄下源文件也報同樣的錯誤,可以按照次方法解決。不過這里需要強調一點,這些下載都是會下載最新的包,如果編譯老的docker肯定會出問題,如果編譯最新的docker代碼肯定不會有問題,因為官方的編譯是這種方式。
上面執行的命令都是建立在go語言環境建立成功的基礎上,我安裝的go遇到是1.3.3版本的,採用源碼方式安裝。安裝在/export/servers/go下面,然後所有的go語言工程源碼目錄放在/export/servers/gopath。然後配置環境變數在用戶的根目錄下的.bashrc文件裡面如下:

export GOPATH=/export/servers/gopath
export GOROOT=/export/servers/go
export GOARCH=amd64
export GOOS=linux

然後docker的代碼目錄如下:/export/servers/gopath/src/github.com/docker/docker。這樣才能在gopath下面進行依賴包的下載。通過上面的方法把所有依賴包下載完以後就可以進行編譯了。
在繼續編譯的過程中還會遇到缺少c語言依賴包缺少的問題,主要有三個,(1)sqlite3;(2)device-mapper;(3)btrfs.
第一個sqlite3可以使用如下命令安裝依賴:yum install sqlite-devel.x86_64
第二個在官方的dockerfile文件裡面有解決方案,執行如下命令:

git clone --no-checkout https://git.fedorahosted.org/git/lvm2.git /usr/local/lvm2 && cd /usr/local/lvm2 && git checkout -q v2_02_103

cd /usr/local/lvm2 && ./configure --enable-static_link && make device-mapper && make install_device-mapper

第三個btrfs使用如下安裝依賴: yum install btrfs-progs。
這些依賴都解決了就繼續編譯,這個時候可能會出現ld連接錯誤,提示找不到庫。因為docker編譯的方式完全是static,所以所有依賴的庫必須還要有相應的靜態庫(.a),而不是動態庫(.so)。剛才通過yum install sqlite-devel.x86_64安裝了sqlite3的依賴,但是最後發現裡面沒有靜態庫,所以編譯ld的時候出錯了。我的解決辦法就是重新到sqlite3的官方網站下載了源碼包,然後編譯安裝即可。
編譯完成以後,就會在docker源碼目錄下的bundles/1.3.1/binary/目錄有如下文件:
docker docker-1.3.1 docker-1.3.1.md5 docker-1.3.1.sha256
docker-1.3.1這個文件就是我們需要的二進制文件了,docker是一個軟連接到docker-1.3.1的文件。
到此就成功完成編譯了,以後修改了代碼重新支持編譯腳步即可:

./hack/make.sh binary