當前位置:首頁 » 編程語言 » c語言中實數與虛數怎麼區分
擴展閱讀
webinf下怎麼引入js 2023-08-31 21:54:13
堡壘機怎麼打開web 2023-08-31 21:54:11

c語言中實數與虛數怎麼區分

發布時間: 2022-12-25 06:42:21

❶ 實數和虛數的區別是什麼

一、定義不同

1、實數

實數可以用來測量連續的量。理論上,任何實數都可以用無限小數的方式表示,小數點的右邊是一個無窮的數列(可以是循環的,也可以是非循環的)。

在實際運用中,實數經常被近似成一個有限小數(保留小數點後 n 位,n為正整數)。在計算機領域,由於計算機只能存儲有限的小數位數,實數經常用浮點數來表示。

2、虛數

在數學里,將偶指數冪是負數的數定義為純虛數。所有的虛數都是復數。定義為i²=-1。但是虛數是沒有算術根這一說的,所以±√(-1)=±i。對於z=a+bi,也可以表示為e的iA次方的形式,其中e是常數,i為虛數單位,A為虛數的幅角,即可表示為z=cosA+isinA。

實數和虛數組成的一對數在復數范圍內看成一個數,起名為復數。虛數沒有正負可言。不是實數的復數,即使是純虛數,也不能比較大小。

二、起源不同

1、實數

在公元前500年左右,以畢達哥拉斯為首的希臘數學家們認識到有理數在幾何上不能滿足需要,但畢達哥拉斯本身並不承認無理數的存在。 直到17世紀,實數才在歐洲被廣泛接受。18世紀,微積分學在實數的基礎上發展起來。1871年,德國數學家康托爾第一次提出了實數的嚴格定義。

2、虛數

虛數」這個名詞是17世紀著名數學家、哲學家笛卡爾創制,因為當時的觀念認為這是真實不存在的數字。後來發現虛數可對應平面上的縱軸,與對應平面上橫軸的實數同樣真實。

人們發現即使使用全部的有理數和無理數,也不能解決代數方程的求解問題。像x²+1=0這樣最簡單的二次方程,在實數范圍內沒有解。

12世紀的印度大數學家婆什伽羅都認為這個方程是沒有解的。他認為正數的平方是正數,負數的平方也是正數,因此,一個正數的平方根是兩重的;一個正數和一個負數,負數沒有平方根,因此負數不是平方數。這等於不承認方程的負數平方根的存在。

三、基本運算不同

1、實數

實數可實現的基本運算有加、減、乘、除、乘方等,對非負數(即正數和0)還可以進行開方運算。實數加、減、乘、除(除數不為零)、平方後結果還是實數。任何實數都可以開奇次方,結果仍是實數,只有非負實數,才能開偶次方其結果還是實數。

2、虛數

一個數的ni次方為:

xni= cos(ln(xn)) + i sin(ln(xn)).

一個數的ni次方根為:

x1/ni= cos(ln(x1/n)) - i sin(ln((x1/n)).

以i為底的對數為:

log_i(x) = 2 ln(x)/ iπ.

i的餘弦是一個實數:

cos(i) = cosh(1) = (e + 1/e)/2 = (e² + 1) /2e = 1.54308064.

i的正弦是虛數:

sin(i) = sinh(1) i =[(e - 1/e)/ 2]i = 1.17520119 i.

i,e,π,0和1的奇妙關系:

eiπ+1=0

ii=e-π/2

❷ 什麼是虛數它和實數有什麼區別

實數,是有理數和無理數的總稱。實數可以分為有理數和無理數兩類,或代數數和超越數兩類。

在數學中,虛數就是形如a+b*i的數,其中a,b是實數,且b≠0,i² = - 1。

虛數這個名詞是17世紀著名數學家笛卡爾創立,因為當時的觀念認為這是真實不存在的數字。後來發現虛數a+b*i的實部a可對應平面上的橫軸,虛部b與對應平面上的縱軸,這樣虛數a+b*i可與平面內的點(a,b)對應。

(2)c語言中實數與虛數怎麼區分擴展閱讀

像x+1=0這樣最簡單的二次方程,在實數范圍內沒有解。12世紀的印度大數學家婆什伽羅都認為這個方程是沒有解的。他認為正數的平方是正數,負數的平方也是正數。

因此,一個正數的平方根是兩重的;一個正數和一個負數,負數沒有平方根,因此負數不是平方數。這等於不承認方程的負數平方根的存在。

到了16世紀,義大利數學家卡爾達諾在其著作《大術》(《數學大典》)中,把記為1545R15-15m這是最早的虛數記號。但他認為這僅僅是個形式表示而已。1637年法國數學家笛卡爾,在其《幾何學》中第一次給出「虛數」的名稱,並和「實數」相對應。