❶ c語言計算平均值
1、首先新建一個求數組內所有元素的平均值項目。
❷ C語言怎麼計算平均值,在線等
你是用main()這個函數調用了average()這個函數。average(int
*pa,int
n)這個函數的第一個參數是你要計算數組的首地址,第二個參數是數組大小。
1)avg=avg+*(pa+k);的作用是循環累加,*(pa+k)是pa對應數組的第k+1項內容
2)
m=average(
a,5
);的作用是調用average函數,a是要計算平均值數組的首地址,5是計算數組內容的個數,此問題中學了5,就是全計算了
希望可以幫助到你!
❸ C語言:計算平均值
那個變數count沒有設置好,用scanf格式輸入的num變數不要賦初值,建議這題你還是用for循環來寫比較好
❹ c語言 函數 求平均值
#include<stdio.h>
doubleaverage(intk[10]);//有改動
voidmain()
{
inta[10],i;
doubleaverage1;
for(i=0;i<10;i++)
scanf("%d",&a[i]);
average1=average(a);
printf("%lf",average1);
}
doubleaverage(intk[10])//有改動
{
doublesum=0;
intj;
for(j=0;j<10;j++)
sum=sum+k[j];
return(sum/10);
}
❺ 什麼是k均值聚類演算法
適用條件:系統聚類法適於二維有序樣品聚類的樣品個數比較均勻。K均值聚類法適用於快速高效,特別是大量數據時使用。
兩者區別如下:
一、指代不同
1、K均值聚類法:是一種迭代求解的聚類分析演算法。
2、系統聚類法:又叫分層聚類法,聚類分析的一種方法。
二、步驟不同
1、K均值聚類法:步驟是隨機選取K個對象作為初始的聚類中心,然後計算每個對象與各個種子聚類中心之間的距離,把每個對象分配給距離它最近的聚類中心。
2、系統聚類法:開始時把每個樣品作為一類,然後把最靠近的樣品(即距離最小的群品)首先聚為小類,再將已聚合的小類按其類間距離再合並,不斷繼續下去,最後把一切子類都聚合到一個大類。
三、目的不同
1、K均值聚類法:終止條件可以是沒有(或最小數目)對象被重新分配給不同的聚類,沒有(或最小數目)聚類中心再發生變化,誤差平方和局部最小。
2、系統聚類法:是以距離為相似統計量時,確定新類與其他各類之間距離的方法,如最短距離法、最長距離法、中間距離法、重心法、群平均法、離差平方和法、歐氏距離等。
❻ k均值聚類演算法、c均值聚類演算法、模糊的c均值聚類演算法的區別
k均值聚類:---------一種硬聚類演算法,隸屬度只有兩個取值0或1,提出的基本根據是「類內誤差平方和最小化」准則;
模糊的c均值聚類演算法:-------- 一種模糊聚類演算法,是k均值聚類演算法的推廣形式,隸屬度取值為[0 1]區間內的任何一個數,提出的基本根據是「類內加權誤差平方和最小化」准則;
這兩個方法都是迭代求取最終的聚類劃分,即聚類中心與隸屬度值。兩者都不能保證找到問題的最優解,都有可能收斂到局部極值,模糊c均值甚至可能是鞍點。
至於c均值似乎沒有這么叫的,至少從我看到文獻來看是沒有。不必糾結於名稱。如果你看的是某本模式識別的書,可能它想表達的意思就是k均值。
實際上k-means這個單詞最先是好像在1965年的一篇文獻提出來的,後來很多人把這種聚類叫做k均值。但是實際上十多年前就有了類似的演算法,但是名字不一樣,k均值的歷史相當的復雜,在若干不同的領域都被單獨提出。追尋演算法的名稱與歷史沒什麼意義,明白具體的實現方法就好了。
❼ 大數據十大經典演算法之k-means
大數據十大經典演算法之k-means
k均值演算法基本思想:
K均值演算法是基於質心的技術。它以K為輸入參數,把n個對象集合分為k個簇,使得簇內的相似度高,簇間的相似度低。
處理流程:
1、為每個聚類確定一個初始聚類中心,這樣就有k個初始聚類中心;
2、將樣本按照最小距離原則分配到最鄰近聚類
3、使用每個聚類中的樣本均值作為新的聚類中心
4、重復步驟2直到聚類中心不再變化
5、結束,得到K個聚類
劃分聚類方法對數據集進行聚類時的要點:
1、選定某種距離作為數據樣本間的相似性度量,通常選擇歐氏距離。
2、選擇平價聚類性能的准則函數
用誤差平方和准則函數來評價聚類性能。
3、相似度的計算分局一個簇中對象的平均值來進行
K均值演算法的優點:
如果變數很大,K均值比層次聚類的計算速度較快(如果K很小);
與層次聚類相比,K均值可以得到更緊密的簇,尤其是對於球狀簇;
對於大數據集,是可伸縮和高效率的;
演算法嘗試找出使平方誤差函數值最小的k個劃分。當結果簇是密集的,而簇與簇之間區別明顯的時候,效果較好。
K均值演算法缺點:
最後結果受初始值的影響。解決辦法是多次嘗試取不同的初始值。
可能發生距離簇中心m最近的樣本集為空的情況,因此m得不到更新。這是一個必須處理的問題,但我們忽略該問題。
不適合發現非凸面形狀的簇,並對雜訊和離群點數據較敏感,因為少量的這類數據能夠對均值產生較大的影響。
K均值演算法的改進:
樣本預處理。計算樣本對象量量之間的距離,篩掉與其他所有樣本那的距離和最大的m個對象。
初始聚類中心的選擇。選用簇中位置最靠近中心的對象,這樣可以避免孤立點的影響。
K均值演算法的變種:
K眾數(k-modes)演算法,針對分類屬性的度量和更新質心的問題而改進。
EM(期望最大化)演算法
k-prototype演算法
這種演算法不適合處理離散型屬性,但是對於連續型具有較好的聚類效果。
k均值演算法用途:
圖像分割;
衡量足球隊的水平;
下面給出代碼:
#include <iostream>
#include <vector>
//auther archersc
//JLU
namespace CS_LIB
{
using namespace std;
class Kmean
{
public:
//輸入格式
//數據數量N 維度D
//以下N行,每行D個數據
istream& loadData(istream& in);
//輸出格式
//聚類的數量CN
//中心維度CD
//CN行,每行CD個數據
//數據數量DN
//數據維度DD
//以下DN組,每組的第一行兩個數值DB, DDis
//第二行DD個數值
//DB表示改數據屬於一類,DDis表示距離改類的中心的距離
ostream& saveData(ostream& out);
//設置中心的數量
void setCenterCount(const size_t count);
size_t getCenterCount() const;
//times最大迭代次數, maxE ,E(t)表示第t次迭代後的平方誤差和,當|E(t+1) - E(t)| < maxE時終止
void clustering(size_t times, double maxE);
private:
double calDistance(vector<double>& v1, vector<double>& v2);
private:
vector< vector<double> > m_Data;
vector< vector<double> > m_Center;
vector<double> m_Distance;
vector<size_t> m_DataBelong;
vector<size_t> m_DataBelongCount;
};
}
#include "kmean.h"
#include <ctime>
#include <cmath>
#include <cstdlib>
//auther archersc
//JLU
namespace CS_LIB
{
template<class T>
void swap(T& a, T& b)
{
T c = a;
a = b;
b = c;
}
istream& Kmean::loadData(istream& in)
{
if (!in){
cout << "input error" << endl;
return in;
}
size_t dCount, dDim;
in >> dCount >> dDim;
m_Data.resize(dCount);
m_DataBelong.resize(dCount);
m_Distance.resize(dCount);
for (size_t i = 0; i < dCount; ++i){
m_Data[i].resize(dDim);
for (size_t j = 0; j < dDim; ++j){
in >> m_Data[i][j];
}
}
return in;
}
ostream& Kmean::saveData(ostream& out)
{
if (!out){
cout << "output error" << endl;
return out;
}
out << m_Center.size();
if (m_Center.size() > 0)
out << << m_Center[0].size();
else
out << << 0;
out << endl << endl;
for (size_t i = 0; i < m_Center.size(); ++i){
for (size_t j = 0; j < m_Center[i].size(); ++j){
out << m_Center[i][j] << ;
}
out << endl;
}
out << endl;
out << m_Data.size();
if (m_Data.size() > 0)
out << << m_Data[0].size();
else
out << << 0;
out << endl << endl;
for (size_t i = 0; i < m_Data.size(); ++i){
out << m_DataBelong[i] << << m_Distance[i] << endl;
for (size_t j = 0; j < m_Data[i].size(); ++j){
out << m_Data[i][j] << ;
}
out << endl << endl;
}
return out;
}
void Kmean::setCenterCount(const size_t count)
{
m_Center.resize(count);
m_DataBelongCount.resize(count);
}
size_t Kmean::getCenterCount() const
{
return m_Center.size();
}
void Kmean::clustering(size_t times, double maxE)
{
srand((unsigned int)time(NULL));
//隨機從m_Data中選取m_Center.size()個不同的樣本點作為初始中心。
size_t *pos = new size_t[m_Data.size()];
size_t i, j, t;
for (i = 0; i < m_Data.size(); ++i){
pos[i] = i;
}
for (i = 0; i < (m_Data.size() << 1); ++i){
size_t s1 = rand() % m_Data.size();
size_t s2 = rand() % m_Data.size();
swap(pos[s1], pos[s2]);
}
for (i = 0; i < m_Center.size(); ++i){
m_Center[i].resize(m_Data[pos[i]].size());
for (j = 0; j < m_Data[pos[i]].size(); ++j){
m_Center[i][j] = m_Data[pos[i]][j];
}
}
delete []pos;
double currE, lastE;
for (t = 0; t < times; ++t){
for (i = 0; i < m_Distance.size(); ++i)
m_Distance[i] = LONG_MAX;
for (i = 0; i < m_DataBelongCount.size(); ++i)
m_DataBelongCount[i] = 0;
currE = 0.0;
for (i = 0; i < m_Data.size(); ++i){
for (j = 0; j < m_Center.size(); ++j){
double dis = calDistance(m_Data[i], m_Center[j]);
if (dis < m_Distance[i]){
m_Distance[i] = dis;
m_DataBelong[i] = j;
}
}
currE += m_Distance[i];
m_DataBelongCount[m_DataBelong[i]]++;
}
cout << currE << endl;
if (t == 0 || fabs(currE - lastE) > maxE)
lastE = currE;
else
break;
for (i = 0; i < m_Center.size(); ++i){
for (j = 0; j < m_Center[i].size(); ++j)
m_Center[i][j] = 0.0;
}
for (i = 0; i < m_DataBelong.size(); ++i){
for (j = 0; j < m_Data[i].size(); ++j){
m_Center[m_DataBelong[i]][j] += m_Data[i][j] / m_DataBelongCount[m_DataBelong[i]];
}
}
}
}
double Kmean::calDistance(vector<double>& v1, vector<double>& v2)
{
double result = 0.0;
for (size_t i = 0; i < v1.size(); ++i){
result += (v1[i] - v2[i]) * (v1[i] - v2[i]);
}
return pow(result, 1.0 / v1.size());
//return sqrt(result);
}
}
#include <iostream>
#include <fstream>
#include "kmean.h"
using namespace std;
using namespace CS_LIB;
int main()
{
ifstream in("in.txt");
ofstream out("out.txt");
Kmean kmean;
kmean.loadData(in);
kmean.setCenterCount(4);
kmean.clustering(1000, 0.000001);
kmean.saveData(out);
return 0;
}