『壹』 c語言字元數組清零方法
#include<stdio.h>
#include<string.h>
int main()
{
char a[10];
scanf("%s",a);
memset(a,'\0',sizeof(a));
printf("%s\n",a);
}
//本函數段就是利用memset函數將數組a清零
所以就是使用 memset(a,'\0',sizeof(a));
『貳』 C語言 結構體清零
結構體是直接做入參的。復制只會將qingling函數中的數據清零。應用指針
void qingling(structType* haoma){
haoma->shou = 0;
haoma->zhong = 0;
haoma->wei = 0;
}
這個和qingling(int i)函數中改i值,但調用者值不變是一回事。
『叄』 如何在c語言中清空文件里的內容(很急)
在c語言中清空文件里的內容的代碼:
示例:
#include "
stdio.h"
main()
{FILE *fp;
if(fp=fopen("要清空的件","w+")==NULL)/*以寫的方式打開已經存的文件相當於是答清空。*/
{printf("Error.");
getch();
exit(0);}
fclose(fp);
(3)c語言清零程序擴展閱讀
C語言remove()函數:刪除文件或目錄
clude<stdio.h>
int main(){
charfilename[80];
printf("Thefiletodelete:");
gets(filename);
if(remove(filename)==0)
printf("Removed%s.",filename);
else
perror("remove");
}
『肆』 求大佬幫寫一個C語言程序,輸入一個n,能對隨便某一位清零的程序
#include<stdio.h>
intmain()
{inta,n;
scanf("%d%d",&n,&a);
a&=~(1<<n);
printf("%d
",a);
return0;
}
『伍』 c語言 關於字元數組和整型數組清零
C語言數組和整型數組清空方法,示例:
1、整數數組清零
函數:void bzero(void *s, int n)
頭文件: #include <string.h>
功能說明:將字元串s的前n個字元置為0,一般n取sizeof(s),將整塊空間清零;
舉例:char str[10]; bzero(str, sizeof(str)); 也可以將整個結構體清零;
2、數組清空
使用時間:94s
for( k = 0 ; k <10000 ; k++ )
for( i = 0 ; i<MAX; i++ )
for( j = 0;j < MAX; j++ )
a[i][j] = 0;
(5)c語言清零程序擴展閱讀
C語言結構體初始化
1、定義:
struct InitMember
{
int first;
double second;
char* third;
float four;
};
2、定義時賦值:
struct InitMember test = {-10,3.141590,"method one",0.25};
『陸』 c語言數組怎麼清零
c語言不能對這個數組賦值,只能通過遍歷數組達到給數組中每個元素賦值的目的。初始化的時候可以用inta[4]={0};這樣給整個數組元素賦值為0,若想給已初始化的數組清零,也只能遍歷數組。
在C語言中,所謂的「清空」,意思是「無視裡面的數據」,而不是「讓裡面沒有數據」。有時候可能需要把一個數組清零,意思是全部數據都用0填充,可以用庫函數來實現。假設數組名為a,無論什麼類型也無論幾維都一樣,可以寫成memset(a,0,sizeof(a));
(6)c語言清零程序擴展閱讀:
在C語言中, 數組屬於構造數據類型。一個數組可以分解為多個數組元素,這些數組元素可以是基本數據類型或是構造類型。因此按數組元素的類型不同,數組又可分為數值數組、字元數組、指針數組、結構數組等各種類別。
關於可變長數組(VLA)的問題:原來的C89標准中是不允許可變長數組出現的,但是在C99標准中,加入了對VLA的支持,但是支持的編譯器不多,而且由於棧溢出的安全問題,沒有太多的人敢用這個可變長數組,所以在C11標准中又把它規定為可選實現的功能了。
『柒』 51單片機C語言程序4個獨立按鍵實現對數碼管數字顯示的加減清零等
#include<reg52.h>
//P0是數碼管。P1是LED.P2是按鍵
sbitKEY_OUT_1=P2^3;
sbitKEY_OUT_2=P2^2;
sbitKEY_OUT_3=P2^1;
sbitKEY_OUT_4=P2^0;
#defineucharunsignedchar
#defineulintunsignedlong
#defineFrequency10//定時器中斷時間=f*T
#defineTime1//一個周期1ms
#defineTubeNumber6//數碼管個數
#defineKeyLine4//矩陣按鍵行數
#defineKeyColumn4//矩陣按鍵列數
//數碼管真值表
ucharcodeLED_Number[]={0x0C,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xF8,0x80,0x90};
//ucharcodeLED_Alphabet[]={0x88,0x83,0xC6,0xA1,0x86,0x8E,0x89,0xC7,0x8C,0xC1,0x91,0x9C};
/*0~9
A~F(b、d為小寫)HLPUyo*/
ucharLED_Buff[TubeNumber]={0xff,0xff,0xff,0xff,0xff,0xff};
/*數碼管顯示緩沖區,0xff確保初始時都不亮.
不可寫成ucharcodeLED_Buff[]。code定義變數寫入room,不可修改*/
//矩陣按鍵編號到標准盤碼的映射表
ucharcodeKeyCodeMap[4][4]={
(0x31,0x32,0x33,0x26),//數字鍵1、數字鍵2、數字鍵3、向上鍵
(0x34,0x35,0x36,0x25),//數字鍵4、數字鍵5、數字鍵6、向左鍵
(0x37,0x38,0x39,0x28),//數字鍵7、數字鍵8、數字鍵9、向下鍵
(0x30,0x1B,0x0D,0x27)};//數字鍵0、ESC鍵、回車鍵、向右鍵
ucharStaFlag[KeyLine][KeyColumn]={(1,1,1,1),(1,1,1,1),(1,1,1,1),(1,1,1,1)};//按鍵是否穩定標志
voidStartTime0();
voidTubeDisplay(ulintsec);
ulintpow(x,y);
voidTubeScan();
voidKeyAction(ucharkeycode);
voidKeyDriver();
voidKeyScan();
voidmain()
{
P1=0x08;//使能U3,選擇數碼管。
StartTime0();
while(1)KeyDriver();
}
//定時器0啟動函數
voidStartTime0()
{
EA=1;
ET0=1;
TMOD=0x01;
TH0=(65536-Time*100)/256;
TL0=(65536-Time*100)%256;
PT0=1;
/*定時器0優先中斷控制位。
IP這個寄存器的每一位,表示對應中斷的搶占優先順序,每一位的復值都是0,當我們把某一位設置為1的時候,這一位優先順序就比其它位的優先順序高了。
比如我們設置了PT0位為1後,當單片機在主循環或其他中斷程序執行時,一旦TO發生中斷,作為更高優先順序,程序馬上執行T0.若在T0程序執行時,
其他中斷程序發生中斷,仍執行TO直到T0中斷結束後再執行其他程序。
*/
}
//中斷服務函數
voidTo_time0()interrupt1using0
{
staticucharcnt;//記錄TO中斷次數
// staticulintsec;//記錄經過秒速
//判斷是否溢出
if(TF0==1)
{
TF0=0;
TH0=(65536-Time*100)/256;
TL0=(65536-Time*100)%256;
}
if(cnt>=Frequency)
{
cnt=0;
//sec++;
// Tube_Display(sec);
TubeScan();
KeyScan();
}
}
//數碼管顯示函數
voidTubeDisplay(ulintnom)
{
ucharm=2;//小數部分位數
uchari;//傳輸索引
//秒速達到上限清零
if(nom>pow(10,TubeNumber-m))nom=0;
//分別傳輸小數部分和整數部分
for(i=0;i<m;i++)
LED_Buff[i]=LED_Number[nom/pow(10,i)%10];
for(i=0;i<(TubeNumber-m);i++)
LED_Buff[i+m]=LED_Number[nom/pow(10,i)%10];
//點亮小數點
LED_Buff[m]&=0x7f;
}
//平方運算函數
ulintpow(x,y)//x為底,為冪
{
ulintp,i=1;
//平方運算
for(i=1;i<=y;i++)
p*=x;
//輸出結果
returnp;
}
//數碼管動態函數
voidTubeScan()
{
staticuchari=0;//動態掃描索引
//關閉所有段選位,數碼管消隱
P0=0xff;
//for(i=0;i<Tube_number;i++)
P1=(P1&0xf8)|i;//位選索引賦值到P1口低3位
P0=LED_Buff[i];//緩沖區中的索引位置數據傳輸到P0口
if(++i>=TubeNumber)i=0;//索引遞增循環,遍歷整個緩沖區
}
//矩陣按鍵動作函數
voidKeyAction(ucharkeycode)
{
staticulintresult;
ulintnom=0;
//輸入數字0~9
if((keycode>=0x30)&&(keycode<=39))
{
nom=(nom*10)+(keycode-0x30);//十進制整體左移,新數進入各位
TubeDisplay(nom);
}
//輸入方向鍵
if((keycode>=0x25)&&(keycode<=28))
switch(keycode)
{
case0x26:result+=nom;nom=0;TubeDisplay(result);
case0x28:result-=nom;nom=0;TubeDisplay(result);
case0x25:result=1;result*=nom;nom=0;TubeDisplay(result);
case0x27:result=1;result/=nom;nom=0;TubeDisplay(result);
}
elseif(keycode==0x0d)TubeDisplay(result);//輸入回車鍵,輸出最終結果
elseif(keycode==0x1b)//輸入ESC鍵,清零
{
nom=result=0;
TubeDisplay(nom);
}
}
//矩陣按鍵驅動函數
voidKeyDriver()
{
ucharl,c;
staticucharbackup[KeyLine][KeyColumn]={(1,1,1,1),(1,1,1,1),(1,1,1,1),(1,1,1,1)};//按鍵值備份,保存前一次值
for(l=0;l<KeyLine;l++)
{
for(c=0;c<KeyColumn;c++)
{
if(backup[l][c]!=StaFlag[l][c])
{//檢測按鍵動作
if(backup[l][c]==1)//按鍵按下時執行
KeyAction(KeyCodeMap[l][c]);//調用動作函數
backup[l][c]=StaFlag[l][c];//刷新前一次備份值
}
}
}
}
//矩陣按鍵掃描函數
voidKeyScan()
{
ucharl=0;//矩陣按鍵掃描輸出索引
ucharc=0;//矩陣按鍵掃描列索引
ucharkeybuff[KeyLine][KeyColumn]={(0xff,0xff,0xff,0xff),(0xff,0xff,0xff,0xff),
(0xff,0xff,0xff,0xff),(0xff,0xff,0xff,0xff)};//矩陣按鍵掃描緩沖區
//將一行的四個按鍵移入緩沖區
for(l=0;l<KeyColumn;l++)
keybuff[l][c]=((0xfe|(P2>>(4+l))&0x01));
//按鍵消抖
for(l=0;l<KeyLine;l++)
{
if((keybuff[l][c]&0x0f)==0x00)//連續4次掃描都為0,判斷4*4ms內都是按下狀態,可認為按鍵已穩定按下
StaFlag[l][c]=0;
elseif((keybuff[l][c]&0x0f)==0x0f)//連續4次掃描都為1,判斷4*4ms內都是彈起狀態,可認為按鍵已穩定彈起
StaFlag[l][c]=1;
}
for(c=0;c<KeyColumn;c++)
{
switch(c)//根據索引,釋放當前輸出腳拉低下次的根據索引
{
case0:KEY_OUT_4=1;KEY_OUT_1=0;break;
case1:KEY_OUT_1=1;KEY_OUT_2=0;break;
case2:KEY_OUT_2=1;KEY_OUT_3=0;break;
case3:KEY_OUT_3=1;KEY_OUT_4=0;break;
default:break;
}
}
}