A. 快速排序演算法c語言
排序演算法是《數據結構與演算法》中最基本的演算法之一。
排序演算法可以分為內部排序和外部排序,內部排序是數據記錄在內存中進行排序,而外部排序是因排序的數據很大,一次不能容納全部的排序記錄,在排序過程中需要訪問外存。常見的內部排序演算法有:插入排序、希爾排序、選擇排序、冒泡排序、歸並排序、快速排序、堆排序、基數排序等。用一張圖概括:
點擊以下圖片查看大圖:
關於時間復雜度
平方階 (O(n2)) 排序 各類簡單排序:直接插入、直接選擇和冒泡排序。
線性對數階 (O(nlog2n)) 排序 快速排序、堆排序和歸並排序;
O(n1+§)) 排序,§ 是介於 0 和 1 之間的常數。 希爾排序
線性階 (O(n)) 排序 基數排序,此外還有桶、箱排序。
關於穩定性
穩定的排序演算法:冒泡排序、插入排序、歸並排序和基數排序。
不是穩定的排序演算法:選擇排序、快速排序、希爾排序、堆排序。
名詞解釋:
n:數據規模 k:"桶"的個數 In-place:佔用常數內存,不佔用額外內存 Out-place:佔用額外內存 穩定性:排序後 2 個相等鍵值的順序和排序之前它們的順序相同包含以下內容:
1、冒泡排序 2、選擇排序 3、插入排序數搭 4、希爾排序 5、歸並排序 6、快速排序 7、堆排序 8、計數排序 9、桶排序 10、基數排序排序演算法包含的相關內容具體如下:
冒泡排序演算法
冒泡排序(Bubble Sort)也是一種簡單直觀的排序演算法。它重復地走訪過要排序的數列,一次比較兩個元素,如果他們的順序錯誤就把他們交換過來。走訪數列的工作是重復地進行直到沒有再需要交換,也就是說該薯畝拿數列已經排序完成。這個演算法的名字由來是因為越小的元素會經由交換慢慢"浮"到數列的頂端。
選擇排序演算法
選擇排序是一種簡單直觀的排序演算法,無耐差論什麼數據進去都是 O(n?) 的時間復雜度。所以用到它的時候,數據規模越小越好。唯一的好處可能就是不佔用額外的內存空間。
插入排序演算法
插入排序的代碼實現雖然沒有冒泡排序和選擇排序那麼簡單粗暴,但它的原理應該是最容易理解的了,因為只要打過撲克牌的人都應該能夠秒懂。插入排序是一種最簡單直觀的排序演算法,它的工作原理是通過構建有序序列,對於未排序數據,在已排序序列中從後向前掃描,找到相應位置並插入。
希爾排序演算法
希爾排序,也稱遞減增量排序演算法,是插入排序的一種更高效的改進版本。但希爾排序是非穩定排序演算法。
歸並排序演算法
歸並排序(Merge sort)是建立在歸並操作上的一種有效的排序演算法。該演算法是採用分治法(Divide and Conquer)的一個非常典型的應用。
快速排序演算法
快速排序是由東尼·霍爾所發展的一種排序演算法。在平均狀況下,排序 n 個項目要 Ο(nlogn) 次比較。在最壞狀況下則需要 Ο(n2) 次比較,但這種狀況並不常見。事實上,快速排序通常明顯比其他 Ο(nlogn) 演算法更快,因為它的內部循環(inner loop)可以在大部分的架構上很有效率地被實現出來。
堆排序演算法
堆排序(Heapsort)是指利用堆這種數據結構所設計的一種排序演算法。堆積是一個近似完全二叉樹的結構,並同時滿足堆積的性質:即子結點的鍵值或索引總是小於(或者大於)它的父節點。堆排序可以說是一種利用堆的概念來排序的選擇排序。
計數排序演算法
計數排序的核心在於將輸入的數據值轉化為鍵存儲在額外開辟的數組空間中。作為一種線性時間復雜度的排序,計數排序要求輸入的數據必須是有確定范圍的整數。
桶排序演算法
桶排序是計數排序的升級版。它利用了函數的映射關系,高效與否的關鍵就在於這個映射函數的確定。
基數排序演算法
基數排序是一種非比較型整數排序演算法,其原理是將整數按位數切割成不同的數字,然後按每個位數分別比較。由於整數也可以表達字元串(比如名字或日期)和特定格式的浮點數,所以基數排序也不是只能使用於整數。
B. c語言各種排序演算法
1:桶排序;
2:堆排序;
3:冒泡排序;
4:快速排序
5:選擇排序;
6:插入排序;
7:希爾排序;
8:歸並排序;
9:基數排序;
10:計數排序;
C. c語言中排序方法
1、冒泡排序(最常用)
冒泡排序是最簡單的排序方法:原理是:從左到右,相鄰元素進行比較。每次比較一輪,就會找到序列中最大的一個或最小的一個。這個數就會從序列的最右邊冒出來。(注意每一輪都是從a[0]開始比較的)
以從小到大排序為例,第一輪比較後,所有數中最大的那個數就會浮到最右邊;第二輪比較後,所有數中第二大的那個數就會浮到倒數第二個位置……就這樣一輪一輪地比較,最後實現從小到大排序。
2、雞尾酒排序
雞尾酒排序又稱雙向冒泡排序、雞尾酒攪拌排序、攪拌排序、漣漪排序、來回排序或快樂小時排序, 是冒泡排序的一種變形。該演算法與冒泡排序的不同處在於排序時是以雙向在序列中進行排序。
原理:數組中的數字本是無規律的排放,先找到最小的數字,把他放到第一位,然後找到最大的數字放到最後一位。然後再找到第二小的數字放到第二位,再找到第二大的數字放到倒數第二位。以此類推,直到完成排序。
3、選擇排序
思路是設有10個元素a[1]-a[10],將a[1]與a[2]-a[10]比較,若a[1]比a[2]-a[10]都小,則不進行交換。若a[2]-a[10]中有一個以上比a[1]小,則將其中最大的一個與a[1]交換,此時a[1]就存放了10個數中最小的一個。同理,第二輪拿a[2]與a[3]-a[10]比較,a[2]存放a[2]-a[10]中最小的數,以此類推。
4、插入排序
插入排序是在一個已經有序的小序列的基礎上,一次插入一個元素*
一般來說,插入排序都採用in-place在數組上實現。
具體演算法描述如下:
⒈ 從第一個元素開始,該元素可以認為已經被排序
⒉ 取出下一個元素,在已經排序的元素序列中從後向前掃描
⒊ 如果該元素(已排序)大於新元素,將該元素移到下一位置
⒋ 重復步驟3,直到找到已排序的元素小於或者等於新元素的位置
⒌ 將新元素插入到下一位置中
⒍ 重復步驟2~5
D. 怎樣用c語言表示幾個數任意兩個不相等
運用桶排序即可,但有局限性只能應用於整數。
自己去網路察陸具體代碼,看懂演算法在自己寫代碼。
桶排序 (Bucket sort)或所謂的箱排序,是一個排序演算法,工作的原理是將數組分到有限數量的桶子里。每個桶子再個別排序(有可能再使用別的排序演算法或是以遞歸方式繼續使用桶排序進行排序)。桶排序是鴿巢排序的一種歸納結果。當要被排序的數組內的數值是均勻分配的裂缺時候,桶排序使用線性時間(Θ(n))。但桶排序並不是 比較排序,他不受到 O(n log n) 下限的影響。
1.N個數字(整形)
2.求出最大的數字的位數m
3.由於數字都是0到9組成,做10個桶,0到9,將N個數字依次放入桶裡面
3.1 從個位數開始,從各位數字開始,將地i(i<m)為數字相同的數字,依次放入對應的桶中
3.2 從地0個桶開始,將所有桶中的數字取出,作為一個新的數字
3.2 重復上面兩步,直至m為數字
4.最後排序的為從小到大的數組排序。
因為是數據排序,所以設置的桶的鍵值為0~9共十個桶。每次從數據的最後一個數位開始掃描,如果這個數位的值與桶的鍵值相等,就把這個數據放入桶內。桶可以看作是一個有序的鏈表,後進入的元素排在先進入的數據的後面,直到所有的數據都敗源頃完成掃描,算作一次掃描。以後依次取倒數第二個掃描,按照桶的鍵值開始掃描,同樣把數位的值與桶的鍵值相等的數據放入桶內。直到所有數據的最高數位也完成掃描。最後一次掃描完成,桶的鍵值從低到高,把這些鏈表串起來輸出的結果就是原來數據的從小到大排序。
---------------------------------------------------------------------------------------------------
代碼(來自《數據結構演算法Visual.C.6.0程序集》)
void main()
{cout<<"bucketsort.cpp運行結果:\n";
int array[SIZE];
cout<<"原數組:\n";
srand(time(0));
for(int i=0;i<SIZE;++i)
{array[i]=rand()0;
cout<<setw(3)<<array[i];}
cout<<'\n';
cout<<"排序過程演示:\n";
bucketSort(array);
cout<<"排序後數組:\n";
for(int j=0;j<SIZE;++j)
cout<<setw(3)<<array[j];
cout<<endl;cin.get();
}
// 桶排序演算法
void bucketSort(int a[])
{int totalDigits,bucket[10][SIZE]={0};
totalDigits=numberOfDigits(a,SIZE);
for(int i=1;i<=totalDigits;++i) {
distributeElements(a,bucket,i);
collectElements(a,bucket);
//將桶數組初始化為0
if(i!=totalDigits) zeroBucket(bucket);
for(int j=0;j<SIZE;++j)
cout<<setw(3)<<a[j];
cout<<endl;}
}
//確定單下標數組的最大數的位數
int numberOfDigits(int b[],int arraySize)
{ int largest=b[0],digits=0;
for(int i=1;i<arraySize;++i)
if(b[i]>largest)
largest=b[i];
while(largest!=0) {
++digits;
largest/=10;}
return digits;
}
// 將單下標數組的每個值放到桶數組的行中
void distributeElements(int a[],int buckets[][SIZE],int digit)
{int divisor=10,bucketNumber,elementNumber;
for(int i=1;i<digit;++i)
divisor*=10;
for(int k=0;k<SIZE;++k) {
bucketNumber=(a[k]%divisor-a[k]%(divisor/10))/(divisor/10);//求取地m為數字
elementNumber=++buckets[bucketNumber][0];//buckets[bucketNumber][0] 表示桶中的數字個數
buckets[bucketNumber][elementNumber]=a[k];//放入對應的桶中
}
}
//將桶數組的值復制回原數組
void collectElements(int a[],int buckets[][SIZE])
{int subscript=0;
for(int i=0;i<10;++i)
for(int j=1;j<=buckets[i][0];++j)
a[subscript++]=buckets[i][j];
}
//將桶數組初始化為0
void zeroBucket(int buckets[][SIZE])
{for(int i=0;i<10;++i)
for(int j=0;j<SIZE;++j)
buckets[i][j]=0;}
E. 用c語言實現計數排序、基數排序、桶排序演算法。
網上找吧,這些都是基本東西,要不買本數據結構的書看看
F. C語言中有哪些經典的排序方法
穩定的
冒泡排序(bubble sort) — O(n^2)
雞尾酒排序(Cocktail sort,雙向的冒泡排序) — O(n^2)
插入排序(insertion sort)— O(n^2)
桶排序(bucket sort)— O(n); 需要 O(k) 額外空間
計數排序(counting sort) — O(n+k); 需要 O(n+k) 額外空間
合並排序(merge sort)— O(nlog n); 需要 O(n) 額外空間
原地合並排序— O(n^2)
二叉排序樹排序 (Binary tree sort) — O(nlog n)期望時間; O(n^2)最壞時間; 需要 O(n) 額外空間
鴿巢排序(Pigeonhole sort) — O(n+k); 需要 O(k) 額外空間
基數排序(radix sort)— O(n·k); 需要 O(n) 額外空間
Gnome 排序— O(n^2)
圖書館排序— O(nlog n) with high probability,需要 (1+ε)n額外空間
不穩定的
選擇排序(selection sort)— O(n^2)
希爾排序(shell sort)— O(nlog n) 如果使用最佳的現在版本
組合排序— O(nlog n)
堆排序(heapsort)— O(nlog n)
平滑排序— O(nlog n)
快速排序(quicksort)— O(nlog n) 期望時間,O(n^2) 最壞情況; 對於大的、亂數列表一般相信是最快的已知排序
Introsort— O(nlog n)
Patience sorting— O(nlog n+ k) 最壞情況時間,需要 額外的 O(n+ k) 空間,也需要找到最長的遞增子串列(longest increasing subsequence)
不實用的排序演算法
Bogo排序— O(n× n!) 期望時間,無窮的最壞情況。
Stupid sort— O(n^3); 遞歸版本需要 O(n^2) 額外存儲器
珠排序(Bead sort) — O(n) or O(√n),但需要特別的硬體
Pancake sorting— O(n),但需要特別的硬體
stooge sort——O(n^2.7)很漂亮但是很耗時
沒事多去網路找!
G. 求c語言基數排序與桶排序的源代碼
基數排序:
#include<math.h>
testBS()
{
inta[]={2,343,342,1,123,43,4343,433,687,654,3};
int*a_p=a;
//計算數組長度
intsize=sizeof(a)/sizeof(int);
//基數排序
bucketSort3(a_p,size);
//列印排序後結果
inti;
for(i=0;i<size;i++)
{
printf("%d ",a[i]);
}
intt;
scanf("%d",t);
}
//基數排序
voidbucketSort3(int*p,intn)
{
//獲取數組中的最大數
intmaxNum=findMaxNum(p,n);
//獲取最大數的位數,次數也是再分配的次數。
intloopTimes=getLoopTimes(maxNum);
inti;
//對每一位進行桶分配
for(i=1;i<=loopTimes;i++)
{
sort2(p,n,i);
}
}
//獲取數字的位數
intgetLoopTimes(intnum)
{
intcount=1;
inttemp=num/10;
while(temp!=0)
{
count++;
temp=temp/10;
}
returncount;
}
//查詢數組中的最大數
intfindMaxNum(int*p,intn)
{
inti;
intmax=0;
for(i=0;i<n;i++)
{
if(*(p+i)>max)
{
max=*(p+i);
}
}
returnmax;
}
//將數字分配到各自的桶中,然後按照桶的順序輸出排序結果
voidsort2(int*p,intn,intloop)
{
//建立一組桶此處的20是預設的根據實際數情況修改
intbuckets[10][20]={};
//求桶的index的除數
//如798個位桶index=(798/1)%10=8
//十位桶index=(798/10)%10=9
//百位桶index=(798/100)%10=7
//tempNum為上式中的1、10、100
inttempNum=(int)pow(10,loop-1);
inti,j;
for(i=0;i<n;i++)
{
introw_index=(*(p+i)/tempNum)%10;
for(j=0;j<20;j++)
{
if(buckets[row_index][j]==NULL)
{
buckets[row_index][j]=*(p+i);
break;
}
}
}
//將桶中的數,倒回到原有數組中
intk=0;
for(i=0;i<10;i++)
{
for(j=0;j<20;j++)
{
if(buckets[i][j]!=NULL)
{
*(p+k)=buckets[i][j];
buckets[i][j]=NULL;
k++;
}
}
}
}
桶排序
#include<stdio.h>
#defineMAXNUM100
voidbucksort(intarr[],intN,intM)
{
intcount[MAXNUM];
for(inti=0;i<=M;i++)
{
count[i]=0;
}
for(inti=0;i<N;i++)
{
++count[arr[i]];
}
for(inti=0;i<=M;i++)
{
for(intj=1;j<=count[i];j++)
{
printf("%d",i);
}
}
}
intmain()
{
inta[]={2,5,6,12,4,8,8,6,7,8,8,10,7,6};
bucksort(a,sizeof(a)/sizeof(a[0]),12);
return0;
}
H. 桶排序的演算法
桶排序演算法要求,數據的長度必須完全一樣,程序過程要產生長度相同的數據,使用下面的方法:Data=rand()/10000+10000上面提到的,每次下一次的掃描順序是按照上次掃描的結果來的,所以設計上提供相同的兩個桶數據結構。前一個保存每一次掃描的結果供下次調用,另外一個臨時拷貝前一次掃描的結果提供給前一個調用。
數據結構設計:鏈表可以採用很多種方式實現,通常的方法是動態申請內存建立結點,但是針對這個演算法,桶裡面的鏈表結果每次掃描後都不同,就亂侍有很多鏈表的分離和重建。如果使用動態分配內存,則由於指針的使用,安全性低。所以,筆者設計時使用了數組來模擬鏈表(當然犧牲了部分的空間,但是操作卻是簡單了很多,穩定性也大大提高了)。共十個桶,所以建立一個二維數組,行向量的下標0—9代表了10個桶,每個行形成的一維數組則是桶的空間。
平均情況嘩友吵下桶排序以線性時間運行。像基數排序一樣,桶排序也對輸入作了某種假設, 因而運行得很快。具 體來說,基數排序假設輸入是由一個小范圍內的整數構成,而桶排序則 假設輸入由一個隨機過程產生,該過程將元素一致地分布在區間[0,1)上。 桶排序的思想就是把區間[0,1)劃分成n個相同大小的子區間,或稱桶,然後將n個輸入數分布到各個桶中去。因為輸入數均勻分布在[0,1)上,所以一般不會有很多數落在一個桶中的情況。為得到結果,先對各個桶中的數進行排序,然後按次序把各桶中的元素列出來即可。
在桶排序演算法的代碼中,假設輸入是含n個元素的數組A,且每個元素滿足0≤ A[i]<1。另外還需要一個輔助數組B[O..n-1]來存放鏈表實現的桶,並假設可以用某種機制來維護這些表。
桶排序的演算法如下(偽代碼表示),其中floor(x)是地板函數,表示不超過x的最大整數。
procere Bin_Sort(var A:List);begin
n:=length(A);
for i:=1 to n do
將A[i]插到表B[floor(n*A[i])]中;
for i:=0 to n-1 do
用插入排序對表B[i]進行排序;
將表B[0],B[1],...,B[n-1]按順序合並;
end;
右圖演示了桶排序作用於有10個數的輸入數組上的操作過程。(a)輸入數組A[1..10]。(b)在該演算法的第5行後的有序表(桶)數組B[0..9]。桶i中存放了區間[i/10,(i+1)/10]上的值。排序輸出由表B[O]、B[1]、...、B[9]的按序並置構成。
要說明這個演算法能正確地工作,看兩個元素A[i]和A[j]。如果它們落在同一個桶中,則它們在輸出序列中有著正確的相對次序,因為它們所在的桶是採用插入排序的。現假設它們落到不同的桶中,設分別為B[i']和B[j']。不失一般性,假設i' i'=floor(n*A[i])≥floor(n*A[j])=j' 得矛盾 (因為i' 來分析演算法的運行時間。除第5行外,所有各行在最壞情況的時間都是O(n)。第5行中檢查所有桶的時間是O(n)。分析中唯一有趣的部分就在於第5行中插人排序所花的時間。
為分析插人排序的時間代價,設ni為表示桶B[i]中元素個數的隨機變數。因為插入排序以二次時間運行,故為排序桶B[i]中元素的期望時間為E[O(ni2)]=O(E[ni2]),對各個桶中的所有元素排序的總期望時間為:O(n)。(1) 為了求這個和式,要確定每個隨機變數ni的分布。我們共有n個元素,n個桶。某個元素落到桶B[i]的概率為l/n,因為每個桶對應於區間[0,1)的l/n。這種情況與投球的例子很類似:有n個球 (元素)和n個盒子 (桶),每次投球都是獨立的,且以概率p=1/n落到任一桶中。這樣,ni=k的概率就服從二項分布B(k;n,p),其期望值為E[ni]=np=1,告褲方差V[ni]=np(1-p)=1-1/n。對任意隨機變數X,有右圖所示表達式。
(2)將這個界用到(1)式上,得出桶排序中的插人排序的期望運行時間為O(n)。因而,整個桶排序的期望運行時間就是線性的。
I. c語言 K桶排序
d
J. C語言排序
//總共給你整理了7種排序演算法:希爾排序,鏈式基數排序,歸並排序
//起泡排序,簡單選擇排序,樹形選擇排序,堆排序,先自己看看吧,
//看不懂可以再問身邊的人或者查資料,既然可以上網,我相信你所在的地方信息流通方式應該還行,所有的程序全部在VC++6.0下編譯通過
//希爾排序
#include<stdio.h>
typedef int InfoType; // 定義其它數據項的類型
#define EQ(a,b) ((a)==(b))
#define LT(a,b) ((a)<(b))
#define LQ(a,b) ((a)<=(b))
#define MAXSIZE 20 // 一個用作示例的小順序表的最大長度
typedef int KeyType; // 定義關鍵字類型為整型
struct RedType // 記錄類型
{
KeyType key; // 關鍵字項
InfoType otherinfo; // 其它數據項,具體類型在主程中定義
};
struct SqList // 順序表類型
{
RedType r[MAXSIZE+1]; // r[0]閑置或用作哨兵單元
int length; // 順序表長度
};
void ShellInsert(SqList &L,int dk)
{ // 對順序表L作一趟希爾插入排序。本演算法是和一趟直接插入排序相比,
// 作了以下修改:
// 1.前後記錄位置的增量是dk,而不是1;
// 2.r[0]只是暫存單元,不是哨兵。當j<=0時,插入位置已找到。演算法10.4
int i,j;
for(i=dk+1;i<=L.length;++i)
if LT(L.r[i].key,L.r[i-dk].key)
{ // 需將L.r[i]插入有序增量子表
L.r[0]=L.r[i]; // 暫存在L.r[0]
for(j=i-dk;j>0&<(L.r[0].key,L.r[j].key);j-=dk)
L.r[j+dk]=L.r[j]; // 記錄後移,查找插入位置
L.r[j+dk]=L.r[0]; // 插入
}
}
void print(SqList L)
{
int i;
for(i=1;i<=L.length;i++)
printf("%d ",L.r[i].key);
printf("\n");
}
void print1(SqList L)
{
int i;
for(i=1;i<=L.length;i++)
printf("(%d,%d)",L.r[i].key,L.r[i].otherinfo);
printf("\n");
}
void ShellSort(SqList &L,int dlta[],int t)
{ // 按增量序列dlta[0..t-1]對順序表L作希爾排序。演算法10.5
int k;
for(k=0;k<t;++k)
{
ShellInsert(L,dlta[k]); // 一趟增量為dlta[k]的插入排序
printf("第%d趟排序結果: ",k+1);
print(L);
}
}
#define N 10
#define T 3
void main()
{
RedType d[N]={{49,1},{38,2},{65,3},{97,4},{76,5},{13,6},{27,7},{49,8},{55,9},{4,10}};
SqList l;
int dt[T]={5,3,1}; // 增量序列數組
for(int i=0;i<N;i++)
l.r[i+1]=d[i];
l.length=N;
printf("排序前: ");
print(l);
ShellSort(l,dt,T);
printf("排序後: ");
print1(l);
}
/*****************************************************************/
//鏈式基數排序
typedef int InfoType; // 定義其它數據項的類型
typedef int KeyType; // 定義RedType類型的關鍵字為整型
struct RedType // 記錄類型(同c10-1.h)
{
KeyType key; // 關鍵字項
InfoType otherinfo; // 其它數據項
};
typedef char KeysType; // 定義關鍵字類型為字元型
#include<string.h>
#include<ctype.h>
#include<malloc.h> // malloc()等
#include<limits.h> // INT_MAX等
#include<stdio.h> // EOF(=^Z或F6),NULL
#include<stdlib.h> // atoi()
#include<io.h> // eof()
#include<math.h> // floor(),ceil(),abs()
#include<process.h> // exit()
#include<iostream.h> // cout,cin
// 函數結果狀態代碼
#define TRUE 1
#define FALSE 0
#define OK 1
#define ERROR 0
#define INFEASIBLE -1
typedef int Status; // Status是函數的類型,其值是函數結果狀態代碼,如OK等
typedef int Boolean; // Boolean是布爾類型,其值是TRUE或FALSE
#define MAX_NUM_OF_KEY 8 // 關鍵字項數的最大值
#define RADIX 10 // 關鍵字基數,此時是十進制整數的基數
#define MAX_SPACE 1000
struct SLCell // 靜態鏈表的結點類型
{
KeysType keys[MAX_NUM_OF_KEY]; // 關鍵字
InfoType otheritems; // 其它數據項
int next;
};
struct SLList // 靜態鏈表類型
{
SLCell r[MAX_SPACE]; // 靜態鏈表的可利用空間,r[0]為頭結點
int keynum; // 記錄的當前關鍵字個數
int recnum; // 靜態鏈表的當前長度
};
typedef int ArrType[RADIX];
void InitList(SLList &L,RedType D[],int n)
{ // 初始化靜態鏈表L(把數組D中的數據存於L中)
char c[MAX_NUM_OF_KEY],c1[MAX_NUM_OF_KEY];
int i,j,max=D[0].key; // max為關鍵字的最大值
for(i=1;i<n;i++)
if(max<D[i].key)
max=D[i].key;
L.keynum=int(ceil(log10(max)));
L.recnum=n;
for(i=1;i<=n;i++)
{
L.r[i].otheritems=D[i-1].otherinfo;
itoa(D[i-1].key,c,10); // 將10進制整型轉化為字元型,存入c
for(j=strlen(c);j<L.keynum;j++) // 若c的長度<max的位數,在c前補'0'
{
strcpy(c1,"0");
strcat(c1,c);
strcpy(c,c1);
}
for(j=0;j<L.keynum;j++)
L.r[i].keys[j]=c[L.keynum-1-j];
}
}
int ord(char c)
{ // 返回k的映射(個位整數)
return c-'0';
}
void Distribute(SLCell r[],int i,ArrType f,ArrType e) // 演算法10.15
{ // 靜態鍵表L的r域中記錄已按(keys[0],…,keys[i-1])有序。本演算法按
// 第i個關鍵字keys[i]建立RADIX個子表,使同一子表中記錄的keys[i]相同。
// f[0..RADIX-1]和e[0..RADIX-1]分別指向各子表中第一個和最後一個記錄
int j,p;
for(j=0;j<RADIX;++j)
f[j]=0; // 各子表初始化為空表
for(p=r[0].next;p;p=r[p].next)
{
j=ord(r[p].keys[i]); // ord將記錄中第i個關鍵字映射到[0..RADIX-1]
if(!f[j])
f[j]=p;
else
r[e[j]].next=p;
e[j]=p; // 將p所指的結點插入第j個子表中
}
}
int succ(int i)
{ // 求後繼函數
return ++i;
}
void Collect(SLCell r[],ArrType f,ArrType e)
{ // 本演算法按keys[i]自小至大地將f[0..RADIX-1]所指各子表依次鏈接成
// 一個鏈表,e[0..RADIX-1]為各子表的尾指針。演算法10.16
int j,t;
for(j=0;!f[j];j=succ(j)); // 找第一個非空子表,succ為求後繼函數
r[0].next=f[j];
t=e[j]; // r[0].next指向第一個非空子表中第一個結點
while(j<RADIX-1)
{
for(j=succ(j);j<RADIX-1&&!f[j];j=succ(j)); // 找下一個非空子表
if(f[j])
{ // 鏈接兩個非空子表
r[t].next=f[j];
t=e[j];
}
}
r[t].next=0; // t指向最後一個非空子表中的最後一個結點
}
void printl(SLList L)
{ // 按鏈表輸出靜態鏈表
int i=L.r[0].next,j;
while(i)
{
for(j=L.keynum-1;j>=0;j--)
printf("%c",L.r[i].keys[j]);
printf(" ");
i=L.r[i].next;
}
}
void RadixSort(SLList &L)
{ // L是採用靜態鏈表表示的順序表。對L作基數排序,使得L成為按關鍵字
// 自小到大的有序靜態鏈表,L.r[0]為頭結點。演算法10.17
int i;
ArrType f,e;
for(i=0;i<L.recnum;++i)
L.r[i].next=i+1;
L.r[L.recnum].next=0; // 將L改造為靜態鏈表
for(i=0;i<L.keynum;++i)
{ // 按最低位優先依次對各關鍵字進行分配和收集
Distribute(L.r,i,f,e); // 第i趟分配
Collect(L.r,f,e); // 第i趟收集
printf("第%d趟收集後:\n",i+1);
printl(L);
printf("\n");
}
}
void print(SLList L)
{ // 按數組序號輸出靜態鏈表
int i,j;
printf("keynum=%d recnum=%d\n",L.keynum,L.recnum);
for(i=1;i<=L.recnum;i++)
{
printf("keys=");
for(j=L.keynum-1;j>=0;j--)
printf("%c",L.r[i].keys[j]);
printf(" otheritems=%d next=%d\n",L.r[i].otheritems,L.r[i].next);
}
}
void Sort(SLList L,int adr[]) // 改此句(類型)
{ // 求得adr[1..L.length],adr[i]為靜態鏈表L的第i個最小記錄的序號
int i=1,p=L.r[0].next;
while(p)
{
adr[i++]=p;
p=L.r[p].next;
}
}
void Rearrange(SLList &L,int adr[]) // 改此句(類型)
{ // adr給出靜態鏈表L的有序次序,即L.r[adr[i]]是第i小的記錄。
// 本演算法按adr重排L.r,使其有序。演算法10.18(L的類型有變)
int i,j,k;
for(i=1;i<L.recnum;++i) // 改此句(類型)
if(adr[i]!=i)
{
j=i;
L.r[0]=L.r[i]; // 暫存記錄L.r[i]
while(adr[j]!=i)
{ // 調整L.r[adr[j]]的記錄到位直到adr[j]=i為止
k=adr[j];
L.r[j]=L.r[k];
adr[j]=j;
j=k; // 記錄按序到位
}
L.r[j]=L.r[0];
adr[j]=j;
}
}
#define N 10
void main()
{
RedType d[N]={{278,1},{109,2},{63,3},{930,4},{589,5},{184,6},{505,7},{269,8},{8,9},{83,10}};
SLList l;
int *adr;
InitList(l,d,N);
printf("排序前(next域還沒賦值):\n");
print(l);
RadixSort(l);
printf("排序後(靜態鏈表):\n");
print(l);
adr=(int*)malloc((l.recnum)*sizeof(int));
Sort(l,adr);
Rearrange(l,adr);
printf("排序後(重排記錄):\n");
print(l);
}
/*******************************************/
//歸並排序
#include<stdio.h>
typedef int InfoType; // 定義其它數據項的類型
#define EQ(a,b) ((a)==(b))
#define LT(a,b) ((a)<(b))
#define LQ(a,b) ((a)<=(b))
#define MAXSIZE 20 // 一個用作示例的小順序表的最大長度
typedef int KeyType; // 定義關鍵字類型為整型
struct RedType // 記錄類型
{
KeyType key; // 關鍵字項
InfoType otherinfo; // 其它數據項,具體類型在主程中定義
};
struct SqList // 順序表類型
{
RedType r[MAXSIZE+1]; // r[0]閑置或用作哨兵單元
int length; // 順序表長度
};
void Merge(RedType SR[],RedType TR[],int i,int m,int n)
{ // 將有序的SR[i..m]和SR[m+1..n]歸並為有序的TR[i..n] 演算法10.12
int j,k,l;
for(j=m+1,k=i;i<=m&&j<=n;++k) // 將SR中記錄由小到大地並入TR
if LQ(SR[i].key,SR[j].key)
TR[k]=SR[i++];
else
TR[k]=SR[j++];
if(i<=m)
for(l=0;l<=m-i;l++)
TR[k+l]=SR[i+l]; // 將剩餘的SR[i..m]復制到TR
if(j<=n)
for(l=0;l<=n-j;l++)
TR[k+l]=SR[j+l]; // 將剩餘的SR[j..n]復制到TR
}
void MSort(RedType SR[],RedType TR1[],int s, int t)
{ // 將SR[s..t]歸並排序為TR1[s..t]。演算法10.13
int m;
RedType TR2[MAXSIZE+1];
if(s==t)
TR1[s]=SR[s];
else
{
m=(s+t)/2; // 將SR[s..t]平分為SR[s..m]和SR[m+1..t]
MSort(SR,TR2,s,m); // 遞歸地將SR[s..m]歸並為有序的TR2[s..m]
MSort(SR,TR2,m+1,t); // 遞歸地將SR[m+1..t]歸並為有序的TR2[m+1..t]
Merge(TR2,TR1,s,m,t); // 將TR2[s..m]和TR2[m+1..t]歸並到TR1[s..t]
}
}
void MergeSort(SqList &L)
{ // 對順序表L作歸並排序。演算法10.14
MSort(L.r,L.r,1,L.length);
}
void print(SqList L)
{
int i;
for(i=1;i<=L.length;i++)
printf("(%d,%d)",L.r[i].key,L.r[i].otherinfo);
printf("\n");
}
#define N 7
void main()
{
RedType d[N]={{49,1},{38,2},{65,3},{97,4},{76,5},{13,6},{27,7}};
SqList l;
int i;
for(i=0;i<N;i++)
l.r[i+1]=d[i];
l.length=N;
printf("排序前:\n");
print(l);
MergeSort(l);
printf("排序後:\n");
print(l);
}
/**********************************************/
//起泡排序
#include<string.h>
#include<ctype.h>
#include<malloc.h> // malloc()等
#include<limits.h> // INT_MAX等
#include<stdio.h> // EOF(=^Z或F6),NULL
#include<stdlib.h> // atoi()
#include<io.h> // eof()
#include<math.h> // floor(),ceil(),abs()
#include<process.h> // exit()
#include<iostream.h> // cout,cin
// 函數結果狀態代碼
#define TRUE 1
#define FALSE 0
#define OK 1
#define ERROR 0
#define INFEASIBLE -1
typedef int Status;
typedef int Boolean;
#define N 8
void bubble_sort(int a[],int n)
{ // 將a中整數序列重新排列成自小至大有序的整數序列(起泡排序)
int i,j,t;
Status change;
for(i=n-1,change=TRUE;i>1&&change;--i)
{
change=FALSE;
for(j=0;j<i;++j)
if(a[j]>a[j+1])
{
t=a[j];
a[j]=a[j+1];
a[j+1]=t;
change=TRUE;
}
}
}
void print(int r[],int n)
{
int i;
for(i=0;i<n;i++)
printf("%d ",r[i]);
printf("\n");
}
void main()
{
int d[N]={49,38,65,97,76,13,27,49};
printf("排序前:\n");
print(d,N);
bubble_sort(d,N);
printf("排序後:\n");
print(d,N);
}
/****************************************************/
//簡單選擇排序
#include<stdio.h>
typedef int InfoType; // 定義其它數據項的類型
#define MAXSIZE 20 // 一個用作示例的小順序表的最大長度
typedef int KeyType; // 定義關鍵字類型為整型
struct RedType // 記錄類型
{
KeyType key; // 關鍵字項
InfoType otherinfo; // 其它數據項,具體類型在主程中定義
};
struct SqList // 順序表類型
{
RedType r[MAXSIZE+1]; // r[0]閑置或用作哨兵單元
int length; // 順序表長度
};
int SelectMinKey(SqList L,int i)
{ // 返回在L.r[i..L.length]中key最小的記錄的序號
KeyType min;
int j,k;
k=i; // 設第i個為最小
min=L.r[i].key;
for(j=i+1;j<=L.length;j++)
if(L.r[j].key<min) // 找到更小的
{
k=j;
min=L.r[j].key;
}
return k;
}
void SelectSort(SqList &L)
{ // 對順序表L作簡單選擇排序。演算法10.9
int i,j;
RedType t;
for(i=1;i<L.length;++i)
{ // 選擇第i小的記錄,並交換到位
j=SelectMinKey(L,i); // 在L.r[i..L.length]中選擇key最小的記錄
if(i!=j)
{ // 與第i個記錄交換
t=L.r[i];
L.r[i]=L.r[j];
L.r[j]=t;
}
}
}
void print(SqList L)
{
int i;
for(i=1;i<=L.length;i++)
printf("(%d,%d)",L.r[i].key,L.r[i].otherinfo);
printf("\n");
}
#define N 8
void main()
{
RedType d[N]={{49,1},{38,2},{65,3},{97,4},{76,5},{13,6},{27,7},{49,8}};
SqList l;
int i;
for(i=0;i<N;i++)
l.r[i+1]=d[i];
l.length=N;
printf("排序前:\n");
print(l);
SelectSort(l);
printf("排序後:\n");
print(l);
}
/************************************************/
//樹形選擇排序
#include<string.h>
#include<ctype.h>
#include<malloc.h> // malloc()等
#include<limits.h> // INT_MAX等
#include<stdio.h> // EOF(=^Z或F6),NULL
#include<stdlib.h> // atoi()
#include<io.h> // eof()
#include<math.h> // floor(),ceil(),abs()
#include<process.h> // exit()
#include<iostream.h> // cout,cin
// 函數結果狀態代碼
#define TRUE 1
#define FALSE 0
#define OK 1
#define ERROR 0
#define INFEASIBLE -1
typedef int Status; // Status是函數的類型,其值是函數結果狀態代碼,如OK等
typedef int Boolean; // Boolean是布爾類型,其值是TRUE或FALSE
typedef int InfoType; // 定義其它數據項的類型
#define MAXSIZE 20 // 一個用作示例的小順序表的最大長度
typedef int KeyType; // 定義關鍵字類型為整型
struct RedType // 記錄類型
{
KeyType key; // 關鍵字項
InfoType otherinfo; // 其它數據項,具體類型在主程中定義
};
struct SqList // 順序表類型
{
RedType r[MAXSIZE+1]; // r[0]閑置或用作哨兵單元
int length; // 順序表長度
};
void TreeSort(SqList &L)
{ // 樹形選擇排序
int i,j,j1,k,k1,l,n=L.length;
RedType *t;
l=(int)ceil(log(n)/log(2))+1; // 完全二叉樹的層數
k=(int)pow(2,l)-1; // l層完全二叉樹的結點總數
k1=(int)pow(2,l-1)-1; // l-1層完全二叉樹的結點總數
t=(RedType*)malloc(k*sizeof(RedType)); // 二叉樹採用順序存儲結構
for(i=1;i<=n;i++) // 將L.r賦給葉子結點
t[k1+i-1]=L.r[i];
for(i=k1+n;i<k;i++) // 給多餘的葉子的關鍵字賦無窮大
t[i].key=INT_MAX;
j1=k1;
j=k;
while(j1)
{ // 給非葉子結點賦值
for(i=j1;i<j;i+=2)
t[i].key<t[i+1].key?(t[(i+1)/2-1]=t[i]):(t[(i+1)/2-1]=t[i+1]);
j=j1;
j1=(j1-1)/2;
}
for(i=0;i<n;i++)
{
L.r[i+1]=t[0]; // 將當前最小值賦給L.r[i]
j1=0;
for(j=1;j<l;j++) // 沿樹根找結點t[0]在葉子中的序號j1
t[2*j1+1].key==t[j1].key?(j1=2*j1+1):(j1=2*j1+2);
t[j1].key=INT_MAX;
while(j1)
{
j1=(j1+1)/2-1; // 序號為j1的結點的雙親結點序號
t[2*j1+1].key<=t[2*j1+2].key?(t[j1]=t[2*j1+1]):(t[j1]=t[2*j1+2]);
}
}
free(t);
}
void print(SqList L)
{
int i;
for(i=1;i<=L.length;i++)
printf("(%d,%d)",L.r[i].key,L.r[i].otherinfo);
printf("\n");
}
#define N 8
void main()
{
RedType d[N]={{49,1},{38,2},{65,3},{97,4},{76,5},{13,6},{27,7},{49,8}};
SqList l;
int i;
for(i=0;i<N;i++)
l.r[i+1]=d[i];
l.length=N;
printf("排序前:\n");
print(l);
TreeSort(l);
printf("排序後:\n");
print(l);
}
/****************************/
//堆排序
#include<stdio.h>
typedef int InfoType; // 定義其它數據項的類型
#define EQ(a,b) ((a)==(b))
#define LT(a,b) ((a)<(b))
#define LQ(a,b) ((a)<=(b))
#define MAXSIZE 20 // 一個用作示例的小順序表的最大長度
typedef int KeyType; // 定義關鍵字類型為整型
struct RedType // 記錄類型
{
KeyType key; // 關鍵字項
InfoType otherinfo; // 其它數據項,具體類型在主程中定義
};
struct SqList // 順序表類型
{
RedType r[MAXSIZE+1]; // r[0]閑置或用作哨兵單元
int length; // 順序表長度
};
typedef SqList HeapType; // 堆採用順序表存儲表示
void HeapAdjust(HeapType &H,int s,int m) // 演算法10.10
{ // 已知H.r[s..m]中記錄的關鍵字除H.r[s].key之外均滿足堆的定義,本函數
// 調整H.r[s]的關鍵字,使H.r[s..m]成為一個大頂堆(對其中記錄的關鍵字而言)
RedType rc;
int j;
rc=H.r[s];
for(j=2*s;j<=m;j*=2)
{ // 沿key較大的孩子結點向下篩選
if(j<m&<(H.r[j].key,H.r[j+1].key))
++j; // j為key較大的記錄的下標
if(!LT(rc.key,H.r[j].key))
break; // rc應插入在位置s上
H.r[s]=H.r[j];
s=j;
}
H.r[s]=rc; // 插入
}
void HeapSort(HeapType &H)
{ // 對順序表H進行堆排序。演算法10.11
RedType t;
int i;
for(i=H.length/2;i>0;--i) // 把H.r[1..H.length]建成大頂堆
HeapAdjust(H,i,H.length);
for(i=H.length;i>1;--i)
{ // 將堆頂記錄和當前未經排序子序列H.r[1..i]中最後一個記錄相互交換
t=H.r[1];
H.r[1]=H.r[i];
H.r[i]=t;
HeapAdjust(H,1,i-1); // 將H.r[1..i-1]重新調整為大頂堆
}
}
void print(HeapType H)
{
int i;
for(i=1;i<=H.length;i++)
printf("(%d,%d)",H.r[i].key,H.r[i].otherinfo);
printf("\n");
}
#define N 8
void main()
{
RedType d[N]={{49,1},{38,2},{65,3},{97,4},{76,5},{13,6},{27,7},{49,8}};
HeapType h;
int i;
for(i=0;i<N;i++)
h.r[i+1]=d[i];
h.length=N;
printf("排序前:\n");
print(h);
HeapSort(h);
printf("排序後:\n");
print(h);
}