1. 如何c語言與匯編混編
c語言可以嵌套匯編:
按照TC2.0的幫助系統所以說的,在TC2.0下是可以用匯編的,方法是使用asm關鍵字:其格式是:
asm opcode <operands> <;newline>,如同別的注釋一樣,<>之間的表示可選的;例如:
main()
{
char *c="hello,world/n/r$";
asm mov ah,9;asm mov dx,c;asm int 33;
printf("You sucessed!/n");
}
或者是:
main()
{
char *c="hello,world/n/r$";
asm mov ah,9
asm mov dx,c
asm int 33
printf("You sucessed!");
}
兩種格式其實是一種.如果你用的是第一種的樣式,記住:
每一句匯編語句都要以asm開頭,如果一行內有多個句子,
那麼千萬不要忘記在兩個句子之間的這個semicolon(分號),
但是最後一句匯編後面(如果後面沒有其它的語句)的分號可有可無,象第一個例子中的
asm int 33;後面的分號就可以不要,因為它的後面沒有其它
的語句了.但如果是這樣:
asm mov ah,9; asm mov dx,c;asm int 33; printf("You sucessed!");
那麼asm int 33;後面的分號便還是留下好,以免出現編譯錯誤!
在這一點上頗象C語言.
還有一種格式是
asm{ assembly language statement},這種格式應該被普遍的歡迎.
它們的例子如下(其中的語句排列格式與上面兩種相同):
asm{
mov ax,var1
add ax,var2
......
}
但是要注意這種格式TC2.0是不支持的!
只有後來的TC++3.0及後來的IDE支持!
工具的使用:
一旦你的C源文件里包括了這些好東西,則必須用TCC.EXE的COMMAND-LINE來編譯,具體的命令參數TCC.EXE已經提供,這里不復闡述了.最簡單的是:TCC C源文件名(使用這個方法,TCC會自動調用TASM.EXE和TLINK.EXE,並且能夠使TLINK.EXE正確的找到需要的.obj和.lib文件,如果你單步編譯的話,可能會碰到很多的問題,主要是TLINK.EXE它自己並不會去找.obj和.lib文件,你自己可以建一個.bat文件,如果要指定.lib文件的目錄的話可以用/L參數,在文章的後面有一個例子).但大家要注意了,看一下你的TC目錄下面到底是否有TASM.EXE文件,並在TURBOC.CFG(這個文件包括TCC.EXE運行期參數,這裡面所有參數在運很期都將被自動TCC.EXE使用,例如:-IH:/TC/INCLUDE/
-LH:/TC/LIB/)文件中設置好一些參數,並確認TASM.EXE的版本號要2.0以上,以及是否能夠向下兼容.但是在大多數的情況下TC的目錄是沒有TASM.EXE的,或是版本不正常.
如果你有TASM.EXE文件並且TURBOC.CFG文件也已經寫好了,但是還要注意一個
問題:運行TCC.EXE時要在獨立的DOS SHELL下面(不要害怕,這不是一個新東西,我的意思
是,不在諸如TC下的DOS SHELL下面運行,我曾經敗在這個問題下,當我發現時直想揍電腦
一頓,還好沒有,不然就沒有這篇文件了.)
還有一句重要的話:TC2.0支持大部分8086指令(當然用法有一些約定,不過現在我並不打算
進行詳細說明,因為那是一件很繁雜的事,以後有時間或許會寫出來----如果大家需要的話).
如果說上面我所說的那些約定很繁雜的話,那麼下面的方法該是多麼簡單啊!
讓我們使用Borland為TC2.0內建的變數來進行偽匯編.
或許你還不知道在TC2.0中還有一些內建的pseudo寄存器(可以看作是register 型的變數,但是它們比register型的變數好用的多)
_AX,_AH,_AL,
_BX,_BH,_BL,
_CX,_CH,_CL,
_DX,_DH,_DL,
_DI,_SI,_SP,
_CS,_DS,_ES,_SS
注意這些寄存器的size,_AX,_BX,_CX,_DX,_CS,_DS,_ES,_SS,_SI,_DI,_SP等都是16位的寄存器相當於C語言的unsigned int類型,其餘的都是8位的寄存器(相當於unsigned char)(TC怎麼可能支持32位的寄存呢,所以EAX等是不能用的,FS,GS和IP寄存器都是無效的),還有就是在傳遞參數的時候千萬不要忘記使用強制類型轉換.
中斷調用指令是:__int__(interrupt_#)(注意int的前輟和後輟都是兩個underscores)
For example:
#include<dos.h>
unsigned int _stklen=0x200;
unsigned int _heaplen=0;
main()
{
_DX=(unsigned int)"Hello,world./r/n$";
_AX=0x900;
__int__(0x21);
}
dos.h它是包含__int__()內建中斷調用語句的頭文件,因此是不可
缺少的._stklen和_heaplen是定義運行期堆棧和堆大小的兩個內部
引用變數(這是個我自己想的名詞,意指如果這兩個變數在源文件中
顯式的聲明了,那麼編譯程序會自會引用來構造編譯時期的信息以產生
用戶希望的目標文件,如果不顯式的聲明則編譯程序自動確定).
這兩個變數也有一些約定,如果_stklen不顯式聲明,_heaplen賦值為零
都表示棧和堆都是defult的.
最後在TC2.0中還有一個沒有說明的標志位寄存器flags,它也是內建
pseudo寄存器是:_FLAGS,是一個16位寄存器.這些內建的寄存器都可以進行
運算,但是要注意它們所代表的類型(必要時進行類型轉換);
看起來這是不是一種好的辦法啊(而且使用這種方法只要用個一個dos.h頭文件就好,
不需要用TCC編譯,可以直接在TC20的IDE下編譯).
TC2.0中也提供了一些簡單好用的函數來實現對DOS功能的調用如:
int86(...),int86x(...)(但是這些方法實際仍然要調用函數,所以不如使用
偽寄存器,又因為要牽涉到union REGS結構的內存分配所以系統的開銷是增大了,
而使用偽寄存器是最簡潔的),埠通信函數如:inportb(...),inport(...),
outportb(...),outport(...),指針轉換函數:FP_OFF,FP_SEG,MK_FP,這些函數在
幫助系統中都有,有用時大家可以查閱.
tlinkbat.bat的例子:
rem The lib environment variable is the directory of the .obj and .lib file
set lib=h:/tc/lib/
rem 這下面的句子中的c0s(C 零S)是一個.OBJ文件,是一個C程序的STARTUP文件
tlink %lib%c0s %1,%1,%1,/L%lib%emu.lib %lib%maths.lib %lib%cs.lib
set lib=
(使用時可將以rem開頭的句子刪除)
___________________________________________________
一些約定:
我們先說一下在TC20下寫匯編(內聯匯編--自己起的名字,大家可以想叫什麼叫什麼)時的編譯器的編譯原則:
1.所有在main()函數外的的匯編語言的語句都作為數據聲明語句處理,也即在編譯器編譯時會將它放在數據段中,如:
asm string1 db "Hello",,,'world!',0ah,0xd,"$"
main()
{
asm mov dx,offset string1
asm mov ah,9
asm int 33
asm mov dx,offset string2
asm int 33
}
asm string2 db "the string can be declared after the main() function!$"
象這些樣子在main()外面的匯編語言的數據定義語句(事實上不管是什麼匯編語句,
只要是在main()之外,包括這個句子:asm mov ax,0x4c00),在編譯後都放在數據段中,而C語言的數據聲明語句仍按C的規則!
2.所有在main()函內的匯編語言的語句在編譯後都放在代碼段中,包括這個句子:
asm string2 db "the string can be declared after the main() function!$"
3.不要在以asm 開頭的語句中使用C語言的關鍵字,這會導致編譯階段的錯誤
那麼,根據這三條大家會得到什麼樣的結論呢?(先閉上眼想一想,你可能會由此變的
很贊賞自己,是的你應該這樣相信自己是對的!)
讓我們一起看一下這個結論:
1.根據編譯原則1得到:不可以在main()外面寫匯編命令語句(不要笑,正是與C語言相同才值得注意!),在任何地方都不要進行任何的段定義和宏定義(這是因為編譯後的形式決定的,也即:在TC20下所有的匯編格式的語句只能是,直接性的數據定義和語句指令)!
2根據編譯原則2得到:不可以在main()之內使用匯編的語句進行數據定義(同樣不要笑,
大多數人在第一次在TC20下寫匯編都會有這樣的錯誤的)
3.如同類強制類型這樣的事是不可以在以asm開頭的匯編語句中使用的
好了,天即朗,氣瞬清!這樣一說,一個大體的框架就出來了!只要遵守這個原則寫,就可避免很多莫名其妙的錯誤出現!
通俗的說:
匯編語句的數據定義放在main()外面,指令放在main()裡面.
如果你沒有更好的文檔,那麼記住我的這些話!
一些細節的問題:
在以asm開頭的內聯匯編語句中是不支持C的轉義字元的,但是用C語言聲明一個字元數組(含有轉義字元的),然後用int 33 ah=9這功能時輸出這個字元串時,其中的轉義字元是有效的(這主要是因為編譯後其內部表示形式不同造成的,自己想想會有答案的).
內聯匯編支持C的一些如數值表示,字元串聲明格式等,
如:一個十六進制的數據可以用兩種方式表示:0xa 和0ah,字元串可以是這樣:
"Hello,world!$"(如同C)也可以這樣'Hello,world!$'(用匯編自己的方式).
象C一樣你同樣要注意賦值的類型,而且要比C更嚴格(匯編從來不自己動手做
如同類型轉換啊這樣事),所以一切的事完全要你自己做好!而且你不要企圖以C的形式
做這件事,如這樣的格式 asm mov dx,(unsigned)a(a是一個這樣的東西,
char a[ ]="hello,world!";),而且這樣句子也會導致錯誤:asm mov dx,word ptr a(邏輯錯誤),不過這不是在編譯時的錯誤,而是運行期的錯誤(具體的原因自己想一想,象word label這樣的東西的運算作用和會導致的後果),你可以這樣用一個句子做"中間人"如int i=(unsigned)a;asm mov dx,i(也千萬不要用asm mov dx,(unsigned)a 這樣的句子.但是,告訴大家一個好消息,你可以用指針指向一個字元串,然後你會驚訝你竟然可以這樣:
char *p="hello,world";asm mov dx,p,然後用int 33 ah=9的功能輸出這個字元串而不會有錯誤(這也表現出指針的特點,它是一個二位元組的(TC20下)變數,含有的是一個地址,這與其指向的變數的類型是毫無關系的).
內匯匯編語句不支持->這個運算符.還有標號的問題,在最後的例子中你會年看到一些特別之處!
上面所說的只是很細小並微少的一些事(也是很常遇到的),尚有很多的細節要說,但由於本人時間有限不能一一列舉,如C的結構在內聯匯編的應用等大家可以按照其運行機理去想想一下用法;另外,由於這只是一件學習的事,所以還是大家自己學(找一下有關文檔,當然現在已經沒有什麼比較完整的了),情況會好的多,我在對內聯匯編的學習過程中領會到了不少的東西,例如編譯原理方面的知識,以及如何做會使代碼更高效,占空間最少等的方法.最後向大家推薦一種方法,在利用TCC的-S開關可以生成C源文件的匯編代碼
(或許很多的人都用過)是很好的學習材料!祝大家學有所成!
Cstarter
02-11-17
/* 由於個人的時間和能力有限,難免有錯誤和不詳細的地方,請大家見諒!
My Email:[email protected] [email protected] QQ:170594633 */
一些例子:
下面這個例子是對沈美明 溫冬嬋的
<<IBM-PC 匯編語言程序設計>>清華版第十一章程序的改寫
可直接在命令行上鍵入 tcc filename 就可以,當然你要有TASM.EXE
/*
asm mus_frep dw 330,294,262,294,3 p(330)
asm dw 3 p(294),330,392,392
asm dw 330,294,262,294,4 p(330)
asm dw 294,294,330,294,262,-1
asm mus_time dw 6 p(25),50
asm dw 2 p (25,25,50)
asm dw 12 p(25),100
*/
asm mus_frep dw 330,392,330,294,330,392,330,294,330
asm dw 330,392,330,294,262,294,330,392,294
asm dw 262,262,220,196,196,220,262,294,330,262
asm dw -1
asm mus_time dw 3 p (50),25,25,50,25,25,100
asm dw 2 p (50,50,25,25),100
asm dw 3 p (50,25,25),100
main()
{
asm jmp start
/*設置發聲的頻率,這一段在沈美明 溫冬嬋的
<<IBM-PC 匯編語言程序設計>>清華版第十一章有詳細的說明 */
sound:
asm mov al,0b6h
asm out 43h,al
asm mov dx,12h
asm mov ax,533h*896
asm div di
asm out 42h, al
asm mov al,ah
/* 這個延時是用來防止兩次IO操作的最後一次操作的錯誤,
因為CPU比匯流排的速度快很多,所以 要延時等待第一次操作完成後再進行第二次操作*/
asm mov cx,1000
delay:
asm loop delay
asm out 42h,al
asm in al,61h
asm mov ah,al
asm or al,3
asm out 61h,al
/* 使用中斷15H功能86H延時CX:DX=微秒數*/
asm mov ax,2710h
asm mul bx
asm mov cx,dx
asm mov dx,ax
asm mov ah,86h
asm int 15h /*可用__int__(0x15);代替*/
asm mov al,ah
asm out 61h,al
asm jmp add_count
/*------------------*/
start:
asm mov si,offset mus_frep
asm lea bp,mus_time
frep:
asm mov di,[si]
asm cmp di,-1
asm je end_mus
asm mov bx,[bp]
asm jmp sound
add_count: /*標號不能用匯編語言寫*/
asm add si,2
asm add bp,2
asm jmp frep
end_mus:;
}
對於上面的程序大家可用偽寄存器的方法寫一個,要容易的多!
/*一個發聲程序!(引自<<PC技術內幕>>電力版--這個版不好,不如清華版的)*/
#include"dos.h"
main()
{
static union REGS ourregs;
outportb(0x43,0xb6);
outportb(0x42,0xee);
outportb(0x42,0);
outportb(0x61,(inportb(0x61)|0x03));
ourregs.h.ah=0x86;
ourregs.x.cx=0x001e;
ourregs.x.dx=0x8480;
int86(0x15,&ourregs,&ourregs);
outportb(0x61,(inportb(0x61)&0xfc));
}
2. C語言本身是用什麼語言開發的匯編
如果問的是C語言編譯器的話,第一個C語言的編譯器應該是匯編開發的,但是以後就可以用C語言開發C語言編譯器了,編譯這東西友滲並不存在想顫告核當然的「大茄掘魚吃小魚」的規則,用理論上用JAVA來開發C語言的編譯器都是可以的,但是JAVA運行在JVM上而JVM又是C++開發的,繞了一圈,所以用JAVA這種虛擬機語言開發編譯器不是一種好選擇,據我所知JAVA的編譯器JAVAC倒是用JAVA開發的。
在當下很多編譯器包括C語言的編譯器都用C或者C++或者C/C++混合開發了,連nasm匯編器都是用C/C++開發的,「編譯器悖論」
現在90%的編譯器都是用C/C++開發的,包括他們自己的編譯器
3. 匯編語言和C語言有什麼聯系嗎,他們分別是干什麼的
任何高級語言(包括c),最終都將轉化(通過編譯或解釋)為直接表示機器指令的匯編語言來執行。
每條匯編語句基本上指向一條機器指令。
C語言作為一個中級語言,相對於其他語言,和匯編較為接近,在匯編和c之間相互轉變較為容易。
4. C語言為什麼要先編譯成匯編語言
C語言,具有可移植性,或者說同樣的代碼可以在不同cpu平台上運行得到同樣的結果
匯編語言,移植性差,一般針對某型cpu,每個類型的cpu都有自己的匯編語言
為保證C語言編制的通用演算法的可移植性,比如我們用C編寫了一套mp3解碼演算法程序,要在pc機上、手機上都能用,那麼我們就採用通用的C編譯器,將C語言程序編譯成指定CPU的匯編語言,再匯編成機器可執行程序。
另一個用途是程序優化問題,在C語言層次,由於是高級語言,不涉及底層硬體,那麼底層硬體的特性不能夠得到充分利用,在需要優化演算法的場合,我們需要將C語言演算法編譯生成匯編程序,然後修改需要優化的匯編程序達到目的。比如,你在手機上經常會遇到音頻解碼器,需要安裝,而且不同的cpu需要選擇不同的解碼器,這些解碼器應當就是在匯編層次上優化了演算法的可執行代碼,關鍵部分經過匯編級優化,不需要優化部分仍然使用C語言編譯的結果。
5. C語言中怎麼嵌入匯編
在 Visual C++ 中使用內聯匯編- -
使用內聯匯編可以在 C/C++ 代碼中嵌入匯編語言指令,帶衫而且不需要額外的匯編和連接步驟。在 Visual C++ 中,內聯匯編是內置的編譯器,因此不需要配置諸如 MASM 一類的獨立匯編工具。這里,我們就以 Visual Studio .NET 2003 為背景,介紹在 Visual C++ 中使用內聯匯的相關知識(如果是早期的版本,可能會有些許出入)。
內聯匯編代碼可以使用 C/C++ 變數和函數,因此它能非常容易地整合到 C/C++ 代碼中。它能做一些對於單獨使用 C/C++ 來說非常笨重或不可能完成的任務。
一、 優點
使用內聯匯編可以蔽碧在 C/C++ 代碼中嵌入匯編語言指令,而且不需要額外的匯編和連接步驟。在 Visual C++ 中,內聯匯編是內置的編譯器,因此不需要配置諸如 MASM 一類的獨立匯編工具。這里,我們就以 Visual Studio .NET 2003 為背景,介紹在 Visual C++ 中使用內聯匯的相關知識(如果是早期的版本,可能會有些許出入)。
內聯匯編代碼可以使用 C/C++ 變數和函數,因此它能非常容易地整合到 C/C++ 代碼中。它能做一些對於單獨使用 C/C++ 來說非常笨重或不可能完成的任務。
內聯匯編的用途包括:
使用匯編語言編寫特定的函數;
編寫對速度要求非常較高的代碼;
在設備驅動程序中直接訪問硬體;
編寫 naked 函數的初始化和結束代碼。
二、 關鍵字
使用內聯匯編要用到 __asm 關鍵字,它可以出現在任何允許 C/C++ 語句出現的地方。我們來看一些例子:
簡單的 __asm 塊:
__asm
{
MOV AL, 2
MOV DX, 0xD007
OUT AL, DX
}
在每條匯編指令之前加 __asm 關鍵字:
__asm MOV AL, 2
__asm MOV DX, 0xD007
__asm OUT AL, DX
因為 __asm 關鍵字是語句分隔符,所以可以把多條蠢並腔匯編指令放在同一行:
__asm MOV AL, 2 __asm MOV DX, 0xD007 __asm OUT AL, DX
顯然,第一種方法與 C/C++ 的風格很一致,並且把匯編代碼和 C/C++ 代碼清楚地分開,還避免了重復輸入 __asm 關鍵字,因此推薦使用第一種方法。
不像在 C/C++ 中的"{ }",__asm 塊的"{ }"不會影響 C/C++ 變數的作用范圍。同時,__asm 塊可以嵌套,而且嵌套也不會影響變數的作用范圍。
為了與低版本的 Visual C++ 兼容,_asm 和 __asm 具有相同的意義。另外,Visual C++ 支持標准 C++ 的 asm 關鍵字,但是它不會生成任何指令,它的作用僅限於使編譯器不會出現編譯錯誤。要使用內聯匯編,必須使用 __asm 而不是 asm 關鍵字。
三、 匯編語言
1. 指令集
內聯匯編支持 Intel Pentium 4 和 AMD Athlon 的所有指令。更多其它處理器的指令可以通過 _EMIT 偽指令來創建(_EMIT 偽指令說明見下文)。
2. MASM 表達式
在內聯匯編代碼中,可以使用所有的 MASM 表達式(MASM 表達式是指用來計算一個數值或一個地址的操作符和操作數的組合)。
3. 數據指示符和操作符
雖然 __asm 塊中允許使用 C/C++ 的數據類型和對象,但它不能使用 MASM 指示符和操作符來定義數據對象。這里特別指出,__asm 塊中不允許 MASM 中的定義指示符(DB、DW、DD、DQ、DT 和 DF),也不允許使用 DUP 和 THIS 操作符。MASM 中的結構和記錄也不再有效,內聯匯編不接受 STRUC、RECORD、WIDTH 或者 MASK。
4. EVEN 和 ALIGN 指示符
盡管內聯匯編不支持大多數 MASM 指示符,但它支持 EVEN 和 ALIGN。當需要的時候,這些指示符在匯編代碼裡面加入 NOP 指令(空操作)使標號對齊到特定邊界。這樣可以使某些處理器取指令時具有更高的效率。
5. MASM 宏指示符
內聯匯編不是宏匯編,不能使用 MASM 宏指示符(MACRO、REPT、IRC、IRP 和 ENDM)和宏操作符(>、!、&、% 和 .TYPE)。
6. 段
必須使用寄存器而不是名稱來指明段(段名稱"_TEXT"是無效的)。並且,段跨越必須顯式地說明,如 ES:[EBX]。
7. 類型和變數大小
在內聯匯編中,可以用 LENGTH、SIZE 和 TYPE 來獲取 C/C++ 變數和類型的大大小。
* LENGTH 操作符用來取得 C/C++ 中數組的元素個數(如果不是一個數組,則結果為 1)。
* SIZE 操作符可以獲取 C/C++ 變數的大小(一個變數的大小是 LENGTH 和 TYPE 的乘積)。
* TYPE 操作符可以返回 C/C++ 類型和變數的大小(如果變數是一個數組,它得到的是數組中單個元素的大小)。
例如,程序中定義了一個 8 維的整數型變數:
int iArray[8];
下面是 C 和匯編表達式中得到的 iArray 及其元素的相關值:
__asm C Size
LENGTH iArray sizeof(iArray)/sizeof(iArray[0]) 8
SIZE iArray sizeof(iArray) 32
TYPE iArray sizeof(iArray[0]) 4
8. 注釋
內聯匯編中可以使用匯編語言的注釋,即";"。例如:
__asm MOV EAX, OFFSET pbBuff ; Load address of pbBuff
因為 C/C++ 宏將會展開到一個邏輯行中,為了避免在宏中使用匯編語言注釋帶來的混亂,內聯匯編也允許使用 C/C++ 風格的注釋。
9. _EMIT 偽指令
_EMIT 偽指令相當於 MASM 中的 DB,但是 _EMIT 一次只能在當前代碼段(.text 段)中定義一個位元組。例如:
__asm
{
JMP _CodeLabel
_EMIT 0x00 ; 定義混合在代碼段的數據
_EMIT 0x01
_CodeLabel: ; 這里是代碼
_EMIT 0x90 ; NOP指令
}
10. 寄存器使用
一般來說,不能假定某個寄存器在 __asm 塊開始的時候有已知的值。寄存器的值將不能保證會從 __asm 塊保留到另外一個 __asm 塊中。
如果一個函數聲明為 __fastcall 調用方式,則其參數將通過寄存器而不是堆棧來傳遞。這將會使 __asm 塊產生問題,因為函數無法被告知哪個參數在哪個寄存器中。如果函數接收了 EAX 中的參數並立即儲存一個值到 EAX 中的話,原來的參數將丟失掉。另外,在所有聲明為 __fastcall 的函數中,ECX 寄存器是必須一直保留的。為了避免以上的沖突,包含 __asm 塊的函數不要聲明為 __fastcall 調用方式。
提示:如果使用 EAX、EBX、ECX、EDX、ESI 和 EDI 寄存器,你不需要保存它。但如果你用到了 DS、SS、SP、BP 和標志寄存器,那就應該用 PUSH 保存這些寄存器。
提示:如果程序中改變了用於 STD 和 CLD 的方向標志,必須將其恢復到原來的值。
四、 使用 C/C++ 元素
1. 可用的 C/C++ 元素
C/C++ 與匯編語言可以混合使用,在內聯匯編中可以使用 C/C++ 變數以及很多其它的 C/C++ 元素,包括:
符號,包括標號、變數和函數名;
常量,包括符號常量和枚舉型成員;
宏定義和預處理指示符;
注釋,包括"/**/"和"//";
類型名,包括所有 MASM 中合法的類型;
typedef 名稱,通常使用 PTR 和 TYPE 操作符,或者使用指定的的結構或枚舉成員。
在內聯匯編中,可以使用 C/C++ 或匯編語言的基數計數法。例如,0x100 和 100H 是相等的。
2. 操作符使用
內聯匯編中不能使用諸如"<<"一類的 C/C++ 操作符。但是,C/C++ 和 MASM 共有的操作符(比如"*"和"[]"操作符),都被認為是匯編語言的操作符,是可以使用的。舉個例子:
int iArray[10];
__asm MOV iArray[6], BX ; Store BX at iArray + 6 (Not scaled)
iArray[6] = 0; // Store 0 at iArray+12 (Scaled)
提示:在內聯匯編中,可以使用 TYPE 操作符使其與 C/C++ 一致。比如,下面兩條語句是一樣的:
__asm MOV iArray[6 * TYPE int], 0 ; Store 0 at iArray + 12
iArray[6] = 0; // Store 0 at iArray + 12
3. C/C++ 符號使用
在 __asm 塊中可以引用所有在作用范圍內的 C/C++ 符號,包括變數名稱、函數名稱和標號。但是不能訪問 C++ 類的成員函數。
下面是在內聯匯編中使用 C/C++ 符號的一些限制:
每條匯編語句只能包含一個 C/C++ 符號。在一條匯編指令中,多個符號只能出現在 LENGTH、TYPE 或 SIZE 表達式中。
在 __asm 塊中引用函數必須先聲明。否則,編譯器將不能區別 __asm 塊中的函數名和標號。
在 __asm 塊中不能使用對於 MASM 來說是保留字的 C/C++ 符號(不區分大小寫)。MASM 保留字包含指令名稱(如 PUSH)和寄存器名稱(如 ESI)等。
在 __asm 塊中不能識別結構和聯合標簽。
4. 訪問 C/C++ 中的數據
內聯匯編的一個非常大的方便之處是它可以使用名稱來引用 C/C++ 變數。例如,如果 C/C++ 變數 iVar 在作用范圍內:
__asm MOV EAX, iVar ; Stores the value of iVar in EAX
如果 C/C++ 中的類、結構或者枚舉成員具有唯一的名稱,則在 __asm 塊中可以只通過成員名稱來訪問(省略"."操作符之前的變數名或 typedef 名稱)。然而,如果成員不是唯一的,你必須在"."操作符之前加上變數名或 typedef 名稱。例如,下面的兩個結構都具有 SameName 這個成員變數:
struct FIRST_TYPE
{
char *pszWeasel;
int SameName;
};
struct SECOND_TYPE
{
int iWonton;
long SameName;
};
如果按下面方式聲明變數:
struct FIRST_TYPE ftTest;
struct SECOND_TYPE stTemp;
那麼,所有引用 SameName 成員的地方都必須使用變數名,因為 SameName 不是唯一的。另外,由於上面的 pszWeasel 變數具有唯一的名稱,你可以僅僅使用它的成員名稱來引用它:
__asm
{
MOV EBX, OFFSET ftTest
MOV ECX, [EBX]ftTest.SameName ; 必須使用"ftTest"
MOV ESI, [EBX]. pszWeasel ; 可以省略"ftTest"
}
提示:省略變數名僅僅是為了書寫代碼方便,生成的匯編指令還是一樣的。
5. 用內聯匯編寫函數
如果用內聯匯編寫函數的話,要傳遞參數和返回一個值都是非常容易的。看下面的例子,比較一下用獨立匯編和內聯匯編寫的函數:
; PowerAsm.asm
; Compute the power of an integer
PUBLIC GetPowerAsm
_TEXT SEGMENT WORD PUBLIC 'CODE'
GetPowerAsm PROC
PUSH EBP ; Save EBP
MOV EBP, ESP ; Move ESP into EBP so we can refer
; to arguments on the stack
MOV EAX, [EBP+4] ; Get first argument
MOV ECX, [EBP+6] ; Get second argument
SHL EAX, CL ; EAX = EAX * (2 ^ CL)
POP EBP ; Restore EBP
RET ; Return with sum in EAX
GetPowerAsm ENDP
_TEXT ENDS
END
C/C++ 函數一般用堆棧來傳遞參數,所以上面的函數中需要通過堆棧位置來訪問它的參數(在 MASM 或其它一些匯編工具中,也允許通過名稱來訪問堆棧參數和局部堆棧變數)。
下面的程序是使用內聯匯編寫的:
// PowerC.c
#include
int GetPowerC(int iNum, int iPower);
int main()
{
printf("3 times 2 to the power of 5 is %d\n", GetPowerC( 3, 5));
}
int GetPowerC(int iNum, int iPower)
{
__asm
{
MOV EAX, iNum ; Get first argument
MOV ECX, iPower ; Get second argument
SHL EAX, CL ; EAX = EAX * (2 to the power of CL)
}
// Return with result in EAX
}
使用內聯匯編寫的 GetPowerC 函數可以通過參數名稱來引用它的參數。由於 GetPowerC 函數沒有執行 C 的 return 語句,所以編譯器會給出一個警告信息,我們可以通過 #pragma warning 禁止生成這個警告。
內聯匯編的其中一個用途是編寫 naked 函數的初始化和結束代碼。對於一般的函數,編譯器會自動幫我們生成函數的初始化(構建參數指針和分配局部變數等)和結束代碼(平衡堆棧和返回一個值等)。使用內聯匯編,我們可以自己編寫乾乾凈凈的函數。當然,此時我們必須自己動手做一些有關函數初始化和掃尾的工作。例如:
void __declspec(naked) MyNakedFunction()
{
// Naked functions must provide their own prolog.
__asm
{
PUSH EBP
MOV ESP, EBP
SUB ESP, __LOCAL_SIZE
}
.
.
.
// And we must provide epilog.
__asm
{
POP EBP
RET
}
}
6. 調用 C/C++ 函數
內聯匯編中調用聲明為 __cdecl 方式(默認)的 C/C++ 函數必須由調用者清除參數堆棧,下面是一個調用 C/C++ 函數例子:
#include
char szFormat[] = "%s %s\n";
char szHello[] = "Hello";
char szWorld[] = " world";
void main()
{
__asm
{
MOV EAX, OFFSET szWorld
PUSH EAX
MOV EAX, OFFSET szHello
PUSH EAX
MOV EAX, OFFSET szFormat
PUSH EAX
CALL printf
// 壓入了 3 個參數在堆棧中,調用函數之後要調整堆棧
ADD ESP, 12
}
}
提示:參數是按從右往左的順序壓入堆棧的。
如果調用 __stdcall 方式的函數,則不需要自己清除堆棧。因為這種函數的返回指令是 RET n,會自動清除堆棧。大多數 Windows API 函數均為 __stdcall 調用方式(僅除 wsprintf 等幾個之外),下面是一個調用 MessageBox 函數的例子:
#include
TCHAR g_tszAppName[] = TEXT("API Test");
void main()
{
TCHAR tszHello[] = TEXT("Hello, world!");
__asm
{
PUSH MB_OK OR MB_ICONINFORMATION
PUSH OFFSET g_tszAppName ; 全局變數用 OFFSET
LEA EAX, tszHello ; 局部變數用 LEA
PUSH EAX
PUSH 0
CALL DWORD PTR [MessageBox] ; 注意這里不是 CALL MessageBox,而是調用重定位過的函數地址
}
}
提示:可以不受限制地訪問 C++ 成員變數,但是不能訪問 C++ 的成員函數。
7. 定義 __asm 塊為 C/C++ 宏
使用 C/C++ 宏可以方便地把匯編代碼插入到源代碼中。但是這其中需要額外地注意,因為宏將會擴展到一個邏輯行中。
為了不會出現問題,請按以下規則編寫宏:
使用花括弧把 __asm 塊包圍住;
把 __asm 關鍵字放在每條匯編指令之前;
使用經典 C 風格的注釋("/* comment */"),不要使用匯編風格的注釋("; comment")或單行的 C/C++ 注釋("// comment");
舉個例子,下面定義了一個簡單的宏:
#define PORTIO __asm \
/* Port output */ \
{ \
__asm MOV AL, 2 \
__asm MOV DX, 0xD007 \
__asm OUT DX, AL \
}
乍一看來,後面的三個 __asm 關鍵字好像是多餘的。其實它們是需要的,因為宏將被擴展到一個單行中:
__asm /* Port output */ { __asm MOV AL, 2 __asm MOV DX, 0xD007 __asm OUT DX, AL }
從擴展後的代碼中可以看出,第三個和第四個 __asm 關鍵字是必須的(作為語句分隔符)。在 __asm 塊中,只有 __asm 關鍵字和換行符會被認為是語句分隔符,又因為定義為宏的一個語句塊會被認為是一個邏輯行,所以必須在每條指令之前使用 __asm 關鍵字。
括弧也是需要的,如果省略了它,編譯器將不知道匯編代碼在哪裡結束,__asm 塊後面的 C/C++ 語句看起來會被認為是匯編指令。
同樣是由於宏展開的原因,匯編風格的注釋("; comment")和單行的 C/C++ 注釋("// commen")也可能會出現錯誤。為了避免這些錯誤,在定義 __asm 塊為宏時請使用經典 C 風格的注釋("/* comment */")。
和 C/C++ 宏一樣 __asm 塊寫的宏也可以擁有參數。和 C/C++ 宏不一樣的是,__asm 宏不能返回一個值,因此,不能使用這種宏作為 C/C++ 表達式。
不要不加選擇地調用這種類型的宏。比如,在聲明為 __fastcall 的函數中調用匯編語言宏可能會導致不可預料的結果(請參看前文的說明)。
8. 轉跳
可以在 C/C++ 裡面使用 goto 轉跳到 __asm 塊中的標號處,也可以在 __asm 塊中轉跳到 __asm 塊裡面或外面的標號處。__asm 塊內的標號是不區分大小寫的(指令、指示符等也是不區分大小寫的)。例如:
void MyFunction()
{
goto C_Dest; /* 正確 */
goto c_dest; /* 錯誤 */
goto A_Dest; /* 正確 */
goto a_dest; /* 正確 */
__asm
{
JMP C_Dest ; 正確
JMP c_dest ; 錯誤
JMP A_Dest ; 正確
JMP a_dest ; 正確
a_dest: ; __asm 標號
}
C_Dest: /* C/C++ 標號 */
return;
}
不要使用函數名稱當作標號,否則將轉跳到函數中執行,而不是標號處。例如,由於 exit 是 C/C++ 的函數,下面的轉跳將不會到 exit 標號處:
; 錯誤:使用函數名作為標號
JNE exit
.
.
.
exit:
.
.
.
美元符號"$"用於指定當前指令位置,常用於條件跳轉中,例如:
JNE $+5 ; 下面這條指令的長度是 5 個位元組
JMP _Label
NOP ; $+5,轉跳到了這里
.
.
.
_Label:
.
.
.
五、在 Visual C++ 工程中使用獨立匯編
內聯匯編代碼不易於移植,如果你的程序打算在不同類型的機器(比如 x86 和 Alpha)上運行,你可能需要在不同的模塊中使用特定的機器代碼。這時候你可以使用 MASM(Microsoft Macro Assembler),因為 MASM 支持更多方便的宏指令和數據指示符。
這里簡單介紹一下在 Visual Studio .NET 2003 中調用 MASM 編譯獨立匯編文件的步驟。
在 Visual C++ 工程中,添加按 MASM 的要求編寫的 .asm 文件。在解決方案資源管理器中,右擊這個文件,選擇"屬性"菜單項,在屬性對話框中,點擊"自定義生成步驟",設置如下項目:
命令行:ML.exe /nologo /c /coff "-Fo$(IntDir)\$(InputName).obj" "$(InputPath)"
輸出:$(IntDir)\$(InputName).obj
如果要生成調試信息,可以在命令行中加入"/Zi"參數,還可以根據需要生成 .lst 和 .sbr 文件。
如果要在匯編文件中調用 Windows API,可以從網上下載 MASM32 包(包含了 MASM 匯編工具、非常完整的 Windows API 頭文件/庫文件、實用宏以及大量的 Win32 匯編例子等)。相應地,應該在命令行中加入"/I X:\MASM32\INCLUDE"參數指定 Windows API 匯編頭文件(.inc)的路徑。MASM32 的主頁是:http://www.masm32.com,裡面可以下載最新版本的 MASM32 包。
6. C語言和匯編語言的區別是什麼
區別如下:
(1)兩者編譯組成不同。匯編語言是將由0、1組成的機器語言用具有簡單語義的英文代碼表示,而C語言不但將許多相關的機器指令合成為單條指令,並且去掉了與具體操作有關但與完成工作無關的細節,例如使用堆棧、寄存器等。
(2)兩者被計算機識別的路徑不同。匯編語言通常用於對硬體的直接操控。而且C語言所編制的程序不能直接被計算機識別,必須經過轉換才能被執行。
(3)兩者用處不同。匯編語言通常用在程序中最核心的、控制硬體的代碼,一方面是安全,另一方面提高運行速度。而C語言通常用在計算機外用功能上。
(4)兩者學習難易程度不同。匯編語言所需要的編繪知識很多很復雜,經常被開發者使用。而C語言是一門很簡單方便的語言,編程者也就不需要有太多的專業知識。
計算機語言(Computer Language)指用於人與計算機之間通訊的語言。計算機語言是人與計算機之間傳遞信息的媒介。計算機系統最大特徵是指令通過一種語言傳達給機器。計算機語言從低級到高級可以分為:
(1)機器語言,即由0、1組成的機器硬體可以識別的語言;
(2)低級語言,即匯編語言
(3)中級語言,如C語言
(4)高級語言,如C++,JAVA,C#等。
(6)C語言背後的匯編擴展閱讀:
如今通用的編程語言有兩種形式:匯編語言和高級語言。
匯編語言和機器語言實質是相同的,都是直接對硬體操作,只不過指令採用了英文縮寫的標識符,容易識別和記憶。源程序經匯編生成的可執行文件不僅比較小,而且執行速度很快。
高級語言是絕大多數編程者的選擇。和匯編語言相比,它不但將許多相關的機器指令合成為單條指令,並且去掉了與具體操作有關但與完成工作無關的細節,例如使用堆棧、寄存器等,這樣就大大簡化了程序中的指令。同時,由於省略了很多細節,編程者也就不需要有太多的專業知識。
高級語言主要是相對於低級語言而言,它並不是特指某一種具體的語言,而是包括了很多編程語言,如流行的vb、vc、foxpro、delphi等,這些語言的語法、命令格式都各不相同。
高級語言所編制的程序不能直接被計算機識別,必須經過轉換才能被執行,按轉換方式可將它們分為兩類:解釋類和編譯類。
7. 匯編語言和C語言有什麼聯系嗎,他們分別是干什麼的
計算機程序設計語言的發展,經歷了從機器語言、匯編語言到高級語言的歷程。
1. 機器語言
電子計算機所使用的是由「0」和「1」組成的二進制數,二進制是計算機的語言的基礎。計算機發明之初,人們只能降貴紆尊,用計算機的語言去命令計算機干這干那,一句話,就是寫出一串串由「0」和「1」組成的指令序列交由計算機執行,這種語言,就是機器語言。使用機器語言是十分痛苦的,特別是在程序有錯需要修改時,更是如此。而且,由於每台計算機的指令系統往往各不相同,所以,在一台計算機上執行的程序,要想在另一台計算機上執行,必須另編程序,造成了重復工作。但由於使用的是針對特定型號計算機的語言,故而運算效率是所有語言中最高的。機器語言,是第一代計算機語言。
2. 匯編語言
為了減輕使用機器語言編程的痛苦,人們進行了一種有益的改進:用一些簡潔的英文字母、符號串來替代一個特定的指令的二進制串,比如,用「A D D」代表加法,「M O V」代表數據傳遞等等,這樣一來,人們很容易讀懂並理解程序在干什麼,糾錯及維護都變得方便了,這種程序設計語言就稱為匯編語言,即第二代計算機語言。然而計算機是不認識這些符號的,這就需要一個專門的程序,專門負責將這些符號翻譯成二進制數的機器語言,這種翻譯程序被稱為匯編程序。
匯編語言同樣十分依賴於機器硬體,移植性不好,但效率仍十分高,針對計算機特定硬體而編制的匯編語言程序,能准確發揮計算機硬體的功能和特長,程序精煉而質量高,所以至今仍是一種常用而強有力的軟體開發工具。
3. 高級語言
從最初與計算機交流的痛苦經歷中,人們意識到,應該設計一種這樣的語言,這種語言接近於數學語言或人的自然語言,同時又不依賴於計算機硬體,編出的程序能在所有機器上通用。經過努力,1 9 5 4年,第一個完全脫離機器硬體的高級語言—F O RT R A N問世了,4 0多年來,共有幾百種高級語言出現,有重要意義的有幾十種,影響較大、使用較普遍的有F O RT R A N、A L G O L、C O B O L、B A S I C、L I S P、S N O B O L、P L / 1、P a s c a l、C、P R O L O G、A d a、C + +、V C、V B、D e l p h i、J AVA 等。
高級語言的發展也經歷了從早期語言到結構化程序設計語言,從面向過程到非過程化程序語言的過程。相應地,軟體的開發也由最初的個體手工作坊式的封閉式生產,發展為產業化、流水線式的工業化生產。
6 0年代中後期,軟體越來越多,規模越來越大,而軟體的生產基本上是人自為戰,缺乏科學規范的系統規劃與測試、評估標准,其惡果是大批耗費巨資建立起來的軟體系統,由於含有錯誤而無法使用,甚至帶來巨大損失,軟體給人的感覺是越來越不可靠,以致幾乎沒有不出錯的軟體。這一切,極大地震動了計算機界,史稱「軟體危機」。人們認識到:大型程序的編制不同於寫小程序,它應該是一項新的技術,應該像處理工程一樣處理軟體研製的全過程。程序的設計應易於保證正確性,也便於驗證正確性。1 9 6 9年,提出了結構化程序設計方法,1 9 7 0年,第一個結構化程序設計語言—P a s c a l語言出現,標志著結構化程序設計時期的開始。
8 0年代初開始,在軟體設計思想上,又產生了一次革命,其成果就是面向對象的程序設計。在此之前的高級語言,幾乎都是面向過程的,程序的執行是流水線似的,在一個模塊被執行完成前,人們不能幹別的事,也無法動態地改變程序的執行方向。這和人們日常處理事物的方式是不一致的,對人而言是希望發生一件事就處理一件事,也就是說,不能面向過程,而應是面向具體的應用功能,也就是對象(o b j e c t)。其方法就是軟體的集成化,如同硬體的集成電路一樣,生產一些通用的、封裝緊密的功能模塊,稱之為軟體集成塊,它與具體應用無關,但能相互組合,完成具體的應用功能,同時又能重復使用。對使用者來說,只關心它的介面(輸入量、輸出量)及能實現的功能,至於如何實現的,那是它內部的事,使用者完全不用關心,C + +、V B、D e l p h i就是典型代表。
高級語言的下一個發展目標是面向應用,也就是說:只需要告訴程序你要干什麼,程序就能自動生成演算法,自動進行處理,這就是非過程化的程序語言。
vc++是面向對象的高級語言
8. C語言屬於匯編語言嗎
兩個不同的概念,C語言屬於高級語言,裡面的侍碧稿INC和LIB文件夾裡面有很多API的封裝,你可以很方便的調用不同的庫函數。
匯編是底層的語言慧或,是最接近機器語言的一種語言。執行效率非常高,所形成的文件大小很小。如果你夠犀利,可以用匯編語言去調用C的函數庫。
你可以下載masm32的編譯器看看,裡面的INC和LIB文件夾的內容和C都是一樣的
不同的是,匯編只是將C語言裡面的INC和LIB裡面的內容用匯編語言老孝翻譯了一遍而已。
9. C語言和匯編語言的關系
程序員編寫的C語言代碼,首先要經過C語言編譯器,生成匯編代碼,這個過程稱為編譯階斷,當C語言編譯器生成匯編代碼後,再調用匯編器來將匯編代碼編譯成匯編指令。
這是一種站在巨人肩人的作法,最早的C++編程語言也是這樣的實現方法,只不過那時候叫Cfront程序,Cfront程序的作用是將C++代碼轉換成C語言代碼,類似於一個文本處理器,然後再調用C語言編譯器,將C源碼編譯成匯編代碼,然後再調用匯編器將匯編代碼編譯成機器碼。
這個過程,在Windows平台上不容易操作,但是在Linux平台上很容易看到。以gcc這款c語言編譯器為例,它實際上是四個小程序。
cp: c語言預處理程序,有它負責進行預處理操作。
cc: C語言編譯器,它負責將C源碼編譯成匯編代碼。
as: 匯編器,它負責將匯編代碼編譯成機器碼,一般使用gcc test.c這樣的命令編譯C語言時,會生成一個a.out的程序,它實際上指的就是as ouput,即匯編器輸出文件。
link: 鏈接器,它負責將匯編器輸入的機器碼和庫打包成一個操作系統可以運行的可執行文件,在Linux上的可執行文件格式是ELF格式,這個格式的實現是有鏈接器來完成的。
10. c語言是用什麼語言編寫的匯編嗎
C語言源自Ken Thompson發明的B語言,而 B語言則源自BCPL語言。
1967年,劍橋大學的Martin Richards對CPL語言進行了簡化,於是產生了BCPL(Basic Combined Programming Language)語言。
1972年,美國貝爾實驗室的 D.M.Ritchie 在B語言的基礎上最終設計出了一種新的語言,他取了BCPL的第二個字母作為這種語言的名字,這就是C語言。
(10)C語言背後的匯編擴展閱讀
C語言編譯器:
GCC,GNU組織開發的開源免費的編譯器
MinGW,Windows操作系統下的GCC
Clang,開源的BSD協議的基於LLVM的編譯器
Visual C++:: cl.exe,Microsoft VC++自帶的編譯器
C語言集成開發環境:
Code::Blocks,開源免費的C/C++ IDE
CodeLite,開源、跨平台的C/C++集成開發環境
Dev-C++,可移植的C/C++IDE
C-Free
Light Table
Visual Studio系列