當前位置:首頁 » 編程語言 » 技術貼常見的c語言內存錯誤及對策
擴展閱讀
webinf下怎麼引入js 2023-08-31 21:54:13
堡壘機怎麼打開web 2023-08-31 21:54:11

技術貼常見的c語言內存錯誤及對策

發布時間: 2023-08-07 03:39:39

A. c語言中常見錯誤

1.書寫標識符時,忽略了大小寫字母的區別。
main()
{
int a=5;
printf("%d",A);
}
編譯程序把a和A認為是兩個不同的變數名,而顯示出錯信息。C認為大寫字母和小寫字母是兩個不同的字元。習慣上,符號常量名用大寫,變數名用小寫表示,以增加可讀性。
2.忽略了變數的類型,進行了不合法的運算。
main()
{
float a,b;
printf("%d",a%b);
}
%是求余運算,得到a/b的整余數。整型變數a和b可以進行求余運算,而實型變數則不允許進行「求余」運算。
3.將字元常量與字元串常量混淆。
char c;
c="a";
在這里就混淆了字元常量與字元串常量,字元常量是由一對單引號括起來的單個字元,字元串常量是一對雙引號括起來的字元序列。C規定以「\」作字元串結束標志,它是由系統自動加上的,所以字元串「a」實際上包含兩個字元:『a'和『\',而把它賦給一個字元變數是不行的。
4.忽略了「=」與「==」的區別。
在許多高級語言中,用「=」符號作為關系運算符「等於」。如在BASIC程序中可以寫
if (a=3) then …
但C語言中,「=」是賦值運算符,「==」是關系運算符。如:
if (a==3) a=b;
前者是進行比較,a是否和3相等,後者表示如果a和3相等,把b值賦給a。由於習慣問題,初學者往往會犯這樣的錯誤。
5.忘記加分號。
分號是C語句中不可缺少的一部分,語句末尾必須有分號。
a=1
b=2
編譯時,編譯程序在「a=1」後面沒發現分號,就把下一行「b=2」也作為上一行語句的一部分,這就會出現語法錯誤。改錯時,有時在被指出有錯的一行中未發現錯誤,就需要看一下上一行是否漏掉了分號。
{ z=x+y;
t=z/100;
printf("%f",t);
}
對於復合語句來說,最後一個語句中最後的分號不能忽略不寫(這是和PASCAL不同的)。
6.多加分號。
對於一個復合語句,如:
{ z=x+y;
t=z/100;
printf("%f",t);
};
復合語句的花括弧後不應再加分號,否則將會畫蛇添足。
又如:
if (a%3==0);
I++;
本是如果3整除a,則I加1。但由於if (a%3==0)後多加了分號,則if語句到此結束,程序將執行I++語句,不論3是否整除a,I都將自動加1。
再如:
for (I=0;I<5;I++);
{scanf("%d",&x);
printf("%d",x);}
本意是先後輸入5個數,每輸入一個數後再將它輸出。由於for()後多加了一個分號,使循環體變為空語句,此時只能輸入一個數並輸出它。
7.輸入變數時忘記加地址運算符「&」。
int a,b;
scanf("%d%d",a,b);
這是不合法的。Scanf函數的作用是:按照a、b在內存的地址將a、b的值存進去。「&a」指a在內存中的地址。
8.輸入數據的方式與要求不符。①scanf("%d%d",&a,&b);
輸入時,不能用逗號作兩個數據間的分隔符,如下面輸入不合法:
3,4
輸入數據時,在兩個數據之間以一個或多個空格間隔,也可用回車鍵,跳格鍵tab。
②scanf("%d,%d",&a,&b);
C規定:如果在「格式控制」字元串中除了格式說明以外還有其它字元,則在輸入數據時應輸入與這些字元相同的字元。下面輸入是合法的:
3,4
此時不用逗號而用空格或其它字元是不對的。
3 4 3:4
又如:
scanf("a=%d,b=%d",&a,&b);
輸入應如以下形式:
a=3,b=4
9.輸入字元的格式與要求不一致。
在用「%c」格式輸入字元時,「空格字元」和「轉義字元」都作為有效字元輸入。
scanf("%c%c%c",&c1,&c2,&c3);
如輸入a b c
字元「a」送給c1,字元「 」送給c2,字元「b」送給c3,因為%c只要求讀入一個字元,後面不需要用空格作為兩個字元的間隔。
10.輸入輸出的數據類型與所用格式說明符不一致。
例如,a已定義為整型,b定義為實型
a=3;b=4.5;
printf("%f%d\n",a,b);
編譯時不給出出錯信息,但運行結果將與原意不符。這種錯誤尤其需要注意。

B. 在C語言中運行程序時最常出現的有那些錯誤

一、基礎知識和數據類型、表達式 1、{},[],(),『』,「」不配對。解決這個問題最好的方法就是每當寫這些符號的時候就先寫成一對,然後再在中間加內容。 2、忘記在語句的末尾加分號,或在預處理命令後多加分號。記住:每一個語句的後邊都要加分號,而預處理命令並不是語句,所以不加分號,他們必須每行一條,不能把多個命令寫在一行。 3、混淆/和\;注釋對應的符號是/* */,而轉義字元是以\開頭,除號是/。 4、printf()和scanf()的參數設置有誤,主要表現在以下幾方面: l 類型不匹配的問題。(例如:有float a=3.5,但輸出的時候printf(「a=%d」,a);則屏幕上會顯示出a=0.00000或者提示其它運行錯誤)。基本原則是:float對應%f, int對應%d, char對應%c。 l 個數不匹配。無論是哪個函數,都可以有n個參數,第一個永遠是「」括起來的內容,表示輸出格式。剩下的n-1個是輸出的變數或者輸入的變數的地址。需要注意的是,如果後邊有n-1個參數,那麼前邊一定對應n-1個%f一類的格式說明符。 l scanf()中變數前忘了加&。記住:scanf()中變數前要有&(但後邊學到的字元數組名和指針前不用加) 5、定義標識符的時候經常出現使用非法字元的情況,例如:標識符中不能用空格,也就是說不能有這樣的定義:int radium of circle;一般情況下可用下劃線將三個單詞連接在一起。 6、在使用變數前未定義,或未初始化。例如:若下邊的sum未定義,則在編譯時會提示相應的錯誤信息,而若未初始化為0,則求和的結果一定是錯誤的。 void main() { int I,a[10], sum=0; /*只要下邊要用,這個定義就必須要有,一般情況下也要有初始值*/ for(I=0;I<10;I++) sum+=a[I]; printf(「%d」,sum); } 7、計算錯誤。主要注意:++,――和其它運算符一起運算時,除根據優先順序進行計算時,還要考慮先後位置的特殊含義;數據類型不一致時發生的自動轉換也會導致計算的誤差;還要注意求模結果的符號與被除數相同;某些特殊情況下 使用懶惰求值法。 8、不能除以0,要做合法性檢查; 9、類型溢出。記住每種數據類型的取值范圍,確保數據在所定義類型範圍之內; 10、數學表達式的格式有誤。常見的有:

C. C語言 內存的問題

一個由c/C++編譯的程序佔用的內存分為以下幾個部分
1、棧區(stack)— 由編譯器自動分配釋放 ,存放函數的參數值,局部變數的值
等。其操作方式類似於數據結構中的棧。
2、堆區(heap) — 一般由程序員分配釋放, 若程序員不釋放,程序結束時可能
由OS回收 。注意它與數據結構中的堆是兩回事,分配方式倒是類似於鏈表,呵呵。
3、全局區(靜態區)(static)—,全局變數和靜態變數的存儲是放在一塊的,初
始化的全局變數和靜態變數在一塊區域, 未初始化的全局變數和未初始化的靜態
變數在相鄰的另一塊區域。 - 程序結束後有系統釋放
4、文字常量區 —常量字元串就是放在這里的。 程序結束後由系統釋放
5、程序代碼區—存放函數體的二進制代碼。

所以你說的1不正確
2 文字常量區和代碼區是獨立,代碼區存放編譯後的代碼 文字常量區 存放 字元串常量
比如char *p="123455"; 那這個「12345」就放在文字常量區 這個區域不能修改 p指向的內容不能修改

3malloc申請和new申請的在同一個位置 叫堆區 也叫自由存儲區
4 malloc等

5解釋是const申明的變數 如果不需要地址 編譯器會給它優化 把它作為一個常量替換掉出現該變數的地方 比如const a=3;
後面 b=a+b; 編譯器直接處理成
b=3+b;

D. c語言訪問內存沖突,這該怎麼辦啊

、C中內存分為四個區
棧:用來存放函數的形參和函數內的局部變數。由編譯器分配空間,在函數執行完後由編譯器自動釋放。 
堆:用來存放由動態分配函數(如malloc)分配的空間。是由程序員自己手動分配的,並且必須由程序員使用free釋放。如果忘記用free釋放,會導致所分配的空間一直占著不放,導致內存泄露。 
全局局:用來存放全局變數和靜態變數。存在於程序的整個運行期間,是由編譯器分配和釋放的。 
文字常量區:例如char *c = 「123456」;則」123456」為文字常量,存放於文字常量區。也由編譯器控制分配和釋放。 
程序代碼區:用來存放程序的二進制代碼。
例子(一) 
int a = 0; //全局區 
void main() 

int b; //棧 
char s[] = abc; //s在棧,abc在文字常量區 
char *p1,*p2; //棧 
char *p3 = 123456; //123456在常量區,p3在棧上 
static int c =0; //全局區 
p1 = (char *)malloc(10); //p1在棧,分配的10位元組在堆 
p2 = (char *)malloc(20); //p2在棧,分配的20位元組在堆 
strcpy(p1, 123456); //123456放在常量區 

例子(二) 
//返回char型指針 
char *f() 

//s數組存放於棧上 
char s[4] = {'1','2','3','0'}; 
return s; //返回s數組的地址,但程序運行完s數組就被釋放了 

void main() 

char *s; 
s = f(); 
printf (%s, s); //列印出來亂碼。因為s所指向地址已經沒有數據 

2、動態分配釋放內存
用malloc動態分配內存後一定要判斷一下分配是否成功,判斷指針的值是否為NULL。 
內存分配成功後要對內存單元進行初始化。 
內存分配成功且初始化後使用時別越界了。 
內存使用完後要用free(p)釋放,注意,釋放後,p的值是不會變的,仍然是一個地址值,仍然指向那塊內存區,只是這塊內存區的值變成垃圾了。為了防止後面繼續使用這塊內存,應在free(p)後,立即p=NULL,這樣後面如果要使用,判斷p是否為NULL時就會判斷出來。

NO.1
void GetMemory(char *p)
{
p = (char *)malloc(100);
}
void Test(void)
{
char *str = NULL;
GetMemory(str);
strcpy(str,hello world);
printf(str);
}
請問運行Test函數後會是什麼樣的結果?
NO.2
char *GetMemory(void)
{
char p[] = hello world;
retrun p;
}
void Test(void)
{
char *str = NULL;
str = GetMemory();
printf(str);
}
問題同NO.1
NO.3
void GetMemory2(char **p, int num)
{
*p = (char *)malloc(num);
}
void Test(void)
{
char *str = NULL;
GetMemory(&str,100);
strcpy(str,hello);
printf(str);
}
問題同NO.1
NO.4
void Test(void)
{
char *str = (char *)malloc(100);
strcpy(str,hello);
free(str);
if(str != NULL)

strcpy(str,world);
printf(str);
}
}
問題同NO.1
我對以上問題的分析:
NO.1:程序首先申請一個char類型的指針str,並把str指向NULL(即str里存的是NULL的地址,*str為NULL中的值為0),調用函數的過程中做了如下動作:1申請一個char 類型的指針p,2把str的內容到了p里(這是參數傳遞過程中系統所做的),3為p指針申請了100個空間,4返回Test函數.最後程序把字元串hello world拷貝到str指向的內存空間里.到這里錯誤出現了!str的空間始終為NULL而並沒有實際的空間.深刻理解函數調用的第2步,將不難發現問題所在!(建議:畫圖理解)
NO.2:程序首先申請一個char類型的指針str,並把str指向NULL.調用函數的過程中做了如下動作:1申請一數組p[]並將其賦值為hello world(數組的空間大小為12),2返回數組名p付給str指針(即返回了數組的首地址).那麼這樣就可以列印出字元串"hello world"了么?當然是不能的!因為在函數調用的時候漏掉了最後一步.也就是在第2步return數組名後,函數調用還要進行一步操作,也就是釋放內存空間.當一個函數被調用結束後它會釋放掉它裡面所有的變數所佔用的空間.所以數組空間被釋放掉了,也就是說str所指向的內容將不確定是什麼東西.
NO.3:正確答案為可以列印出hello.但內存泄漏了! 
NO.4:申請空間,拷貝字元串,釋放空間.前三步操作都沒有任何問題.到if語句里的判斷條件開始出錯了,因為一個指針被釋放之後其內容並不是NULL,而是一個不確定的值.所以if語句永遠都不能被執行.這也是著名的"野"指針問題.所以我們在編寫程序釋放一個指針之後一定要人為的將指針付成NULL.這樣就會避免出現"野"指針的出現.有人說"野"指針很可怕,會帶來意想不到的錯誤.

C語言內存對齊

C99規定int、unsigned int和bool可以作為位域類型,但編譯器幾乎都對此作了擴展,允許其它類型類型的存在。

使用位域的主要目的是壓縮存儲,其大致規則為:
1) 如果相鄰位域欄位的類型相同,且其位寬之和小於類型的sizeof大小,則後面的欄位將緊鄰前一個欄位存儲,直到不能容納為止;
2) 如果相鄰位域欄位的類型相同,但其位寬之和大於類型的sizeof大小,則後面的欄位將從新的存儲單元開始,其偏移量為其類型大小的整數倍;
3) 如果相鄰的位域欄位的類型不同,則各編譯器的具體實現有差異,VC6採取不壓縮方式,Dev-C++採取壓縮方式;
4) 如果位域欄位之間穿插著非位域欄位,則不進行壓縮;
5) 整個結構體的總大小為最寬基本類型成員大小的整數倍。

還是讓我們來看看例子。
示例1:
struct BF1
{
char f1 : 3;
char f2 : 4;
char f3 : 5;
};
其內存布局為:
|_f1__|__f2__|_|____f3___|____|
|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|
0 3 7 8 1316
位域類型為char,第1個位元組僅能容納下f1和f2,所以f2被壓縮到第1個位元組中,而f3隻能從下一個位元組開始。因此sizeof(BF1)的結果為2。
示例2:
struct BF2
{
char f1 : 3;
short f2 : 4;
char f3 : 5;
};
由於相鄰位域類型不同,在VC6中其sizeof為6,在Dev-C++中為2。
示例3:
struct BF3
{
char f1 : 3;
char f2;
char f3 : 5;
};

 

什麼是內存對齊

    考慮下面的結構:

         struct foo
         {
           char c1;
           short s;
           char c2;
           int i;
          };
    
    假設這個結構的成員在內存中是緊湊排列的,假設c1的地址是0,那麼s的地址就應該是1,c2的地址就是3,i的地址就是4。也就是
    c1 00000000, s 00000001, c2 00000003, i 00000004。

    可是,我們在Visual c/c++ 6中寫一個簡單的程序:

         struct foo a;
    printf("c1 %p, s %p, c2 %p, i %p/n",
        (unsigned int)(void*)&a.c1 - (unsigned int)(void*)&a,
        (unsigned int)(void*)&a.s - (unsigned int)(void*)&a,
        (unsigned int)(void*)&a.c2 - (unsigned int)(void*)&a,
        (unsigned int)(void*)&a.i - (unsigned int)(void*)&a);
    運行,輸出:
         c1 00000000, s 00000002, c2 00000004, i 00000008。

    為什麼會這樣?這就是內存對齊而導致的問題。

為什麼會有內存對齊

    以下內容節選自《Intel Architecture 32 Manual》。
    字,雙字,和四字在自然邊界上不需要在內存中對齊。(對字,雙字,和四字來說,自然邊界分別是偶數地址,可以被4整除的地址,和可以被8整除的地址。)
    無論如何,為了提高程序的性能,數據結構(尤其是棧)應該盡可能地在自然邊界上對齊。原因在於,為了訪問未對齊的內存,處理器需要作兩次內存訪問;然而,對齊的內存訪問僅需要一次訪問。
    一個字或雙字操作數跨越了4位元組邊界,或者一個四字操作數跨越了8位元組邊界,被認為是未對齊的,從而需要兩次匯流排周期來訪問內存。一個字起始地址是奇數但卻沒有跨越字邊界被認為是對齊的,能夠在一個匯流排周期中被訪問。
    某些操作雙四字的指令需要內存操作數在自然邊界上對齊。如果操作數沒有對齊,這些指令將會產生一個通用保護異常(#GP)。雙四字的自然邊界是能夠被16整除的地址。其他的操作雙四字的指令允許未對齊的訪問(不會產生通用保護異常),然而,需要額外的內存匯流排周期來訪問內存中未對齊的數據。

編譯器對內存對齊的處理

    預設情況下,c/c++編譯器默認將結構、棧中的成員數據進行內存對齊。因此,上面的程序輸出就變成了:
c1 00000000, s 00000002, c2 00000004, i 00000008。
編譯器將未對齊的成員向後移,將每一個都成員對齊到自然邊界上,從而也導致了整個結構的尺寸變大。盡管會犧牲一點空間(成員之間有空洞),但提高了性能。
也正是這個原因,我們不可以斷言sizeof(foo) == 8。在這個例子中,sizeof(foo) == 12。

如何避免內存對齊的影響

    那麼,能不能既達到提高性能的目的,又能節約一點空間呢?有一點小技巧可以使用。比如我們可以將上面的結構改成:

struct bar
{
    char c1; 
    char c2;
    short s;
    int i;
};
    這樣一來,每個成員都對齊在其自然邊界上,從而避免了編譯器自動對齊。在這個例子中,sizeof(bar) == 8。

    這個技巧有一個重要的作用,尤其是這個結構作為API的一部分提供給第三方開發使用的時候。第三方開發者可能將編譯器的默認對齊選項改變,從而造成這個結構在你的發行的DLL中使用某種對齊方式,而在第三方開發者哪裡卻使用另外一種對齊方式。這將會導致重大問題。
    比如,foo結構,我們的DLL使用默認對齊選項,對齊為
c1 00000000, s 00000002, c2 00000004, i 00000008,同時sizeof(foo) == 12。
而第三方將對齊選項關閉,導致
    c1 00000000, s 00000001, c2 00000003, i 00000004,同時sizeof(foo) == 8。

如何使用c/c++中的對齊選項

    vc6中的編譯選項有 /Zp[1|2|4|8|16] ,/Zp1表示以1位元組邊界對齊,相應的,/Zpn表示以n位元組邊界對齊。n位元組邊界對齊的意思是說,一個成員的地址必須安排在成員的尺寸的整數倍地址上或者是n的整數倍地址上,取它們中的最小值。也就是:
    min ( sizeof ( member ),  n)
    實際上,1位元組邊界對齊也就表示了結構成員之間沒有空洞。
    /Zpn選項是應用於整個工程的,影響所有的參與編譯的結構。
    要使用這個選項,可以在vc6中打開工程屬性頁,c/c++頁,選擇Code Generation分類,在Struct member alignment可以選擇。

    要專門針對某些結構定義使用對齊選項,可以使用#pragma pack編譯指令。指令語法如下:
#pragma pack( [ show ] | [ push | pop ] [, identifier ] , n  )
    意義和/Zpn選項相同。比如:

#pragma pack(1)
struct foo_pack
{
    char c1;
    short s;
    char c2;
    int i;
};
#pragma pack()

棧內存對齊

    我們可以觀察到,在vc6中棧的對齊方式不受結構成員對齊選項的影響。(本來就是兩碼事)。它總是保持對齊,而且對齊在4位元組邊界上。

驗證代碼

#include <stdio.h>

struct foo
{
    char c1;
    short s;
    char c2;
    int i;
};

struct bar
{
    char c1; 
    char c2;
    short s;
    int i;
};

#pragma pack(1)
struct foo_pack
{
    char c1;
    short s;
    char c2;
    int i;
};
#pragma pack()

int main(int argc, char* argv[])
{
    char c1;
    short s;
    char c2;
    int i;

    struct foo a;
    struct bar b;
    struct foo_pack p;

    printf("stack c1 %p, s %p, c2 %p, i %p/n",
        (unsigned int)(void*)&c1 - (unsigned int)(void*)&i,
        (unsigned int)(void*)&s - (unsigned int)(void*)&i,
        (unsigned int)(void*)&c2 - (unsigned int)(void*)&i,
        (unsigned int)(void*)&i - (unsigned int)(void*)&i);

    printf("struct foo c1 %p, s %p, c2 %p, i %p/n",
        (unsigned int)(void*)&a.c1 - (unsigned int)(void*)&a,
        (unsigned int)(void*)&a.s - (unsigned int)(void*)&a,
        (unsigned int)(void*)&a.c2 - (unsigned int)(void*)&a,
        (unsigned int)(void*)&a.i - (unsigned int)(void*)&a);

    printf("struct bar c1 %p, c2 %p, s %p, i %p/n",
        (unsigned int)(void*)&b.c1 - (unsigned int)(void*)&b,
        (unsigned int)(void*)&b.c2 - (unsigned int)(void*)&b,
        (unsigned int)(void*)&b.s - (unsigned int)(void*)&b,
        (unsigned int)(void*)&b.i - (unsigned int)(void*)&b);

    printf("struct foo_pack c1 %p, s %p, c2 %p, i %p/n",
        (unsigned int)(void*)&p.c1 - (unsigned int)(void*)&p,
        (unsigned int)(void*)&p.s - (unsigned int)(void*)&p,
        (unsigned int)(void*)&p.c2 - (unsigned int)(void*)&p,
        (unsigned int)(void*)&p.i - (unsigned int)(void*)&p);

    printf("sizeof foo is %d/n", sizeof(foo));
    printf("sizeof bar is %d/n", sizeof(bar));
    printf("sizeof foo_pack is %d/n", sizeof(foo_pack));
    
    return 0;
}