當前位置:首頁 » 密碼管理 » 太陽起源的密碼是多少
擴展閱讀
webinf下怎麼引入js 2023-08-31 21:54:13
堡壘機怎麼打開web 2023-08-31 21:54:11

太陽起源的密碼是多少

發布時間: 2022-11-15 20:12:30

A. 太陽是怎樣產生的

目前關於太陽起源,公認的假說是由康德和拉普拉斯提出的星雲假說,認為太陽是在大約50億年前,從原始星雲中不斷積聚物質誕生的。按照太陽的氫含量和反應速度,太陽還可以至少穩定維持50億年。

B. 太陽起源是什麼

太陽是在大約45.7億年前在一個坍縮的氫分子雲內形成。

太陽(Sun)是太陽系的中心天體,佔有太陽系總體質量的99.86%。太陽系中的八大行星、小行星、流星、彗星、外海王星天體以及星際塵埃等,都圍繞著太陽公轉,而太陽則圍繞著銀河系的中心公轉。

太陽是位於太陽系中心的恆星,它幾乎是熱等離子體與磁場交織著的一個理想球體。太陽直徑大約是1392000(1.392×10⁶)千米,相當於地球直徑的109倍;體積大約是地球的130萬倍;其質量大約是2×10³⁰千克(地球的330000倍)。


從化學組成來看,現在太陽質量的大約四分之三是氫,剩下的幾乎都是氦,包括氧、碳、氖、鐵和其他的重元素質量少於2%,採用核聚變的方式向太空釋放光和熱。

太陽目前正在穿越銀河系內部邊緣獵戶臂的本地泡區中的本星際雲。在距離地球17光年的距離內有50顆最鄰近的恆星系(與太陽距離最近的恆星是稱作比鄰星的紅矮星,大約4.2光年)。

C. 太陽系的起源之謎是什麼

200多年來,科學家們對太陽系的起源做過無數次的深入探討。迄今為止,人們對太陽系的起源已經提出過四十多種假說,但影響較大的只有災變說、星雲說和俘獲說這三種假說。
(1)災變說認為,太陽是太陽系中最先形成的星體,之後其他星體偶然從太陽附近經過或者是撞到了太陽上,從而帶走了太陽表面的一部分物質,慢慢地就形成了太陽系中的行星。
(2)星雲說認為,整個太陽系的物質都是由同一個原始星雲形成的,星雲的中心部分形成了太陽,外圍部分就形成了行星。
(3)俘獲說認為,太陽在星際空間的運動中,俘獲了一團星際物質,這些物質由小變大,最後形成了行星。

太陽系是一個以太陽為中心天體,由行星及其衛星、小行星、彗星、流星體和行星際物質共同構成的圍繞太陽公轉的天體系統。
盡管這些假說都有一定的依據,但它們都不能令人完全信服。所以,太陽系的起源問題,至今仍沒有一個科學的說法。

D. 太陽的起源

太陽是在大約45.7億年前在一個坍縮的氫分子雲內形成。太陽形成的時間以兩種方法測量:太陽目前在主序帶上的年齡,使用恆星演化和太初核合成的電腦模型確認,大約就是45.7億年。這與放射性定年法得到的太陽最古老的物質是45.67億年非常的吻合。

太陽在其主序的演化階段已經到了中年期,在這個階段的核聚變是在核心將氫聚變成氦。每秒中有超過400萬噸的物質在太陽的核心轉化成能量,產生中微子和太陽輻射。以這個速率,到目前為止,太陽大約轉化了100個地球質量的物質成為能量,太陽在主序帶上耗費的時間總共大約為100億年。

(4)太陽起源的密碼是多少擴展閱讀:

太陽的應用:

太陽的熱輻射能,主要表現就是常說的太陽光線。在現代一般用作發電或者為熱水器提供能源。

1、普遍:太陽光普照大地,沒有地域的限制,無論陸地或海洋,無論高山或島嶼,都處處皆有,可直接開發和利用,便於採集,且無須開采和運輸。

2、無害:開發利用太陽能不會污染環境,它是最清潔能源之一,在環境污染越來越嚴重的今天,這一點是極其寶貴的。

3、巨大:每年到達地球表面上的太陽輻射能約相當於130萬億噸煤,其總量屬現今世界上可以開發的最大能源。

4、長久:根據太陽產生的核能速率估算,氫的貯量足夠維持上百億年,而地球的壽命也約為幾十億年,從這個意義上講,可以說太陽的能量是用之不竭的。

E. 太陽是怎麼來的

太陽系是四十六億年前伴隨著太陽的形成而形成的。太陽星雲由於自身引力的作用而逐漸凝聚,漸漸形成了一個由多個天體按一定規律排列組成的天體系統。太陽系的成員包括一顆恆星、九大行星、至少六十三顆衛星、約一百萬顆小行星、無數的彗星和星際物質等。太陽是銀河系中一顆普通的恆星。根據恆星演化理論,太陽與其他大多數恆星一樣,是從一團星際氣體雲中誕成的。這團氣體雲存在於約四十六億年前,位於銀河系的盤狀結構中,離中心約25億億公里。其體積約為現在太陽的500萬倍,主要成份是氫分子。這就是「太陽星雲」。經歷四十多萬年的收縮凝聚,星雲中心誕生了一顆恆星,它就是太陽。在太陽形成以後不久,殘存在太陽周圍的一些氣體和塵埃,形成了圍繞太陽旋轉的行星和諸多小行星和彗星等其他太陽系天體,包括的地球和月亮。
太陽系九大行星與太陽的位置排列圖。從左到右分別是太陽、水星、金星、地球、火星、木星、土星、天王星、海王星和冥王星。
太陽在浩瀚的宇宙中談不上有什麼特殊性。組成銀河系的有大約兩千億顆恆星,而太陽只是其中中等大小的一顆。太陽已的年齡有五十億歲,正處在它一生中的中年時期。作為太陽系的中心,地球上所有生物的生長都直接或間接地需要它所提供的光和熱。太陽內核的溫度高達攝氏一千五百萬度,在那兒發生著氫-氦核聚變反應。核聚變反應每秒鍾要消耗掉約五百萬噸的物質,並轉換成能量以光子的形式釋放出來。這些光子從太陽中心到達太陽表面要花一百多萬年。光子從太陽中心出發後先要經過輻射帶,沿途在與原子微粒的碰撞丟失能量。隨後要經過對流帶,光子的能量被熾熱的氣體吸收,氣體在對流中向表面傳遞能量。到達對流帶邊緣後,光子已經冷卻到五千五百攝氏度了。我們所能直接看到的是位於太陽表面的光球層。光球層比較活躍,溫度約為攝氏六千多度,屬於比較「涼爽」部分。光球層上有一個個起伏的對流單元「米粒」。每個米粒的直徑在一千六百公里左右,它們是一個個從太陽內部升上來的熱氣流的頂問。就是在不斷的對流活動中,太陽每秒鍾向宇宙空間釋放著相當於一千億個百萬噸級核彈的能量。

F. 太陽的由來

太陽是在大約45.7億年前在一個坍縮的氫分子雲內形成。太陽形成的時間以兩種方法測量:太陽目前在主序帶上的年齡,使用恆星演化和太初核合成的電腦模型確認,大約就是45.7億年。這與放射性定年法得到的太陽最古老的物質是45.67億年非常的吻合。

1、太陽是在大約45.7億年前在一個坍縮的氫分子雲內形成。太陽形成的時間以兩種方法測量:太陽目前在主序帶上的年齡,使用恆星演化和太初核合成的電腦模型確認,大約就是45.7億年。這與放射性定年法得到的太陽最古老的物質是45.67億年非常的吻合。

2、太陽在其主序的演化階段已經到了中年期,在這個階段的核聚變是在核心將氫聚變成氦。每秒中有超過400萬噸的物質在太陽的核心轉化成能量,產生中微子和太陽輻射。以這個速率,到目前為止,太陽大約轉化了100個地球質量的物質成為能量,太陽在主序帶上耗費的時間總共大約為100億年。 

G. 太陽的由來

1、太陽是在大約45.7億年前在一個坍縮的氫分子雲內形成。太陽形成的時間以兩種方法測量:太陽目前在主序帶上的年齡,使用恆星演化和太初核合成的電腦模型確認,大約就是45.7億年。這與放射性定年法得到的太陽最古老的物質是45.67億年非常的吻合。
2、太陽在其主序的演化階段已經到了中年期,在這個階段的核聚變是在核心將氫聚變成氦。每秒中有超過400萬噸的物質在太陽的核心轉化成能量,產生中微子和太陽輻射。以這個速率,到目前為止,太陽大約轉化了100個地球質量的物質成為能量,太陽在主序帶上耗費的時間總共大約為100億年。?

H. 太陽從哪來的

在宇宙發展到一定時期,宇宙中充滿均勻的中性原子氣體雲,大體積氣體雲由於自身引力而不穩定造成塌縮。這樣恆星便進入形成階段。在塌縮開始階段,氣體雲內部壓力很微小,物質在自引力作用下加速向中心墜落。當物質的線度收縮了幾個數量級後,情況就不同了,一方面,氣體的密度有了劇烈的增加,另一方面,由於失去的引力位能部分的轉化成熱能,氣體溫度也有了很大的增加,氣體的壓力正比於它的密度與溫度的乘積,因而在塌縮過程中,壓力增長更快,這樣,在氣體內部很快形成一個足以與自引力相抗衡的壓力場,這壓力場最後制止引力塌縮,從而建立起一個新的力學平衡位形,稱之為星壞。
星坯的力學平衡是靠內部壓力梯度與自引力相抗衡造成的,而壓力梯度的存在卻依賴於內部溫度的不均勻性(即星坯中心的溫度要高於外圍的溫度),因此在熱學上,這是一個不平衡的系統,熱量將從中心逐漸地向外流出。這一熱學上趨向平衡的自然傾向對力學起著削弱的作用。於是星坯必須緩慢的收縮,以其引力位能的降低來升高溫度,從而來恢復力學平衡;同時也是以引力位能的降低,來提供星坯輻射所需的能量。這就是星坯演化的主要物理機制。
下面我們利用經典引力理論大致的討論這一過程。考慮密度為 ρ、溫度為T、半徑為r的球狀氣雲系統,氣體熱運動能量:
ET= RT= T
(1) 將氣體看成單原子理想氣體,μ為摩爾質量,R為氣體普適常數
為了得到氣雲球的的引力能Eg,想像經球的質量一點點移到無窮遠,將球全部移走場力作的功就等於-Eg。當球質量為m,半徑為r時,從表面移走dm過程中場力做功:
dW=- =-G( )1/3m2/3dm
(2) 所以:-Eg=- ( )1/3m2/3dm= G( M5/3
於是: Eg=- (2),
氣體雲的總能量: E=ET+EG (3)
熱運動使氣體分布均勻,引力使氣體集中。現在兩者共同作用。當E>0時熱運動為主,氣雲是穩定的,小的擾動不會影響氣雲平衡;當E<0時,引力為主,小的密度擾動產生對均勻的偏離,密度大處引力增大,使偏離加強而破壞平衡,氣體開始塌縮。由E≤0得到產生收縮的臨界半徑 :
(4) 相應的氣體雲的臨界質量為:
(5) 原始氣雲密度小,臨界質量很大。所以很少有恆星單獨產生,大部分是一群恆星一起產生成為星團。球形星團可以包含105→107個恆星,可以認為是同時產生的。
我們已知:太陽質量:MΘ=2×1033,半徑R=7×1010,我們帶入(2)可得出太陽收縮到今天這個狀態以釋放的引力能
太陽的總光度L=4×1033erg.s-1如果這個輻射光度靠引力為能源來維持,那麼持續的時間是:
很多證明表明,太陽穩定的保持著今天的狀態已有5×109年了,因此,星坯階段只能是太陽形成像今天這樣的穩定狀態之前的一個短暫過渡階段。

I. 太陽是什麼時候產生的

太陽的誕生 在群星之間,並不是空無一物,而是布滿了物質,是氣體,塵埃或兩者的混合物。其中一種低溫,不發光的星際塵雲,相信是形成恆星的基本材料。 這些黑暗的星際塵雲溫度很低,約為攝氏-260至-160之間。天文學家發現這類物質如果沒有什麼外力的話,這些星際塵雲就如天上的雲朵,在太空中天長地久的飄著。但是如果有些事情發生,例如鄰近有顆超新星爆炸,產生的震波通過星際塵雲時,會把它壓縮,而使星際塵雲的密度增加到可以靠本身的重力持續收縮。這種靠本身重力使體積越縮越小的過程,稱為「重力潰縮」。也有一些其它的外力,如銀河間的磁力或塵雲間的碰撞,也可能使星際雲產生重力潰縮。 大約在五十億年前,一個稱為」原始太陽星雲」的星際塵雲,開始重力潰縮。體積越縮越小,核心的溫度也越來越高,密度也越來越大。當體積縮小百萬倍後,成為一顆原始恆星,核心區域溫度也升高而趨近於攝氏一千萬度左右。當這個原始恆星或胎星的核心區域溫度高逹一千萬度時,觸發了氫融合反應時,也就是氫彈爆炸的反應。此時,一顆叫太陽的恆星便誕生了。 經過一連串的核反應,會消耗掉四個氫核,形成一個氦核,而損失了一點點的質量。 依據愛因斯坦質量和能量互換的方程式E=MC2,損失的質量轉化為光和熱輻射出去,經過一路的碰撞,吸收再發射的過程,最後光和熱傳到太陽表面,再輻射到太空中一去不返,這也就是我們所看到的太陽輻射。當太陽中心區域氫融合反應產生的能量傳到表面時,大部份以可見光的形式輻射到太空。 在五十憶年前剛形成的太陽並不穩定,體積縮脹不定。收縮的重力遭到熱膨脹壓力的阻擋,有時熱膨脹力揚頭,超過了重力,恆星大氣因此膨脹。但是一膨脹,溫度就跟著下降。膨脹過頭,導致溫度過低,使熱膨脹壓力擋不住重力,則恆星大氣開始收縮。同樣的,一收縮,溫度就跟著上升,收縮過頭,導致溫度過高,又使熱膨脹壓力超過重力,恆星大氣又開始膨脹。 這種膨脹,收縮的過程反復發生,加上周圍還籠罩在雲氣中,因此亮度變化很不規則。但是脹縮的程度慢慢縮小,最後熱膨脹力和收縮力達到平衡,進入穩定期。此時,太陽是一顆黃色的恆星,差不多就像我們現在看到的一樣。 太陽進入穩定期後,相當穩定的發出光和熱,可以持續一百億年之久。這期間占太陽一生中的90%,天文學家特稱為「主序星」時期。太陽成為一顆黃色主序星,至今己有五十億年,再過五十億年,太陽度過一生的黃金歲月後,將進入晚年。 有足夠長的穩定期,對行星上的生命發生非常重要。以地球的經驗來說,地球太約和太陽同時形成,將近十億年後才出現生命,經過四十多億年後,才發展出高等智能的生物。因此,天文學家要找外星生命,只對生存期超過四十億的恆星有興趣。 太陽在晚年將成為紅巨星 太陽在晚年時,將己經耗盡核心區域的氫,這時太陽的核心區域都是溫度較低的氦,周圍包著的一層正在進行氫融合反應,再外圍便是太陽的一般物質。氫融合反應產生的光和熱,正好和收縮的重力相同。核心區域的氦由於溫度較低,而氦的密度又比氫大,所以重力大於熱膨脹力而開始收縮,核心區域收縮產生的熱散布到外層,加上外層氫融合反應產生的熱,使得太陽外部慢慢膨脹,半徑增大到吞沒水星的范圍。 隨著太陽的膨脹,其發光散熱的表面積也隨之增加,表面積擴大後,單位面積所散發的熱相對減少,所以太陽一邊膨脹,表面溫度也隨之降到攝氏三千度,在發生的電磁輻射中,以紅光最強,所以將呈現一個火紅的大太陽,稱為「紅巨星」。 在紅巨星時期的太陽不穩定,外層大氣受到擾動會造成膨脹,收縮的脈動效應,而且脈動的周期和體積大小關。想想果凍的情形,輕拍一下果凍,它便會晃動,而且果凍越大,晃動的程度越小。同樣的道理,紅巨星的體積越大,膨脹,收縮的周期也越長。 簡單來說,五十億年後,太陽核心區域收縮的熱將導致外部膨脹,變成一顆紅巨星。充滿氦的核心區域則持續收縮,溫度也隨之增加。當核心區域的溫度升至一億度時,開始發生氦融合反應,三個氦經過一連串的核反應後融合成為一個碳,放出比氫融合反應更巨量的光和熱,使太陽外層急速膨脹,連地球也吞沒了,成為一個體積超大的紅色超巨星。 太陽的末路:白矮星 相似的過程是在紅色超巨星的核心區域再次發生,碳累積越來越多,碳的密度比氦大,相對的收縮的重力也更大,史的碳構成的核心區域收縮下去。但是當此區域收縮到非常緊密結實的程度,也就是碳原子核周圍所有的電子都擠在一起,擠到不能再擠時,這種緊密的壓力擋住了重力收縮。雖然此時的溫度比攝氏一億度高很多,但是還沒有高到可以產生碳融合反應的地步。因此,太陽核心區域不再收縮,但也沒有多餘的熱使外層膨脹,就如此僵持著,形成了白矮星。由於白矮星的核心沒有核融合反應來供給光與熱,整個星球越來越暗,逐漸黯淡下去,最後變成一顆不發光的死寂星球——黑矮星。經過理論上的計算,白矮星慢慢冷卻變成黑矮星的過程非常漫長,超過一百多億年,而銀河系的形成至今不過一百多億年,因此天文學家認為銀河系還沒有老到可以形成黑矮星。 白矮星和紅巨星在一起吸引 經過計算,太陽體積縮小一百萬倍,約像地球一樣大時,物質間擁擠的的程度才足以抗拒重力收縮。想想,質量與太陽相當,體積卻只有地球大小,很容易算出白矮星的密度比水重一百萬倍,也就是說一一方公分的物質約有一公噸重,是非常特別的物質狀態,物理學家稱為簡並狀態。原子是由原子核和電子構成。一般人都看過電子圍繞原子核的圖畫或動畫,雖然是簡化的示意圖,卻也反映了微小的物質狀態。通常電子都在距離原子核很遠的地方繞轉著,如果溫度逐漸降低,或是外力逐漸增加,則電子的活動范圍便被押擠而越來越小,逐漸靠近原子核。但是電子與原子核之間的距離有其最小范圍,電子不能越過這道界線。就像圍繞在玻璃珠周圍的沙粒一樣,沙粒最多依附在玻璃珠表面,而無法壓入玻璃珠中。 同樣的,當所有的電子都被迫壓擠再原子的表層時,物質狀態達到了一個臨界,即使在增加壓力,也無法將電子往內壓擠。這種由電子處於最內層而產生的抗壓力稱為電子簡並壓力。依據理論推算,質量小於一點四個太陽質量的星球重力,不足以壓垮電子簡並壓力,因此白矮星的質量不能比一點四個太陽質量更大。到目前為止,所發現的白矮星數量超過數百個,也都符合這個理論。這個上限首先是由一個印度天文學家錢德拉沙哈(SubrahmanyanChandrasekhar1910-1995)在1931年利用量子力學所求出來的,因此稱為錢式極限(Chandrasekhar』slimit)。 當錢德沙哈拉當年提出的這種由電子簡並壓力擋住重力收縮的星球時,並沒有得到贊揚,再英國皇家天文學會在一九三五年所舉辦的研討會中,更受到當代大師愛丁頓(AuthurEddington)爵士打壓,認為宇宙中並沒有這種天體。德拉沙哈受到這個打擊後,沒有辦法在即刊上發表論文,因此他寫了一本書<<恆星的結構與演化>>,後來成為這個領域中的經典之作。為什麼要稱之為白矮星呢?這是因為第一哥確定的白矮星是天狼星的伴星,顏色屬高溫的青白色,但是體積如此小,因此稱之為白矮星,但是後來陸續發現許多同類的恆星,星光顏色屬於溫度較低的黃色橙色,但是仍然稱它們為白矮星。白矮星因此成為一個專有名詞,專指這類由電子簡並壓力擋住重力收縮的星球。

J. 生命的起源需要時間,太陽的起源是什麼

太陽系是46億年前的一次大爆炸所形成的,太陽誕生後的最初數百萬年裡,他的周圍還沒有行星出現。只有一些太陽誕生時殘留的材料。經過上千萬年的時間,這些塵埃開始慢慢聚集結合,形成了最早期的岩石。最終,這些岩石在引力的作用下形成了行星的胚胎。隨後,催生出了距離太陽最近的四顆行星。


熾熱的金星


而金星的臨近的就是我們的地球母親了。四顆行星中距離太陽最遠的是火星。火星是一個寒冷而荒涼的世界,和我們想像的不一樣。火星上也沒有火星人,但是火星上曾經出現過液態水,以及構成生命最重要的有機物。或許,火星曾經也和地球一樣,都存在著成千上萬的鮮活的生命。但是,由於後來的火星大氣壓變低,使火星上的水逐漸蒸發到太空里,只有少量的水冰凍在寒冷地下。現在的火星上我們依舊能看到被水流沖刷過的河道。才使我們可以無盡的去想像火星人的存在。