A. dsa是什麼
DSA是數字減影血管內造影簡稱DSA,即血管造影的影像通過數字化處理,把不需要的組織影像刪除掉,只保留血管影像,這種技術叫做數字減影技術,其特點是圖像清晰,解析度高,對觀察血管病變,血管狹窄的定位測量,診斷及介入治療提供了真實的立體圖像,為各種介入治療提供了必備條件。主要適用於全身血管性疾病及腫瘤的檢查及治療。應用DSA進行介入治療為心血管疾病的診斷和治療開辟了一個新的領域。主要應用於冠心病、心律失常、瓣膜病和先天性心臟病的診斷和治療。
特點
1、DSA不但能清楚地顯示頸內動脈、椎基底動脈、顱內大血管及大腦半球的血管圖像,還可測定動脈的血流量,所以,被廣泛應用於腦血管病檢查,特別是對於動脈瘤、動靜脈畸形等定性定位診斷,更是最佳的診斷手段。
2、不但能提供病變的確切部位,而且對病變的范圍及嚴重程度,亦可清楚地了解,為手術提供較可靠的客觀依據。另外,對於缺血性腦血管病,也有較高的診斷價值。
3、DSA可清楚地顯示動脈管腔狹窄、閉塞、側支循環建立情況等,對於腦出血、蛛網膜下腔出血,可進一步查明導致出血的病因,如動脈瘤、血管畸形、海綿狀血管瘤等。
4、DSA對腦血管病診斷而言是一種有效的診斷方法。然而,由於它是一種創傷性檢查,所以對腦血管病不應作為首選或常規檢查方法,需要掌握好適應症和禁忌症,並做好有關准備工作。
B. 關於DSA演算法的相關信息
DES演算法
(文檔類別:C++) 2003-11-19
DES演算法理論
本世紀五十年代以來,密碼學研究領域出現了最具代表性的兩大成就。其中之一
就是1971年美國學者塔奇曼 (Tuchman)和麥耶(Meyer)根據資訊理論創始人香農
(Shannon)提出的「多重加密有效性理論」創立的,後於1977年由美國國家標准局頒
布的數據加密標准。
DES密碼實際上是Lucifer密碼的進一步發展。它是一種採用傳統加密方法的區組
密碼。
它的演算法是對稱的,既可用於加密又可用於解密。
美國國家標准局1973年開始研究除國防部外的其它部門的計算機系統的數據加密
標准,於1973年5月15日和1974年8月27日先後兩次向公眾發出了徵求加密演算法的公告。
加密演算法要達到的目的通常稱為DES密碼演算法要求主要為以下四點:
提供高質量的數據保護,防止數據未經授權的泄露和未被察覺的修改;具有相當
高的復雜性,使得破譯的開銷超過可能獲得的利益,同時又要便於理解和掌握 DES密碼
體制的安全性應該不依賴於演算法的保密,其安全性僅以加密密鑰的保密為基礎實現經
濟,運行有效,並且適用於多種完全不同的應用。
1977年1月,美國****頒布:採納IBM公司設計的方案作為非機密數據的正式數據
加密標准(DES棗Data Encryption Standard)。
目前在這里,隨著三金工程尤其是金卡工程的啟動,DES演算法在POS、ATM、
磁卡及智能卡(IC卡)、加油站、高速公路收費站等領域被廣泛應用,以此來實現關鍵
數據的保密,如信用卡持卡人的PIN的加密傳輸,IC卡與POS間的雙向認證、金融交易數
據包的MAC校驗等,均用到DES演算法。
DES演算法的入口參數有三個:Key、Data、Mode。其中Key為8個位元組共64位,
是DES演算法的工作密鑰;Data也為8個位元組64位,是要被加密或被解密的數據;Mode為
DES的工作方式,有兩種:加密或解密。
DES演算法是這樣工作的:如Mode為加密,則用Key 去把數據Data進行加密,
生成Data的密碼形式(64位)作為DES的輸出結果;如Mode為解密,則用Key去把密碼形
式的數據Data解密,還原為Data的明碼形式(64位)作為DES的輸出結果。在通信網路
的兩端,雙方約定一致的Key,在通信的源點用Key對核心數據進行DES加密,然後以密
碼形式在公共通信網(如電話網)中傳輸到通信網路的終點,數據到達目的地後,用同
樣的Key對密碼數據進行解密,便再現了明碼形式的核心數據。這樣,便保證了核心數
據(如PIN、MAC等)在公共通信網中傳輸的安全性和可靠性。
通過定期在通信網路的源端和目的端同時改用新的Key,便能更進一步提高
數據的保密性,這正是現在金融交易網路的流行做法。
DES演算法詳述
DES演算法把64位的明文輸入塊變為64位的密文輸出塊,它所使用的密鑰也是
64位,其功能是把輸入的64位數據塊按位重新組合,並把輸出分為L0、R0兩部分,每部
分各長32位,其置換規則見下表:
58,50,12,34,26,18,10,2,60,52,44,36,28,20,12,4,
62,54,46,38,30,22,14,6,64,56,48,40,32,24,16,8,
57,49,41,33,25,17, 9,1,59,51,43,35,27,19,11,3,
61,53,45,37,29,21,13,5,63,55,47,39,31,23,15,7,
即將輸入的第58位換到第一位,第50位換到第2位,...,依此類推,最後一
位是原來的第7位。L0、R0則是換位輸出後的兩部分,L0是輸出的左32位,R0 是右32
位,例:設置換前的輸入值為D1D2D3......D64,則經過初始置換後的結果為:
L0=D58D50...D8;R0=D57D49...D7。
經過26次迭代運算後。得到L16、R16,將此作為輸入,進行逆置換,即得到
密文輸出。逆置換正好是初始置的逆運算,例如,第1位經過初始置換後,處於第40
位,而通過逆置換,又將第40位換回到第1位,其逆置換規則如下表所示:
40,8,48,16,56,24,64,32,39,7,47,15,55,23,63,31,
38,6,46,14,54,22,62,30,37,5,45,13,53,21,61,29,
36,4,44,12,52,20,60,28,35,3,43,11,51,19,59,27,
34,2,42,10,50,18,58 26,33,1,41, 9,49,17,57,25,
放大換位表
32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9, 8, 9, 10,11,
12,13,12,13,14,15,16,17,16,17,18,19,20,21,20,21,
22,23,24,25,24,25,26,27,28,29,28,29,30,31,32, 1,
單純換位表
16,7,20,21,29,12,28,17, 1,15,23,26, 5,18,31,10,
2,8,24,14,32,27, 3, 9,19,13,30, 6,22,11, 4,25,
在f(Ri,Ki)演算法描述圖中,S1,S2...S8為選擇函數,其功能是把6bit數據變
為4bit數據。下面給出選擇函數Si(i=1,2......的功能表:
選擇函數Si
S1:
14,4,13,1,2,15,11,8,3,10,6,12,5,9,0,7,
0,15,7,4,14,2,13,1,10,6,12,11,9,5,3,8,
4,1,14,8,13,6,2,11,15,12,9,7,3,10,5,0,
15,12,8,2,4,9,1,7,5,11,3,14,10,0,6,13,
S2:
15,1,8,14,6,11,3,4,9,7,2,13,12,0,5,10,
3,13,4,7,15,2,8,14,12,0,1,10,6,9,11,5,
0,14,7,11,10,4,13,1,5,8,12,6,9,3,2,15,
13,8,10,1,3,15,4,2,11,6,7,12,0,5,14,9,
S3:
10,0,9,14,6,3,15,5,1,13,12,7,11,4,2,8,
13,7,0,9,3,4,6,10,2,8,5,14,12,11,15,1,
13,6,4,9,8,15,3,0,11,1,2,12,5,10,14,7,
1,10,13,0,6,9,8,7,4,15,14,3,11,5,2,12,
S4:
7,13,14,3,0,6,9,10,1,2,8,5,11,12,4,15,
13,8,11,5,6,15,0,3,4,7,2,12,1,10,14,9,
10,6,9,0,12,11,7,13,15,1,3,14,5,2,8,4,
3,15,0,6,10,1,13,8,9,4,5,11,12,7,2,14,
S5:
2,12,4,1,7,10,11,6,8,5,3,15,13,0,14,9,
14,11,2,12,4,7,13,1,5,0,15,10,3,9,8,6,
4,2,1,11,10,13,7,8,15,9,12,5,6,3,0,14,
11,8,12,7,1,14,2,13,6,15,0,9,10,4,5,3,
S6:
12,1,10,15,9,2,6,8,0,13,3,4,14,7,5,11,
10,15,4,2,7,12,9,5,6,1,13,14,0,11,3,8,
9,14,15,5,2,8,12,3,7,0,4,10,1,13,11,6,
4,3,2,12,9,5,15,10,11,14,1,7,6,0,8,13,
S7:
4,11,2,14,15,0,8,13,3,12,9,7,5,10,6,1,
?3,0,11,7,4,9,1,10,14,3,5,12,2,15,8,6,
1,4,11,13,12,3,7,14,10,15,6,8,0,5,9,2,
6,11,13,8,1,4,10,7,9,5,0,15,14,2,3,12,
S8:
13,2,8,4,6,15,11,1,10,9,3,14,5,0,12,7,
1,15,13,8,10,3,7,4,12,5,6,11,0,14,9,2,
7,11,4,1,9,12,14,2,0,6,10,13,15,3,5,8,
2,1,14,7,4,10,8,13,15,12,9,0,3,5,6,11,
在此以S1為例說明其功能,我們可以看到:在S1中,共有4行數據,命名為0,
1、2、3行;每行有16列,命名為0、1、2、3,......,14、15列。
現設輸入為: D=D1D2D3D4D5D6
令:列=D2D3D4D5
行=D1D6
然後在S1表中查得對應的數,以4位二進製表示,此即為選擇函數S1的輸
出。下面給出子密鑰Ki(48bit)的生成演算法
從子密鑰Ki的生成演算法描述圖中我們可以看到:初始Key值為64位,但DES算
法規定,其中第8、16、......64位是奇偶校驗位,不參與DES運算。故Key 實際可用位
數便只有56位。即:經過縮小選擇換位表1的變換後,Key 的位數由64 位變成了56位,
此56位分為C0、D0兩部分,各28位,然後分別進行第1次循環左移,得到C1、D1,將C1
(28位)、D1(28位)合並得到56位,再經過縮小選擇換位2,從而便得到了密鑰K0
(48位)。依此類推,便可得到K1、K2、......、K15,不過需要注意的是,16次循環
左移對應的左移位數要依據下述規則進行:
循環左移位數
1,1,2,2,2,2,2,2,1,2,2,2,2,2,2,1
以上介紹了DES演算法的加密過程。DES演算法的解密過程是一樣的,區別僅僅在
於第一次迭代時用子密鑰K15,第二次K14、......,最後一次用K0,演算法本身並沒有任
何變化。
DES演算法具有極高安全性,到目前為止,除了用窮舉搜索法對DES演算法進行攻擊
外,還沒有發現更有效的辦法。而56位長的密鑰的窮舉空間為256,這意味著如果一台
計算機的速度是每一秒種檢測一百萬個密鑰,則它搜索完全部密鑰就需要將近2285年的
時間,可見,這是難以實現的,當然,隨著科學技術的發展,當出現超高速計算機後,
我們可考慮把DES密鑰的長度再增長一些,以此來達到更高的保密程度。
由上述DES演算法介紹我們可以看到:DES演算法中只用到64位密鑰中的其中56
位,而第8、16、24、......64位8個位並未參與DES運算,這一點,向我們提出了一個
應用上的要求,即DES的安全性是基於除了8,16,24,......64位外的其餘56位的組合
變化256才得以保證的。因此,在實際應用中,我們應避開使用第8,16,24,......64
位作為有效數據位,而使用其它的56位作為有效數據位,才能保證DES演算法安全可靠地
發揮作用。如果不了解這一點,把密鑰Key的8,16,24,..... .64位作為有效數據使
用,將不能保證DES加密數據的安全性,對運用DES來達到保密作用的系統產生數據被破
譯的危險,這正是DES演算法在應用上的誤區,是各級技術人員、各級領導在使用過程中
應絕對避免的,而當今各金融部門及非金融部門,在運用DES工作,掌握DES工作密鑰
Key的領導、主管們,極易忽略,給使用中貌似安全的系統,留下了被人攻擊、被人破
譯的極大隱患。
DES演算法應用誤區的驗證數據
筆者用Turbo C編寫了DES演算法程序,並在PC機上對上述的DES 演算法的應用誤
區進行了騅,其驗證數據如下:
Key: 0x30 0x30 0x30 0x30......0x30(8個位元組)
Data: 0x31 0x31 0x31 0x31......0x31(8個位元組)
Mode: Encryption
結果:65 5e a6 28 cf 62 58 5f
如果把上述的Key換為8個位元組的0x31,而Data和Mode均不變,則執行DES 後
得到的密文完全一樣。類似地,用Key:8個0x32和用Key:8個0x33 去加密Data (8 個
0x31),二者的圖文輸出也是相同的:5e c3 ac e9 53 71 3b ba
我們可以得到出結論:
Key用0x30與用0x31是一樣的;
Key用0x32與用0x33是一樣的,......
當Key由8個0x32換成8個0x31後,貌似換成了新的Key,但由於0x30和0x31僅
僅是在第8,16,24......64有變化,而DES演算法並不使用Key的第8,16,......64位作
為Key的有效數據位,故:加密出的結果是一樣的。
DES解密的驗證數據:
Key: 0x31 0x31......0x31(8個0x31)
Data: 65 5e a6 28 cf 62 58 5f
Mode: Decryption
結果:0x31 0x31......0x31(8個0x31)
由以上看出:DES演算法加密與解密均工作正確。唯一需要避免的是:在應用
中,避開使用Key的第8,16......64位作為有效數據位,從而便避開了DES 演算法在應用
中的誤區。
避開DES演算法應用誤區的具體操作
在DES密鑰Key的使用、管理及密鑰更換的過程中,應絕對避開DES 演算法的應
用誤區,即:絕對不能把Key的第8,16,24......64位作為有效數據位,來對Key 進行
管理。這一點,特別推薦給金融銀行界及非金融業界的領導及決策者們,尤其是負責管
理密鑰的人,要對此點予以高度重視。有的銀行金融交易網路,利用定期更換DES密鑰
Key的辦法來進一步提高系統的安全性和可靠性,如果忽略了上述應用誤區,那麼,更
換新密鑰將是徒勞的,對金融交易網路的安全運行將是十分危險的,所以更換密鑰一定
要保證新Key與舊Key真正的不同,即除了第8,16,24,...64位外其它位數據發生了變
化,請務必對此保持高度重視.
��DES演算法把64位的明文輸入塊變為64位的密文輸出塊,它所使用的密鑰也是
64位.
其功能是把輸入的64位數據塊按位重新組合,並把輸出分為L0、R0兩部分,每部
分各長32位,其置換規則見下表:
58,50,12,34,26,18,10,2,60,52,44,36,28,20,12,4,
62,54,46,38,30,22,14,6,64,56,48,40,32,24,16,8,
57,49,41,33,25,17, 9,1,59,51,43,35,27,19,11,3,
61,53,45,37,29,21,13,5,63,55,47,39,31,23,15,7,
即將輸入的第58位換到第一位,第50位換到第2位,...,依此類推,最後一
位是原來的第7位。L0、R0則是換位輸出後的兩部分,L0是輸出的左32位,R0 是右32
位,例:設置換前的輸入值為D1D2D3......D64,則經過初始置換後的結果為:
L0=D58D50...D8;R0=D57D49...D7。
經過16次迭代運算後。得到L16、R16,將此作為輸入,進行逆置換,即得到
密文輸出。逆置換正好是初始置的逆運算,例如,第1位經過初始置換後,處於第40
位,而通過逆置換,又將第40位換回到第1位,其逆置換規則如下表所示:
40,8,48,16,56,24,64,32,39,7,47,15,55,23,63,31,
38,6,46,14,54,22,62,30,37,5,45,13,53,21,61,29,
36,4,44,12,52,20,60,28,35,3,43,11,51,19,59,27,
34,2,42,10,50,18,58 26,33,1,41, 9,49,17,57,25,
放大換位表
32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9, 8, 9, 10,11,
12,13,12,13,14,15,16,17,16,17,18,19,20,21,20,21,
22,23,24,25,24,25,26,27,28,29,28,29,30,31,32, 1,
單純換位表
16,7,20,21,29,12,28,17, 1,15,23,26, 5,18,31,10,
2,8,24,14,32,27, 3, 9,19,13,30, 6,22,11, 4,25,
在f(Ri,Ki)演算法描述圖中,S1,S2...S8為選擇函數,其功能是把6bit數據變
為4bit數據。下面給出選擇函數Si(i=1,2......的功能表:
選擇函數Si
S1:
14,4,13,1,2,15,11,8,3,10,6,12,5,9,0,7,
0,15,7,4,14,2,13,1,10,6,12,11,9,5,3,8,
4,1,14,8,13,6,2,11,15,12,9,7,3,10,5,0,
15,12,8,2,4,9,1,7,5,11,3,14,10,0,6,13,
S2:
15,1,8,14,6,11,3,4,9,7,2,13,12,0,5,10,
3,13,4,7,15,2,8,14,12,0,1,10,6,9,11,5,
0,14,7,11,10,4,13,1,5,8,12,6,9,3,2,15,
13,8,10,1,3,15,4,2,11,6,7,12,0,5,14,9,
S3:
10,0,9,14,6,3,15,5,1,13,12,7,11,4,2,8,
13,7,0,9,3,4,6,10,2,8,5,14,12,11,15,1,
13,6,4,9,8,15,3,0,11,1,2,12,5,10,14,7,
1,10,13,0,6,9,8,7,4,15,14,3,11,5,2,12,
S4:
7,13,14,3,0,6,9,10,1,2,8,5,11,12,4,15,
13,8,11,5,6,15,0,3,4,7,2,12,1,10,14,9,
10,6,9,0,12,11,7,13,15,1,3,14,5,2,8,4,
3,15,0,6,10,1,13,8,9,4,5,11,12,7,2,14,
S5:
2,12,4,1,7,10,11,6,8,5,3,15,13,0,14,9,
14,11,2,12,4,7,13,1,5,0,15,10,3,9,8,6,
4,2,1,11,10,13,7,8,15,9,12,5,6,3,0,14,
11,8,12,7,1,14,2,13,6,15,0,9,10,4,5,3,
S6:
12,1,10,15,9,2,6,8,0,13,3,4,14,7,5,11,
10,15,4,2,7,12,9,5,6,1,13,14,0,11,3,8,
9,14,15,5,2,8,12,3,7,0,4,10,1,13,11,6,
4,3,2,12,9,5,15,10,11,14,1,7,6,0,8,13,
S7:
4,11,2,14,15,0,8,13,3,12,9,7,5,10,6,1,
13,0,11,7,4,9,1,10,14,3,5,12,2,15,8,6,
1,4,11,13,12,3,7,14,10,15,6,8,0,5,9,2,
6,11,13,8,1,4,10,7,9,5,0,15,14,2,3,12,
S8:
13,2,8,4,6,15,11,1,10,9,3,14,5,0,12,7,
1,15,13,8,10,3,7,4,12,5,6,11,0,14,9,2,
7,11,4,1,9,12,14,2,0,6,10,13,15,3,5,8,
2,1,14,7,4,10,8,13,15,12,9,0,3,5,6,11,
在此以S1為例說明其功能,我們可以看到:在S1中,共有4行數據,命名為0,
1、2、3行;每行有16列,命名為0、1、2、3,......,14、15列。
現設輸入為: D=D1D2D3D4D5D6
令:列=D2D3D4D5
行=D1D6
然後在S1表中查得對應的數,以4位二進製表示,此即為選擇函數S1的輸
出。下面給出子密鑰Ki(48bit)的生成演算法
從子密鑰Ki的生成演算法描述圖中我們可以看到:初始Key值為64位,但DES算
法規定,其中第8、16、......64位是奇偶校驗位,不參與DES運算。故Key 實際可用位
數便只有56位。即:經過縮小選擇換位表1的變換後,Key 的位數由64 位變成了56位,
此56位分為C0、D0兩部分,各28位,然後分別進行第1次循環左移,得到C1、D1,將C1
(28位)、D1(28位)合並得到56位,再經過縮小選擇換位2,從而便得到了密鑰K0
(48位)。依此類推,便可得到K1、K2、......、K15,不過需要注意的是,16次循環
左移對應的左移位數要依據下述規則進行:
循環左移位數
1,1,2,2,2,2,2,2,1,2,2,2,2,2,2,1
以上介紹了DES演算法的加密過程。DES演算法的解密過程是一樣的,區別僅僅在
於第一次迭代時用子密鑰K15,第二次K14、......,最後一次用K0,演算法本身並沒有任
何變化。