A. 密碼演算法的密碼學
(1) 發送者和接收者
假設發送者想發送消息給接收者,且想安全地發送信息:她想確信偷聽者不能閱讀發送的消息。
(2) 消息和加密
消息被稱為明文。用某種方法偽裝消息以隱藏它的內容的過程稱為加密,加了密的消息稱為密文,而把密文轉變為明文的過程稱為解密。
明文用M(消息)或P(明文)表示,它可能是比特流(文本文件、點陣圖、數字化的語音流或數字化的視頻圖像)。至於涉及到計算機,P是簡單的二進制數據。明文可被傳送或存儲,無論在哪種情況,M指待加密的消息。
密文用C表示,它也是二進制數據,有時和M一樣大,有時稍大(通過壓縮和加密的結合,C有可能比P小些。然而,單單加密通常達不到這一點)。加密函數E作用於M得到密文C,用數學表示為:
E(M)=C.
相反地,解密函數D作用於C產生M
D(C)=M.
先加密後再解密消息,原始的明文將恢復出來,下面的等式必須成立:
D(E(M))=M
(3) 鑒別、完整性和抗抵賴
除了提供機密性外,密碼學通常有其它的作用:.
(a) 鑒別
消息的接收者應該能夠確認消息的來源;入侵者不可能偽裝成他人。
(b) 完整性檢驗
消息的接收者應該能夠驗證在傳送過程中消息沒有被修改;入侵者不可能用假消息代替合法消息。
(c) 抗抵賴
發送者事後不可能虛假地否認他發送的消息。
(4) 演算法和密鑰
密碼演算法也叫密碼,是用於加密和解密的數學函數。(通常情況下,有兩個相關的函數:一個用作加密,另一個用作解密)
如果演算法的保密性是基於保持演算法的秘密,這種演算法稱為受限制的演算法。受限制的演算法具有歷史意義,但按現在的標准,它們的保密性已遠遠不夠。大的或經常變換的用戶組織不能使用它們,因為每有一個用戶離開這個組織,其它的用戶就必須改換另外不同的演算法。如果有人無意暴露了這個秘密,所有人都必須改變他們的演算法。
但是,受限制的密碼演算法不可能進行質量控制或標准化。每個用戶組織必須有他們自己的唯一演算法。這樣的組織不可能採用流行的硬體或軟體產品。但竊聽者卻可以買到這些流行產品並學習演算法,於是用戶不得不自己編寫演算法並予以實現,如果這個組織中沒有好的密碼學家,那麼他們就無法知道他們是否擁有安全的演算法。
盡管有這些主要缺陷,受限制的演算法對低密級的應用來說還是很流行的,用戶或者沒有認識到或者不在乎他們系統中內在的問題。
現代密碼學用密鑰解決了這個問題,密鑰用K表示。K可以是很多數值里的任意值。密鑰K的可能值的范圍叫做密鑰空間。加密和解密運算都使用這個密鑰(即運算都依賴於密鑰,並用K作為下標表示),這樣,加/解密函數現在變成:
EK(M)=C
DK(C)=M.
這些函數具有下面的特性:
DK(EK(M))=M.
有些演算法使用不同的加密密鑰和解密密鑰,也就是說加密密鑰K1與相應的解密密鑰K2不同,在這種情況下:
EK1(M)=C
DK2(C)=M
DK2 (EK1(M))=M
所有這些演算法的安全性都基於密鑰的安全性;而不是基於演算法的細節的安全性。這就意味著演算法可以公開,也可以被分析,可以大量生產使用演算法的產品,即使偷聽者知道你的演算法也沒有關系;如果他不知道你使用的具體密鑰,他就不可能閱讀你的消息。
密碼系統由演算法、以及所有可能的明文、密文和密鑰組成的。
基於密鑰的演算法通常有兩類:對稱演算法和公開密鑰演算法。下面將分別介紹: 對稱演算法有時又叫傳統密碼演算法,就是加密密鑰能夠從解密密鑰中推算出來,反過來也成立。在大多數對稱演算法中,加/解密密鑰是相同的。這些演算法也叫秘密密鑰演算法或單密鑰演算法,它要求發送者和接收者在安全通信之前,商定一個密鑰。對稱演算法的安全性依賴於密鑰,泄漏密鑰就意味著任何人都能對消息進行加/解密。只要通信需要保密,密鑰就必須保密。
對稱演算法的加密和解密表示為:
EK(M)=C
DK(C)=M
對稱演算法可分為兩類。一次只對明文中的單個比特(有時對位元組)運算的演算法稱為序列演算法或序列密碼。另一類演算法是對明文的一組比特亞行運算,這些比特組稱為分組,相應的演算法稱為分組演算法或分組密碼。現代計算機密碼演算法的典型分組長度為64比特——這個長度大到足以防止分析破譯,但又小到足以方便使用(在計算機出現前,演算法普遍地每次只對明文的一個字元運算,可認為是序列密碼對字元序列的運算)。 公開密鑰演算法(也叫非對稱演算法)是這樣設計的:用作加密的密鑰不同於用作解密的密鑰,而且解密密鑰不能根據加密密鑰計算出來(至少在合理假定的長時間內)。之所以叫做公開密鑰演算法,是因為加密密鑰能夠公開,即陌生者能用加密密鑰加密信息,但只有用相應的解密密鑰才能解密信息。在這些系統中,加密密鑰叫做公開密鑰(簡稱公鑰),解密密鑰叫做私人密鑰(簡稱私鑰)。私人密鑰有時也叫秘密密鑰。為了避免與對稱演算法混淆,此處不用秘密密鑰這個名字。
用公開密鑰K加密表示為
EK(M)=C.
雖然公開密鑰和私人密鑰是不同的,但用相應的私人密鑰解密可表示為:
DK(C)=M
有時消息用私人密鑰加密而用公開密鑰解密,這用於數字簽名(後面將詳細介紹),盡管可能產生混淆,但這些運算可分別表示為:
EK(M)=C
DK(C)=M
當前的公開密碼演算法的速度,比起對稱密碼演算法,要慢的多,這使得公開密碼演算法在大數據量的加密中應用有限。 單向散列函數 H(M) 作用於一個任意長度的消息 M,它返回一個固定長度的散列值 h,其中 h 的長度為 m 。
輸入為任意長度且輸出為固定長度的函數有很多種,但單向散列函數還有使其單向的其它特性:
(1) 給定 M ,很容易計算 h ;
(2) 給定 h ,根據 H(M) = h 計算 M 很難 ;
(3) 給定 M ,要找到另一個消息 M『 並滿足 H(M) = H(M』) 很難。
在許多應用中,僅有單向性是不夠的,還需要稱之為「抗碰撞」的條件:
要找出兩個隨機的消息 M 和 M『,使 H(M) = H(M』) 滿足很難。
由於散列函數的這些特性,由於公開密碼演算法的計算速度往往很慢,所以,在一些密碼協議中,它可以作為一個消息 M 的摘要,代替原始消息 M,讓發送者為 H(M) 簽名而不是對 M 簽名 。
如 SHA 散列演算法用於數字簽名協議 DSA中。 提到數字簽名就離不開公開密碼系統和散列技術。
有幾種公鑰演算法能用作數字簽名。在一些演算法中,例如RSA,公鑰或者私鑰都可用作加密。用你的私鑰加密文件,你就擁有安全的數字簽名。在其它情況下,如DSA,演算法便區分開來了??數字簽名演算法不能用於加密。這種思想首先由Diffie和Hellman提出 。
基本協議是簡單的 :
(1) A 用她的私鑰對文件加密,從而對文件簽名。
(2) A 將簽名的文件傳給B。
(3) B用A的公鑰解密文件,從而驗證簽名。
這個協議中,只需要證明A的公鑰的確是她的。如果B不能完成第(3)步,那麼他知道簽名是無效的。
這個協議也滿足以下特徵:
(1) 簽名是可信的。當B用A的公鑰驗證信息時,他知道是由A簽名的。
(2) 簽名是不可偽造的。只有A知道她的私鑰。
(3) 簽名是不可重用的。簽名是文件的函數,並且不可能轉換成另外的文件。
(4) 被簽名的文件是不可改變的。如果文件有任何改變,文件就不可能用A的公鑰驗證。
(5) 簽名是不可抵賴的。B不用A的幫助就能驗證A的簽名。 加密技術是對信息進行編碼和解碼的技術,編碼是把原來可讀信息(又稱明文)譯成代碼形式(又稱密文),其逆過程就是解碼(解密)。加密技術的要點是加密演算法,加密演算法可以分為對稱加密、不對稱加密和不可逆加密三類演算法。
對稱加密演算法 對稱加密演算法是應用較早的加密演算法,技術成熟。在對稱加密演算法中,數據發信方將明文(原始數據)和加密密鑰一起經過特殊加密演算法處理後,使其變成復雜的加密密文發送出去。收信方收到密文後,若想解讀原文,則需要使用加密用過的密鑰及相同演算法的逆演算法對密文進行解密,才能使其恢復成可讀明文。在對稱加密演算法中,使用的密鑰只有一個,發收信雙方都使用這個密鑰對數據進行加密和解密,這就要求解密方事先必須知道加密密鑰。對稱加密演算法的特點是演算法公開、計算量小、加密速度快、加密效率高。不足之處是,交易雙方都使用同樣鑰匙,安全性得不到保證。此外,每對用戶每次使用對稱加密演算法時,都需要使用其他人不知道的惟一鑰匙,這會使得發收信雙方所擁有的鑰匙數量成幾何級數增長,密鑰管理成為用戶的負擔。對稱加密演算法在分布式網路系統上使用較為困難,主要是因為密鑰管理困難,使用成本較高。在計算機專網系統中廣泛使用的對稱加密演算法有DES和IDEA等。美國國家標准局倡導的AES即將作為新標准取代DES。
不對稱加密演算法 不對稱加密演算法使用兩把完全不同但又是完全匹配的一對鑰匙—公鑰和私鑰。在使用不對稱加密演算法加密文件時,只有使用匹配的一對公鑰和私鑰,才能完成對明文的加密和解密過程。加密明文時採用公鑰加密,解密密文時使用私鑰才能完成,而且發信方(加密者)知道收信方的公鑰,只有收信方(解密者)才是唯一知道自己私鑰的人。不對稱加密演算法的基本原理是,如果發信方想發送只有收信方才能解讀的加密信息,發信方必須首先知道收信方的公鑰,然後利用收信方的公鑰來加密原文;收信方收到加密密文後,使用自己的私鑰才能解密密文。顯然,採用不對稱加密演算法,收發信雙方在通信之前,收信方必須將自己早已隨機生成的公鑰送給發信方,而自己保留私鑰。由於不對稱演算法擁有兩個密鑰,因而特別適用於分布式系統中的數據加密。廣泛應用的不對稱加密演算法有RSA演算法和美國國家標准局提出的DSA。以不對稱加密演算法為基礎的加密技術應用非常廣泛。
不可逆加密演算法 的特徵是加密過程中不需要使用密鑰,輸入明文後由系統直接經過加密演算法處理成密文,這種加密後的數據是無法被解密的,只有重新輸入明文,並再次經過同樣不可逆的加密演算法處理,得到相同的加密密文並被系統重新識別後,才能真正解密。顯然,在這類加密過程中,加密是自己,解密還得是自己,而所謂解密,實際上就是重新加一次密,所應用的「密碼」也就是輸入的明文。不可逆加密演算法不存在密鑰保管和分發問題,非常適合在分布式網路系統上使用,但因加密計算復雜,工作量相當繁重,通常只在數據量有限的情形下使用,如廣泛應用在計算機系統中的口令加密,利用的就是不可逆加密演算法。近年來,隨著計算機系統性能的不斷提高,不可逆加密的應用領域正在逐漸增大。在計算機網路中應用較多不可逆加密演算法的有RSA公司發明的MD5演算法和由美國國家標准局建議的不可逆加密標准SHS(Secure Hash Standard:安全雜亂信息標准)等。
B. 序列號密碼是什麼意思
利用密鑰產生一個密鑰流Z=Z1Z2Z3…,然後利用此密鑰流依次對明文X=X0X1X2...進行加密,這樣產生的密碼就是序列密碼,也稱流密碼。密鑰流由密鑰流發生器f產生:zi=f(k,si),這里的si是加密器中存儲器(記憶元件)在i時刻的狀態,k是密鑰。序列密碼方案的發展是模仿「一次一密」系統的嘗試
C. 什麼是分組密碼和序列密碼
分組密碼是將明文消息編碼表示後的數字(簡稱明文數字)序列,劃分成長度為n的組(可看成長度為n的矢量),每組分別在密鑰的控制下變換成等長的輸出數字(簡稱密文數字)序列。
序列密碼也稱為流密碼(Stream Cipher),它是對稱密碼演算法的一種。序列密碼具有實現簡單、便於硬體實施、加解密處理速度快、沒有或只有有限的錯誤傳播等特點,因此在實際應用中,特別是專用或機密機構中保持著優勢,典型的應用領域包括無線通信、外交通信。 1949年Shannon證明了只有一次一密的密碼體制是絕對安全的,這給序列密碼技術的研究以強大的支持,序列密碼方案的發展是模仿一次一密系統的嘗試,或者說「一次一密」的密碼方案是序列密碼的雛形。如果序列密碼所使用的是真正隨機方式的、與消息流長度相同的密鑰流,則此時的序列密碼就是一次一密的密碼體制。若能以一種方式產生一隨機序列(密鑰流),這一序列由密鑰所確定,則利用這樣的序列就可以進行加密,即將密鑰、明文表示成連續的符號或二進制,對應地進行加密,加解密時一次處理明文中的一個或幾個比特。
D. 請簡述什麼是序列密碼與分組密碼,它們的區別是什麼
序列密碼(Stream Cipher):
又稱流密碼,將明文消息按字元逐位進行加密。
分組密碼(Block Cipher):
在分組密碼中將明文消息分組(每組有多個字元),逐組進行加密。