A. 量子密碼學的密碼學目的
密碼學的目的是改變信息的原有形式使得局外人難以讀懂。密碼學中的信息代碼稱為密碼,尚未轉換成密碼的文字信息稱為明文,由密碼表示的信息稱為密文,從明文到密文的轉換過程稱為加密,相反的過程稱為解密, 解密要通過所謂的密鑰進行。因此,一個密碼體制的安全性只依賴於其密鑰的保密性。在設計、建立一個密碼體制時,必須假定破譯對手能夠知道關於密碼體制的一切信息,而唯一不知道的是具體的一段密文到底是用哪一個密鑰所對應的加密映射加密的。在傳統的密碼體制中,只要知道了加密映射也就知道了解密映射。因此,傳統密碼體制要求通信雙方在進行保密通信之前必須先約定並通過「安全通道」傳遞密鑰。此外,在傳統的密碼體制下,每一對用戶都需要有一個密鑰。這樣,在n個用戶的通訊網路中,要保證任意兩個 用戶都能進行保密通信,就需要很多「安全通道」傳送n(n-1)/2個密鑰。如果n很大,保證安全將是很困難的。
B. 在信息安全中密碼學實現的安全目標有哪些
你的問題應該是問密碼學能在信息安全起到哪些作用吧,給你點小介紹
信息安全圍繞的目標主要是在:機密性、完整性、不可抵賴、簽名認證。
密碼學是信息安全的基礎,專業基礎課程,只要涉及安全,都會有密碼和協議等相關的。
密碼學的應用領域很廣:
1. 系統的密碼保護,這個不單單是計算機系統,還有很多嵌入式系統等,這個很常見,像我們的銀行密碼;
2.信息的加密,如有線或者無線的網路的數據傳輸,一般都會用到加密,這個在國防部尤其重要;
3.安全協議,安全協議是密碼學的一部分,如簽名認證等,這個像我們用到的支付寶等,就應用到了這些知識;
4.病毒等信息的隱藏,有些高級黑客,會把病毒加密;
主要完成的目的就是圍繞:機密性、完整性、不可抵賴、簽名認證
機密性:防止別人獲取信息的內容,比如你發送銀行賬戶和密碼給別人,不希望第三者獲取;
完整性:不希望信息被篡改,比如你發送email,信息被別人截獲,然後打亂;
不可抵賴:比如你是一個機密人員,需要守住機密信息,如果發現有一天這個機密被泄露了,那麼這個泄露的人就是你,這需要一些技巧;
簽名認證:別人向你請求資料,你要確定這個人是不是可信的,需要身份的認真。
這幾個是信息安全的核心,也是密碼學的目標,可以根據應用適當的擴展。
C. 密碼學的目的是
有效的防止密碼被盜取和在必要的時候盜取別人的密碼,用最低的代價和最高的效率,用最保險的方法來保護電子數據
D. 加密是什麼意思
加密,是以某種特殊的演算法改變原有的信息數據,使得未授權的用戶即使獲得了已加密的信息,但因不知解密的方法,仍然無法了解信息的內容。 在航空學中,指利用航空攝影像片上已知的少數控制點,通過對像片測量和計算的方法在像對或整條航攝帶上增加控制點的作業。
加密之所以安全,絕非因不知道加密解密演算法方法,而是加密的密鑰是絕對的隱藏,現在流行的RSA和AES加密演算法都是完全公開的,一方取得已加密的數據,就算知道加密演算法也好,若沒有加密的密鑰,也不能打開被加密保護的信息。單單隱蔽加密演算法以保護信息,在學界和業界已有相當討論,一般認為是不夠安全的。公開的加密演算法是給黑客和加密家長年累月攻擊測試,對比隱蔽的加密演算法要安全得多。
在密碼學中,加密是將明文信息隱匿起來,使之在缺少特殊信息時不可讀。雖然加密作為通信保密的手段已經存在了幾個世紀,但是,只有那些對安全要求特別高的組織和個人才會使用它。在20世紀70年代中期,強加密(Strong Encryption) 的使用開始從政府保密機構延伸至公共領域, 並且目 前已經成為保護許多廣泛使用系統的方法,比如網際網路電子商務、手機網路和銀行自動取款機等。
加密可以用於保證安全性, 但是其它一些技術在保障通信安全方面仍然是必須的,尤其是關於數據完整性和信息驗證;例如,信息驗證碼(MAC)或者數字簽名。另一方面的考慮是為了應付流量分析。
加密或軟體編碼隱匿(Code Obfuscation)同時也在軟體版權保護中用於對付反向工程,未授權的程序分析,破解和軟體盜版及數位內容的數位版權管理 (DRM)等。
盡管加密或為了安全目的對信息解碼這個概念十分簡單,但在這里仍需對其進行解釋。數據加密的基本過程包括對稱為明文的原來可讀信息進行翻譯,譯成稱為密文或密碼的代碼形式。該過程的逆過程為解密,即將該編碼信息轉化為其原來的形式的過程。
E. 加密的目的是什麼
隨著個人信息通信和電子商務在網際網路上的不斷發展,我們經常需要一種措施來保護我們的數據,防止被一些懷有不良用心的人竊聽或者破壞。在信息時代,信息可以幫助團體或個人,使他們受益,同樣,信息也可以用來對他們構成威脅,造成破壞。在競爭激烈的大公司中,工業間諜經常會獲取對方的情報。因此,在客觀上就需要一種強有力的安全措施來保護機密數據不被竊取或篡改。數據加密與解密從宏觀上講是非常簡單的,很容易理解。加密與解密的一些方法是非常直接的,很容易掌握,可以很方便的對機密數據進行加密和解密
F. 密碼學有何用途
密碼學是研究編制密碼和破譯密碼的技術科學。研究密碼變化的客觀規律,應用於編制密碼以保守通信秘密的,稱為編碼學;應用於破譯密碼以獲取通信情報的,稱為破譯學,總稱密碼學。
密碼是通信雙方按約定的法則進行信息特殊變換的一種重要保密手段。依照這些法則,變明文為密文,稱為加密變換;變密文為明文,稱為脫密變換。密碼在早期僅對文字或數碼進行加、脫密變換,隨著通信技術的發展,對語音、圖像、數據等都可實施加、脫密變換。
密碼學是在編碼與破譯的斗爭實踐中逐步發展起來的,並隨著先進科學技術的應用,已成為一門綜合性的尖端技術科學。它與語言學、數學、電子學、聲學、資訊理論、計算機科學等有著廣泛而密切的聯系。它的現實研究成果,特別是各國政府現用的密碼編制及破譯手段都具有高度的機密性。
進行明密變換的法則,稱為密碼的體制。指示這種變換的參數,稱為密鑰。它們是密碼編制的重要組成部分。密碼體制的基本類型可以分為四種:錯亂——按照規定的圖形和線路,改變明文字母或數碼等的位置成為密文;代替——用一個或多個代替表將明文字母或數碼等代替為密文;密本——用預先編定的字母或數字密碼組,代替一定的片語單詞等變明文為密文;加亂——用有限元素組成的一串序列作為亂數,按規定的演算法,同明文序列相結合變成密文。以上四種密碼體制,既可單獨使用,也可混合使用 ,以編制出各種復雜度很高的實用密碼。
20世紀70年代以來,一些學者提出了公開密鑰體制,即運用單向函數的數學原理,以實現加、脫密密鑰的分離。加密密鑰是公開的,脫密密鑰是保密的。這種新的密碼體制,引起了密碼學界的廣泛注意和探討。
利用文字和密碼的規律,在一定條件下,採取各種技術手段,通過對截取密文的分析,以求得明文,還原密碼編制,即破譯密碼。破譯不同強度的密碼,對條件的要求也不相同,甚至很不相同。
中國古代秘密通信的手段,已有一些近於密碼的雛形。宋曾公亮、丁度等編撰《武經總要》「字驗」記載,北宋前期,在作戰中曾用一首五言律詩的40個漢字,分別代表40種情況或要求,這種方式已具有了密本體制的特點。
1871年,由上海大北水線電報公司選用6899個漢字,代以四碼數字,成為中國最初的商用明碼本,同時也設計了由明碼本改編為密本及進行加亂的方法。在此基礎上,逐步發展為各種比較復雜的密碼。
在歐洲,公元前405年,斯巴達的將領來山得使用了原始的錯亂密碼;公元前一世紀,古羅馬皇帝凱撒曾使用有序的單表代替密碼;之後逐步發展為密本、多表代替及加亂等各種密碼體制。
二十世紀初,產生了最初的可以實用的機械式和電動式密碼機,同時出現了商業密碼機公司和市場。60年代後,電子密碼機得到較快的發展和廣泛的應用,使密碼的發展進入了一個新的階段。
密碼破譯是隨著密碼的使用而逐步產生和發展的。1412年,波斯人卡勒卡尚迪所編的網路全書中載有破譯簡單代替密碼的方法。到16世紀末期,歐洲一些國家設有專職的破譯人員,以破譯截獲的密信。密碼破譯技術有了相當的發展。1863年普魯士人卡西斯基所著《密碼和破譯技術》,以及1883年法國人克爾克霍夫所著《軍事密碼學》等著作,都對密碼學的理論和方法做過一些論述和探討。1949年美國人香農發表了《秘密體制的通信理論》一文,應用資訊理論的原理分析了密碼學中的一些基本問題。
自19世紀以來,由於電報特別是無線電報的廣泛使用,為密碼通信和第三者的截收都提供了極為有利的條件。通信保密和偵收破譯形成了一條斗爭十分激烈的隱蔽戰線。
1917年,英國破譯了德國外長齊默爾曼的電報,促成了美國對德宣戰。1942年,美國從破譯日本海軍密報中,獲悉日軍對中途島地區的作戰意圖和兵力部署,從而能以劣勢兵力擊破日本海軍的主力,扭轉了太平洋地區的戰局。在保衛英倫三島和其他許多著名的歷史事件中,密碼破譯的成功都起到了極其重要的作用,這些事例也從反面說明了密碼保密的重要地位和意義。
當今世界各主要國家的政府都十分重視密碼工作,有的設立龐大機構,撥出巨額經費,集中數以萬計的專家和科技人員,投入大量高速的電子計算機和其他先進設備進行工作。與此同時,各民間企業和學術界也對密碼日益重視,不少數學家、計算機學家和其他有關學科的專家也投身於密碼學的研究行列,更加速了密碼學的發展。
現在密碼已經成為單獨的學科,從傳統意義上來說,密碼學是研究如何把信息轉換成一種隱蔽的方式並阻止其他人得到它。
密碼學是一門跨學科科目,從很多領域衍生而來:它可以被看做是信息理論,卻使用了大量的數學領域的工具,眾所周知的如數論和有限數學。
原始的信息,也就是需要被密碼保護的信息,被稱為明文。加密是把原始信息轉換成不可讀形式,也就是密碼的過程。解密是加密的逆過程,從加密過的信息中得到原始信息。cipher是加密和解密時使用的演算法。
最早的隱寫術只需紙筆,現在稱為經典密碼學。其兩大類別為置換加密法,將字母的順序重新排列;替換加密法,將一組字母換成其他字母或符號。經典加密法的資訊易受統計的攻破,資料越多,破解就更容易,使用分析頻率就是好辦法。經典密碼學現在仍未消失,經常出現在智力游戲之中。在二十世紀早期,包括轉輪機在內的一些機械設備被發明出來用於加密,其中最著名的是用於第二次世界大戰的密碼機Enigma。這些機器產生的密碼相當大地增加了密碼分析的難度。比如針對Enigma各種各樣的攻擊,在付出了相當大的努力後才得以成功。
G. 秘密學的目的是
研究數據加密。密碼學是以研究數據保密為目的對存儲或傳輸的信息進行秘密的變換以防止被第三者竊取的技術。
H. 密碼學在信息隱藏技術中有哪些應用
密碼學在信息隱藏技術中應用體現在:
1 版權保護
隨著通信技術的迅猛發展,信息安全問題也變得十分突出,數字作品(如電腦美術、掃描圖像、數字音樂、視頻、三維動畫)的版權保護成了當前的熱點。由於數字作品的拷貝、修改非常容易,而且可以做到與原作完全相同,所以原創者不得不採用一些嚴重損害作品質量的辦法來增加版權標志,但這種明顯可見的標志很容易被篡改。數字水印的出現,就是利用數據隱藏原理使版權標志不可見或不可聽,既不損害原作品,又達到了版權保護的目的。換句話說,數字水印技術是將與多媒體內容相關或不相關的一些標示信息直接嵌入到多媒體內容當中,但不影響原內容的使用價值,也不容易被人覺察或注意到。通過這些隱藏在多媒體內容中的信息,人們可以確認內容的創建者、購買者和查看信息是否真實完整。數字音頻水印技術是信息隱藏技術的重要研究方向。
把要保密的信息,通過特殊的演算法嵌入音頻中,而不影響正常的收聽效果(即具有聽覺上的透明性),讓人無法察覺和破壞此類信息。當要使用的時候再通過同樣的方法在計算機上提取出來。通過這些隱藏在音頻內容中的信息,可以判別對象是否受到保護,監視被保護數據的傳播,鑒別真偽,解決版權糾紛並為法庭提供認證證據。目前的數字音頻水印技術有追蹤非法復制的功能,卻不能做到防止盜版。從技術上來講,當買一個音響作品時,在開票的過程中就要輸入你的基本信息,甚至收款方可以拍攝購買人照片,把這些信息嵌入歌曲中。當然,這涉及到隱私問題,因此這些信息只有在發生盜版、保護版權時使用,其他情況不能使用。這和電信公司需要客戶資料是一個道理。如果市場出現了盜版,司法機關買一個,提取出裡面的水印,就知道誰是散布源頭了。如果這個在法律上能實現的話,人們在購買音響作品時就要多一道手續,就像去醫院要掛號,去電信開電話要填單子一樣。而要人們認同這種手續、共同打擊盜版或許還需要一段時日。
2 數字簽名
數字簽名是在公鑰加密系統的基礎上建立起來的,數字簽名的產生涉及的運算方式是為人們所知的散列函數功能,也稱「哈希函數功能」(Hash Function)。哈希函數功能其實是一種數學計算過程。這一計算過程建立在一種以「哈希函數值」或「哈希函數結果」形式創建信息的數字表達式或壓縮形式(通常被稱作「信息摘要」或「信息標識」)的計算方法之上。在安全的哈希函數功能(有時被稱作單向哈希函數功能)情形下,要想從已知的哈希函數結果中推導出原信息來,實際上是不可能的。因而,哈希函數功能可以使軟體在更少且可預見的數據量上運作生成數字簽名,卻保持與原信息內容之間的高度相關,且有效保證信息在經數字簽署後並未做任何修改。
所謂數字簽名,就是只有信息的發送者才能產生的,別人無法偽造的一段數字串,它同時也是對發送者發送的信息的真實性的一個證明。簽署一個文件或其他任何信息時,簽名者首先須准確界定要簽署內容的范圍。然後,簽名者軟體中的哈希函數功能將計算出被簽署信息惟一的哈希函數結果值(為實用目的)。最後使用簽名者的私人密碼將哈希函數結果值轉化為數字簽名。得到的數字簽名對於被簽署的信息和用以創建數字簽名的私人密碼而言都是獨一無二的。
一個數字簽名(對一個信息的哈希函數結果的數字簽署)被附在信息之後,並隨同信息一起被儲存和傳送。然而,只要能夠保持與相應信息之間的可靠聯系,它也可以作為單獨的數據單位被存儲和傳送。因為數字簽名對它所簽署的信息而言是獨一無二的。
3 數字指紋
數字指紋技術是近幾年發展起來的新型數字產品版權保護技術。數字指紋是指利用數字作品中普遍存在的冗餘數據與隨機性,向被分發的每一份數據拷貝中引入一定的誤差,使得該拷貝是唯一的,從而可以在發現非法再分發拷貝時,根據該拷貝中的誤差跟蹤到不誠實原始購買者的一種數字作品版權保護技術。
一般情況下,引入的誤差是指與用戶和某次購買過程有關的信息。當發行商發現被非法分發的授權信息時,可以根據該信息對非法分發的用戶進行跟蹤。數字指紋系統可以分為演算法和協議兩部分,其中,演算法包括指紋的編碼、解碼、嵌入、提取和數據的分發策略等,而協議部分則規定了各實體之間如何進行交互以實現具有各種特點的數據分發和跟蹤體制。
4 廣播監視
韓國廣播公司技術研究所(KBS TRI)開發的水印系統在進行MPEG-2壓縮之前將版權信息嵌入未被壓縮的視頻流中,並檢測被接收的沒有原視頻的視頻中的水印。使用一個安全鍵產生水印和水印嵌入位置。每個像素的嵌入的水印的強度是由看不見的人類的視覺系統決定的。KBS公司的水印技術符合不可視性、魯棒性和安全性的要求。廣播內容中的水印識別原廣播機構,並能檢測非法拷貝和未經授權的再利用內容。
對標清視頻來說,嵌入視頻中作為水印的信息是64比特版權標識符;對高清視頻來說是128比特版權標識符。版權標識符的水印比特是由用於水印系統安全性的安全鍵產生的。在為了數字電視傳輸而進行MPEG-2壓縮之前,將水印嵌入視頻序列的空間域中。因此,水印必須經得住MPEG-2壓縮。水印的不可覺察性是由水印強度決定的。對於不可覺察性來說,希望水印強度盡可能低,而對魯棒性來說,則希望水印強度盡可能高。因此,水印系統的設計總是牽涉到不可覺察性和魯棒性之間的折衷方案。故根據人類的視覺系統,水印強度設計得在每個像素上是不同的。水印在傳輸後的MPEG-2流中進行檢測。檢測演算法需要30幀以上的視頻。非法使用者可能對含有水印的數字內容進行各式各樣的攻擊。因此,KBS公司的水印系統設計得滿足魯棒性的要求。
隨著IT和數字技術的進步,數字電視內容版權保護在數字電視的廣播環境中日益重要。水印技術被認為是對地面數字電視最可行的解決方案。
5 安全通信
數字水印技術還可以應用於信息的安全通信。秘密通信在情報、軍事等領域有著重要的用途系統必須保證通信雙方可以正常通信而且通信內容不會被敵方竊取。傳統上,秘密通信主要通過密碼技術來實現。所以為了國家安全各個國家都不遺餘力地發展各自的密碼技術以確保秘密通信的安全。隨著網路技術的發展普通用戶也希望自己在網上的通信不會被第三方竊聽,於是密碼技術從軍方的黑匣子中走了出來被越來越多的應用於網路中。但即使精心設計的密碼演算法仍然有可能被敵方破解 ,更嚴重的是我方很難覺察到密碼被破解,繼續使用該密碼發送情報將是極其危險的。另一方面如果敵方探測到信道上有密文在傳送,即使短時間內無法破解也會故意破壞我方的通信信道阻止我方通信。如果是我方情報人員在國外收集資料,用密碼傳送文件很容易暴露身份。所以秘密通信除了必須滿足保密性這個基本要求之外還應該極為隱蔽不易被察覺。
隨著互聯網的發展,身處世界各地都可以方便地通過互聯網發送電子郵件和各種文件 ,互聯網又極為開放和不安全。如果我方能夠將秘密信息隱蔽在一些普通文件比如圖片,MP3,WAV中。可以將信息隱藏的載體看作通信信道,將待隱藏信息看作需要傳遞的信號,而信息的嵌入和提取分別看作通信中的調制和解調過程。
由於很難覺察到數字水印信息在多媒體數據中的存在,某些重要信息在傳輸的過程中就可以隱藏在普通的多媒體數據中,從而避開第三方的竊聽和監控。通過普通的互聯網傳輸那麼敵方將很難發現秘密信息的存在,因而也不會主動破壞通信信道,從而保證了通信安全。
I. 密碼學是怎麼樣通過加密和解密的,
你是想知道密碼學怎樣加解密還是?
近代密碼學:編碼密碼學主要致力於信息加密、信息認證、數字簽名和密鑰管理方面的研究。信息加密的目的在於將可讀信息轉變為無法識別的內容,使得截獲這些信息的人無法閱讀,同時信息的接收人能夠驗證接收到的信息是否被敵方篡改或替換過;數字簽名就是信息的接收人能夠確定接收到的信息是否確實是由所希望的發信人發出的;密鑰管理是信息加密中最難的部分,因為信息加密的安全性在於密鑰。歷史上,各國軍事情報機構在獵取別國的密鑰管理方法上要比破譯加密演算法成功得多。
密碼分析學與編碼學的方法不同,它不依賴數學邏輯的不變真理,必須憑經驗,依賴客觀世界覺察得到的事實。因而,密碼分析更需要發揮人們的聰明才智,更具有挑戰性。
現代密碼學是一門迅速發展的應用科學。隨著網際網路的迅速普及,人們依靠它傳送大量的信息,但是這些信息在網路上的傳輸都是公開的。因此,對於關繫到個人利益的信息必須經過加密之後才可以在網上傳送,這將離不開現代密碼技術。
1976年Diffie和Hellman在《密碼新方向》中提出了著名的D-H密鑰交換協議,標志著公鑰密碼體制的出現。 Diffie和Hellman第一次提出了不基於秘密信道的密鑰 分發,這就是D-H協議的重大意義所在。
PKI(Public Key Infrastructure)是一個用公鑰概念與技術來實施和提供安全服務的具有普適性的安全基礎設施。PKI公鑰基礎設施的主要任務是在開放環境中為開放性業務提供數字簽名服務。
要查看具體的某個密碼體系的知識可參考《密碼學概論》。
J. 密碼學有什麼用
1. 數位簽章(Digital Signature):
這是以密碼學的方法,根據EDI訊息的內容和發信有該把私鑰,任何人都無法產生該簽名,因此比手寫式的簽名安全許多。 收信人則以發信人的公鑰進行數位簽章的驗證。
相關書籍2. 數位信封(Digital Envelope):
這是以密碼學的方法,用收信人的公鑰對某些機密資料進行加密,收信人收到後再用自己的私鑰解密而讀取機密資料。除了擁有該私鑰的人之外, 任何人即使拿到該加密過的訊息都無法解密,就好像那些資料是用一個牢固的信封裝好,除了收信人之外,沒有人能拆開該信封。
3. 安全回條:
收信人依據訊息內容計算所得到的回覆資料,再以收信人的私鑰進行數位簽章後送回發信人,一方面確保收信人收到的訊息內容正確無誤, 另一方面也使收信人不能否認已經收到原訊息。
4. 安全認證:
每個人在產生自己的公鑰之後,向某一公信的安全認證中心申請注冊,由認證中心負責簽發憑證(Certificate),以保證個人身份與公鑰的對應性與正確性。