『壹』 存儲器的分類及其各自的特點
存儲器(Memory)是現代信息技術中用於保存信息的記憶設備。其概念很廣,有很多層次,在數字系統中,只要能保存二進制數據的都可以是存儲器;在集成電路中,一個沒有實物形式的具有存儲功能的電路也叫存儲器,如RAM、FIFO等;在系統中,具有實物形式的存儲設備也叫存儲器,如內存條、TF卡等。計算機中全部信息,包括輸入的原始數據、計算機程序、中間運行結果和最終運行結果都保存在存儲器中。它根據控制器指定的位置存入和取出信息。有了存儲器,計算機才有記憶功能,才能保證正常工作。計算機中的存儲器按用途存儲器可分為主存儲器(內存)和輔助存儲器(外存),也有分為外部存儲器和內部存儲器的分類方法。外存通常是磁性介質或光碟等,能長期保存信息。內存指主板上的存儲部件,用來存放當前正在執行的數據和程序,但僅用於暫時存放程序和數據,關閉電源或斷電,數據會丟失。
存儲器的分類特點及其應用
在嵌入式系統中最常用的存儲器類型分為三類:
1.隨機存取的RAM;
2.只讀的ROM;
3.介於兩者之間的混合存儲器
1.隨機存儲器(Random Access Memory,RAM)
RAM能夠隨時在任一地址讀出或寫入內容。 RAM的優點是讀/寫方便、使用靈活;
RAM的缺點是不能長期保存信息,一旦停電,所存信息就會丟失。 RAM用於二進制信息的臨時存儲或緩沖存儲
2.只讀存儲器(Read-Only Memory,ROM)
ROM中存儲的數據可以被任意讀取,斷電後,ROM中的數據仍保持不變,但不可以寫入數據。
ROM在嵌入式系統中非常有用,常常用來存放系統軟體(如ROM BIOS)、應用程序等不隨時間改變的代碼或數據。
ROM存儲器按發展順序可分為:掩膜ROM、可編程ROM(PROM)和可擦寫可編程ROM(EPROM)。
3. 混合存儲器
混合存儲器既可以隨意讀寫,又可以在斷電後保持設備中的數據不變。混合存儲設備可分為三種:
EEPROM NVRAM FLASH
(1)EEPROM
EEPROM是電可擦寫可編程存儲設備,與EPROM不同的是EEPROM是用電來實現數據的清除,而不是通過紫外線照射實現的。
EEPROM允許用戶以位元組為單位多次用電擦除和改寫內容,而且可以直接在機內進行,不需要專用設備,方便靈活,常用作對數據、參數等經常修改又有掉電保護要求的數據存儲器。
(2) NVRAM
NVRAM通常就是帶有後備電池的SRAM。當電源接通的時候,NVRAM就像任何其他SRAM一樣,但是當電源切斷的時候,NVRAM從電池中獲取足夠的電力以保持其中現存的內容。
NVRAM在嵌入式系統中使用十分普遍,它最大的缺點是價格昂貴,因此,它的應用被限制於存儲僅僅幾百位元組的系統關鍵信息。
(3)Flash
Flash(閃速存儲器,簡稱快閃記憶體)是不需要Vpp電壓信號的EEPROM,一個扇區的位元組可以在瞬間(與單時鍾周期比較是一個非常短的時間)擦除。
Flash比EEPROM優越的方面是,可以同時擦除許多位元組,節省了每次寫數據前擦除的時間,但一旦一個扇區被擦除,必須逐個位元組地寫進去,其寫入時間很長。
存儲器工作原理
這里只介紹動態存儲器(DRAM)的工作原理。
工作原理
動態存儲器每片只有一條輸入數據線,而地址引腳只有8條。為了形成64K地址,必須在系統地址匯流排和晶元地址引線之間專門設計一個地址形成電路。使系統地址匯流排信號能分時地加到8個地址的引腳上,藉助晶元內部的行鎖存器、列鎖存器和解碼電路選定晶元內的存儲單元,鎖存信號也靠著外部地址電路產生。
當要從DRAM晶元中讀出數據時,CPU首先將行地址加在A0-A7上,而後送出RAS鎖存信號,該信號的下降沿將地址鎖存在晶元內部。接著將列地址加到晶元的A0-A7上,再送CAS鎖存信號,也是在信號的下降沿將列地址鎖存在晶元內部。然後保持WE=1,則在CAS有效期間數據輸出並保持。
當需要把數據寫入晶元時,行列地址先後將RAS和CAS鎖存在晶元內部,然後,WE有效,加上要寫入的數據,則將該數據寫入選中的存貯單元。
存儲器晶元
由於電容不可能長期保持電荷不變,必須定時對動態存儲電路的各存儲單元執行重讀操作,以保持電荷穩定,這個過程稱為動態存儲器刷新。PC/XT機中DRAM的刷新是利用DMA實現的。首先應用可編程定時器8253的計數器1,每隔1⒌12μs產生一次DMA請求,該請求加在DMA控制器的0通道上。當DMA控制器0通道的請求得到響應時,DMA控制器送出到刷新地址信號,對動態存儲器執行讀操作,每讀一次刷新一行。
『貳』 Flash存儲器的簡要介紹
快閃記憶體是一種不揮發性( Non-Volatile )內存,在沒有電流供應的條件下也能夠長久地保持數據,其存儲特性相當於硬碟,這項特性正是快閃記憶體得以成為各類便攜型數字設備的存儲介質的基礎。
NAND 快閃記憶體的存儲單元則採用串列結構,存儲單元的讀寫是以頁和塊為單位來進行(一頁包含若干位元組,若干頁則組成儲存塊, NAND 的存儲塊大小為 8 到 32KB ),這種結構最大的優點在於容量可以做得很大,超過 512MB 容量的 NAND 產品相當普遍, NAND 快閃記憶體的成本較低,有利於大規模普及。
NAND 快閃記憶體的缺點在於讀速度較慢,它的 I/O 埠只有 8 個,比 NOR 要少多了。這區區 8 個 I/O 埠只能以信號輪流傳送的方式完成數據的傳送,速度要比 NOR 快閃記憶體的並行傳輸模式慢得多。再加上 NAND 快閃記憶體的邏輯為電子盤模塊結構,內部不存在專門的存儲控制器,一旦出現數據壞塊將無法修,可靠性較 NOR 快閃記憶體要差。
NAND 快閃記憶體被廣泛用於移動存儲、數碼相機、 MP3 播放器、掌上電腦等新興數字設備中。由於受到數碼設備強勁發展的帶動, NAND 快閃記憶體一直呈現指數級的超高速增長.
NOR和NAND是市場上兩種主要的非易失快閃記憶體技術。Intel於1988年首先開發出NOR flash技術,徹底改變了原先由EPROM和EEPROM一統天下的局面。緊接著,1989年,東芝公司發表了NAND flash結構,強調降低每比特的成本,更高的性能,並且象磁碟一樣可以通過介面輕松升級。但是經過了十多年之後,仍然有相當多的硬體工程師分不清NOR和NAND快閃記憶體。
相「flash存儲器」經常可以與相「NOR存儲器」互換使用。許多業內人士也搞不清楚NAND快閃記憶體技術相對於NOR技術的優越之處,因為大多數情況下快閃記憶體只是用來存儲少量的代碼,這時NOR快閃記憶體更適合一些。而NAND則是高數據存儲密度的理想解決方案。
NOR的特點是晶元內執行(XIP, eXecute In Place),這樣應用程序可以直接在flash快閃記憶體內運行,不必再把代碼讀到系統RAM中。NOR的傳輸效率很高,在1~4MB的小容量時具有很高的成本效益,但是很低的寫入和擦除速度大大影響了它的性能。
NAND結構能提供極高的單元密度,可以達到高存儲密度,並且寫入和擦除的速度也很快。應用NAND的困難在於flash的管理和需要特殊的系統介面。 flash快閃記憶體是非易失存儲器,可以對稱為塊的存儲器單元塊進行擦寫和再編程。任何flash器件的寫入操作只能在空或已擦除的單元內進行,所以大多數情況下,在進行寫入操作之前必須先執行擦除。NAND器件執行擦除操作是十分簡單的,而NOR則要求在進行擦除前先要將目標塊內所有的位都寫為0。
由於擦除NOR器件時是以64~128KB的塊進行的,執行一個寫入/擦除操作的時間為5ms,與此相反,擦除NAND器件是以8~32KB的塊進行的,執行相同的操作最多隻需要4ms。
執行擦除時塊尺寸的不同進一步拉大了NOR和NADN之間的性能差距,統計表明,對於給定的一套寫入操作(尤其是更新小文件時),更多的擦除操作必須在基於NOR的單元中進行。這樣,當選擇存儲解決方案時,設計師必須權衡以下的各項因素。
● NOR的讀速度比NAND稍快一些。
● NAND的寫入速度比NOR快很多。
● NAND的4ms擦除速度遠比NOR的5ms快。
● 大多數寫入操作需要先進行擦除操作。
● NAND的擦除單元更小,相應的擦除電路更少。 NOR flash帶有SRAM介面,有足夠的地址引腳來定址,可以很容易地存取其內部的每一個位元組。
NAND器件使用復雜的I/O口來串列地存取數據,各個產品或廠商的方法可能各不相同。8個引腳用來傳送控制、地址和數據信息。
NAND讀和寫操作採用512位元組的塊,這一點有點像硬碟管理此類操作,很自然地,基於NAND的存儲器就可以取代硬碟或其他塊設備。 NAND flash的單元尺寸幾乎是NOR器件的一半,由於生產過程更為簡單,NAND結構可以在給定的模具尺寸內提供更高的容量,也就相應地降低了價格。
NOR flash占據了容量為1~16MB快閃記憶體市場的大部分,而NAND flash只是用在8MB~128GB的產品當中,這也說明NOR主要應用在代碼存儲介質中,NAND適合於數據存儲,NAND在CompactFlash、Secure Digital、PC Cards和MMC存儲卡市場上所佔份額最大。 所有flash器件都受位交換現象的困擾。在某些情況下(很少見,NAND發生的次數要比NOR多),一個比特位會發生反轉或被報告反轉了。
一位的變化可能不很明顯,但是如果發生在一個關鍵文件上,這個小小的故障可能導致系統停機。如果只是報告有問題,多讀幾次就可能解決了。
當然,如果這個位真的改變了,就必須採用錯誤探測/錯誤更正(EDC/ECC)演算法。位反轉的問題更多見於NAND快閃記憶體,NAND的供應商建議使用NAND快閃記憶體的時候,同時使用EDC/ECC演算法。
這個問題對於用NAND存儲多媒體信息時倒不是致命的。當然,如果用本地存儲設備來存儲操作系統、配置文件或其他敏感信息時,必須使用EDC/ECC系統以確保可靠性。 NAND器件中的壞塊是隨機分布的。以前也曾有過消除壞塊的努力,但發現成品率太低,代價太高,根本不劃算。
NAND器件需要對介質進行初始化掃描以發現壞塊,並將壞塊標記為不可用。在已製成的器件中,如果通過可靠的方法不能進行這項處理,將導致高故障率。 可以非常直接地使用基於NOR的快閃記憶體,可以像其他存儲器那樣連接,並可以在上面直接運行代碼。
由於需要I/O介面,NAND要復雜得多。各種NAND器件的存取方法因廠家而異。
在使用NAND器件時,必須先寫入驅動程序,才能繼續執行其他操作。向NAND器件寫入信息需要相當的技巧,因為設計師絕不能向壞塊寫入,這就意味著在NAND器件上自始至終都必須進行虛擬映射。 當討論軟體支持的時候,應該區別基本的讀/寫/擦操作和高一級的用於磁碟模擬和快閃記憶體管理演算法的軟體,包括性能優化。
在NOR器件上運行代碼不需要任何的軟體支持,在NAND器件上進行同樣操作時,通常需要驅動程序,也就是內存技術驅動程序(MTD),NAND和NOR器件在進行寫入和擦除操作時都需要MTD。
使用NOR器件時所需要的MTD要相對少一些,許多廠商都提供用於NOR器件的更高級軟體,這其中包括M-System的TrueFFS驅動,該驅動被Wind River System、Microsoft、QNX Software System、Symbian和Intel等廠商所採用。
『叄』 介紹存儲器
內存(memory),亦稱為存儲器,是一種利用半導體技術做成的電子裝置,用來儲存資料。電子電路的資料是以二進制的方式儲存,內存的每一個儲存單元稱做記憶元或記憶胞(Cell)。
分類
根據儲存能力與電源的關系可以分為兩類:
揮發性(Volatile)內存:指的是當電源供應中斷後,內存所儲存的資料便會消失,一般稱之為RAM。有兩種主要的類型
DRAM:動態隨機存取內存
SRAM:靜態隨機存取內存
非揮發性(Non-Volatile)內存:即使電源供應中斷,內存所儲存的資料並不會消失,重新供電後,就能夠讀取內存資料
ROM(Read-Only Memory,唯讀內存)
一種只能讀取資料的內存。在製造過程中,將資料以一特製光罩(mask)燒錄於線路中,其資料內容在寫入後就不能更改,所以有時又稱為光罩式唯讀內存(mask ROM)。此內存的製造成本較低,常用於計算機中的開機啟動。
PROM (Programmable ROM,可編程唯讀內存)
內部有行列式的鎔絲,視需要利用電流將其燒斷,寫入所需的資料,但僅能寫錄一次。
EPROM (Erasable Programmable Read Only Memory,可抹除可編程唯讀內存)
利用高電壓將資料編程寫入,抹除時將線路曝光於紫外線下,則資料可被清空,並且可重復編程使用。通常在封裝外殼上會預留一個石英透明窗以方便曝光。
OTPROM(One Time Programmable Read Only Memory,OTP,一次編程唯讀內存)
寫入原理同EPROM,但是為了節省成本,編程寫入之後就不再抹除,因此不設置透明窗。
EEPROM (Electrically Erasable Programmable Read Only Memory,電子式可抹除可編程唯讀內存)
類似EPROM 但是抹除的方式是使用高電場來完成,因此不需要透明窗。
Flash memory (快閃記憶體)
此內存每一個記憶胞都具有一個控制閘與浮動閘,利用高電場改變浮動閘的臨限電壓即可進行編程動作。
『肆』 能不能介紹一下紫晶存儲的藍光存儲技術
紫晶存儲是國內藍光存儲領域排名前列的數據中心存儲解決方案提供商。產品存儲密度高、能耗低,存儲介質安全性強,具備較強的安全可控性。是唯一入選工信部「2018年工業強基工程存儲器一條龍」的光存儲上游材料、生產設備製造和光存儲製造企業。
『伍』 存儲器的發展史
存儲器設備發展
1.存儲器設備發展之汞延遲線
汞延遲線是基於汞在室溫時是液體,同時又是導體,每比特數據用機械波的波峰(1)和波谷(0)表示。機械波從汞柱的一端開始,一定厚度的熔融態金屬汞通過一振動膜片沿著縱向從一端傳到另一端,這樣就得名「汞延遲線」。在管的另一端,一感測器得到每一比特的信息,並反饋到起點。設想是汞獲取並延遲這些數據,這樣它們便能存儲了。這個過程是機械和電子的奇妙結合。缺點是由於環境條件的限制,這種存儲器方式會受各種環境因素影響而不精確。
1950年,世界上第一台具有存儲程序功能的計算機EDVAC由馮.諾依曼博士領導設計。它的主要特點是採用二進制,使用汞延遲線作存儲器,指令和程序可存入計算機中。
1951年3月,由ENIAC的主要設計者莫克利和埃克特設計的第一台通用自動計算機UNIVAC-I交付使用。它不僅能作科學計算,而且能作數據處理。
2.存儲器設備發展之磁帶
UNIVAC-I第一次採用磁帶機作外存儲器,首先用奇偶校驗方法和雙重運算線路來提高系統的可靠性,並最先進行了自動編程的試驗。
磁帶是所有存儲器設備發展中單位存儲信息成本最低、容量最大、標准化程度最高的常用存儲介質之一。它互換性好、易於保存,近年來,由於採用了具有高糾錯能力的編碼技術和即寫即讀的通道技術,大大提高了磁帶存儲的可靠性和讀寫速度。根據讀寫磁帶的工作原理可分為螺旋掃描技術、線性記錄(數據流)技術、DLT技術以及比較先進的LTO技術。
根據讀寫磁帶的工作原理,磁帶機可以分為六種規格。其中兩種採用螺旋掃描讀寫方式的是面向工作組級的DAT(4mm)磁帶機和面向部門級的8mm磁帶機,另外四種則是選用數據流存儲技術設計的設備,它們分別是採用單磁頭讀寫方式、磁帶寬度為1/4英寸、面向低端應用的Travan和DC系列,以及採用多磁頭讀寫方式、磁帶寬度均為1/2英寸、面向高端應用的DLT和IBM的3480/3490/3590系列等。
磁帶庫是基於磁帶的備份系統,它能夠提供同樣的基本自動備份和數據恢復功能,但同時具有更先進的技術特點。它的存儲容量可達到數百PB,可以實現連續備份、自動搜索磁帶,也可以在驅動管理軟體控制下實現智能恢復、實時監控和統計,整個數據存儲備份過程完全擺脫了人工干涉。
磁帶庫不僅數據存儲量大得多,而且在備份效率和人工佔用方面擁有無可比擬的優勢。在網路系統中,磁帶庫通過SAN(Storage Area Network,存儲區域網路)系統可形成網路存儲系統,為企業存儲提供有力保障,很容易完成遠程數據訪問、數據存儲備份或通過磁帶鏡像技術實現多磁帶庫備份,無疑是數據倉庫、ERP等大型網路應用的良好存儲設備。
3.存儲器設備發展之磁鼓
1953年,隨著存儲器設備發展,第一台磁鼓應用於IBM 701,它是作為內存儲器使用的。磁鼓是利用鋁鼓筒表面塗覆的磁性材料來存儲數據的。鼓筒旋轉速度很高,因此存取速度快。它採用飽和磁記錄,從固定式磁頭發展到浮動式磁頭,從採用磁膠發展到採用電鍍的連續磁介質。這些都為後來的磁碟存儲器打下了基礎。
磁鼓最大的缺點是利用率不高, 一個大圓柱體只有表面一層用於存儲,而磁碟的兩面都利用來存儲,顯然利用率要高得多。 因此,當磁碟出現後,磁鼓就被淘汰了。
4.存儲器設備發展之磁芯
美國物理學家王安1950年提出了利用磁性材料製造存儲器的思想。福雷斯特則將這一思想變成了現實。
為了實現磁芯存儲,福雷斯特需要一種物質,這種物質應該有一個非常明確的磁化閾值。他找到在新澤西生產電視機用鐵氧體變換器的一家公司的德國老陶瓷專家,利用熔化鐵礦和氧化物獲取了特定的磁性質。
對磁化有明確閾值是設計的關鍵。這種電線的網格和芯子織在電線網上,被人稱為芯子存儲,它的有關專利對發展計算機非常關鍵。這個方案可靠並且穩定。磁化相對來說是永久的,所以在系統的電源關閉後,存儲的數據仍然保留著。既然磁場能以電子的速度來閱讀,這使互動式計算有了可能。更進一步,因為是電線網格,存儲陣列的任何部分都能訪問,也就是說,不同的數據可以存儲在電線網的不同位置,並且閱讀所在位置的一束比特就能立即存取。這稱為隨機存取存儲器(RAM),在存儲器設備發展歷程中它是互動式計算的革新概念。福雷斯特把這些專利轉讓給麻省理工學院,學院每年靠這些專利收到1500萬~2000萬美元。
最先獲得這些專利許可證的是IBM,IBM最終獲得了在北美防衛軍事基地安裝「旋風」的商業合同。更重要的是,自20世紀50年代以來,所有大型和中型計算機也採用了這一系統。磁芯存儲從20世紀50年代、60年代,直至70年代初,一直是計算機主存的標准方式。
5.存儲器設備發展之磁碟
世界第一台硬碟存儲器是由IBM公司在1956年發明的,其型號為IBM 350 RAMAC(Random Access Method of Accounting and Control)。這套系統的總容量只有5MB,共使用了50個直徑為24英寸的磁碟。1968年,IBM公司提出「溫徹斯特/Winchester」技術,其要點是將高速旋轉的磁碟、磁頭及其尋道機構等全部密封在一個無塵的封閉體中,形成一個頭盤組合件(HDA),與外界環境隔絕,避免了灰塵的污染,並採用小型化輕浮力的磁頭浮動塊,碟片表面塗潤滑劑,實行接觸起停,這是現代絕大多數硬碟的原型。1979年,IBM發明了薄膜磁頭,進一步減輕了磁頭重量,使更快的存取速度、更高的存儲密度成為可能。20世紀80年代末期,IBM公司又對存儲器設備發展作出一項重大貢獻,發明了MR(Magneto Resistive)磁阻磁頭,這種磁頭在讀取數據時對信號變化相當敏感,使得碟片的存儲密度比以往提高了數十倍。1991年,IBM生產的3.5英寸硬碟使用了MR磁頭,使硬碟的容量首次達到了1GB,從此,硬碟容量開始進入了GB數量級。IBM還發明了PRML(Partial Response Maximum Likelihood)的信號讀取技術,使信號檢測的靈敏度大幅度提高,從而可以大幅度提高記錄密度。
目前,硬碟的面密度已經達到每平方英寸100Gb以上,是容量、性價比最大的一種存儲設備。因而,在計算機的外存儲設備中,還沒有一種其他的存儲設備能夠在最近幾年中對其統治地位產生挑戰。硬碟不僅用於各種計算機和伺服器中,在磁碟陣列和各種網路存儲系統中,它也是基本的存儲單元。值得注意的是,近年來微硬碟的出現和快速發展為移動存儲提供了一種較為理想的存儲介質。在快閃記憶體晶元難以承擔的大容量移動存儲領域,微硬碟可大顯身手。目前尺寸為1英寸的硬碟,存儲容量已達4GB,10GB容量的1英寸硬碟不久也會面世。微硬碟廣泛應用於數碼相機、MP3設備和各種手持電子類設備。
另一種磁碟存儲設備是軟盤,從早期的8英寸軟盤、5.25英寸軟盤到3.5英寸軟盤,主要為數據交換和小容量備份之用。其中,3.5英寸1.44MB軟盤占據計算機的標准配置地位近20年之久,之後出現過24MB、100MB、200MB的高密度過渡性軟盤和軟碟機產品。然而,由於USB介面的快閃記憶體出現,軟盤作為數據交換和小容量備份的統治地位已經動搖,不久會退出存儲器設備發展歷史舞台。
6. 存儲器設備發展之光碟
光碟主要分為只讀型光碟和讀寫型光碟。只讀型指光碟上的內容是固定的,不能寫入、修改,只能讀取其中的內容。讀寫型則允許人們對光碟內容進行修改,可以抹去原來的內容,寫入新的內容。用於微型計算機的光碟主要有CD-ROM、CD-R/W和DVD-ROM等幾種。
上世紀60年代,荷蘭飛利浦公司的研究人員開始使用激光光束進行記錄和重放信息的研究。1972年,他們的研究獲得了成功,1978年投放市場。最初的產品就是大家所熟知的激光視盤(LD,Laser Vision Disc)系統。
從LD的誕生至計算機用的CD-ROM,經歷了三個階段,即LD-激光視盤、CD-DA激光唱盤、CD-ROM。下面簡單介紹這三個存儲器設備發展階段性的產品特點。
LD-激光視盤,就是通常所說的LCD,直徑較大,為12英寸,兩面都可以記錄信息,但是它記錄的信號是模擬信號。模擬信號的處理機制是指,模擬的電視圖像信號和模擬的聲音信號都要經過FM(Frequency Molation)頻率調制、線性疊加,然後進行限幅放大。限幅後的信號以0.5微米寬的凹坑長短來表示。
CD-DA激光唱盤 LD雖然取得了成功,但由於事先沒有制定統一的標准,使它的開發和製作一開始就陷入昂貴的資金投入中。1982年,由飛利浦公司和索尼公司制定了CD-DA激光唱盤的紅皮書(Red Book)標准。由此,一種新型的激光唱盤誕生了。CD-DA激光唱盤記錄音響的方法與LD系統不同,CD-DA激光唱盤系統首先把模擬的音響信號進行PCM(脈沖編碼調制)數字化處理,再經過EMF(8~14位調制)編碼之後記錄到盤上。數字記錄代替模擬記錄的好處是,對干擾和雜訊不敏感,由於盤本身的缺陷、劃傷或沾污而引起的錯誤可以校正。
CD-DA系統取得成功以後,使飛利浦公司和索尼公司很自然地想到利用CD-DA作為計算機的大容量只讀存儲器。但要把CD-DA作為計算機的存儲器,還必須解決兩個重要問題,即建立適合於計算機讀寫的盤的數據結構,以及CD-DA誤碼率必須從現有的10-9降低到10-12以下,由此就產生了CD-ROM的黃皮書(Yellow Book)標准。這個標準的核心思想是,盤上的數據以數據塊的形式來組織,每塊都要有地址,這樣一來,盤上的數據就能從幾百兆位元組的存儲空間上被迅速找到。為了降低誤碼率,採用增加一種錯誤檢測和錯誤校正的方案。錯誤檢測採用了循環冗餘檢測碼,即所謂CRC,錯誤校正採用里德-索洛蒙(Reed Solomon)碼。黃皮書確立了CD-ROM的物理結構,而為了使其能在計算機上完全兼容,後來又制定了CD-ROM的文件系統標准,即ISO 9660。
在上世紀80年代中期,光碟存儲器設備發展速度非常快,先後推出了WORM光碟、磁光碟(MO)、相變光碟(Phase Change Disk,PCD)等新品種。20世紀90年代,DVD-ROM、CD-R、CD-R/W等開始出現和普及,目前已成為計算機的標准存儲設備。
光碟技術進一步向高密度發展,藍光光碟是不久將推出的下一代高密度光碟。多層多階光碟和全息存儲光碟正在實驗室研究之中,可望在5年之內推向市場。
7.存儲器設備發展之納米存儲
納米是一種長度單位,符號為nm。1納米=1毫微米,約為10個原子的長度。假設一根頭發的直徑為0.05毫米,把它徑向平均剖成5萬根,每根的厚度即約為1納米。與納米存儲有關的主要進展有如下內容。
1998年,美國明尼蘇達大學和普林斯頓大學制備成功量子磁碟,這種磁碟是由磁性納米棒組成的納米陣列體系。一個量子磁碟相當於我們現在的10萬~100萬個磁碟,而能源消耗卻降低了1萬倍。
1988年,法國人首先發現了巨磁電阻效應,到1997年,採用巨磁電阻原理的納米結構器件已在美國問世,它在磁存儲、磁記憶和計算機讀寫磁頭等方面均有廣闊的應用前景。
2002年9月,美國威斯康星州大學的科研小組宣布,他們在室溫條件下通過操縱單個原子,研製出原子級的硅記憶材料,其存儲信息的密度是目前光碟的100萬倍。這是納米存儲材料技術研究的一大進展。該小組發表在《納米技術》雜志上的研究報告稱,新的記憶材料構建在硅材料表面上。研究人員首先使金元素在硅材料表面升華,形成精確的原子軌道;然後再使硅元素升華,使其按上述原子軌道進行排列;最後,藉助於掃瞄隧道顯微鏡的探針,從這些排列整齊的硅原子中間隔抽出硅原子,被抽空的部分代表「0」,餘下的硅原子則代表「1」,這就形成了相當於計算機晶體管功能的原子級記憶材料。整個試驗研究在室溫條件下進行。研究小組負責人赫姆薩爾教授說,在室溫條件下,一次操縱一批原子進行排列並不容易。更為重要的是,記憶材料中硅原子排列線內的間隔是一個原子大小。這保證了記憶材料的原子級水平。赫姆薩爾教授說,新的硅記憶材料與目前硅存儲材料存儲功能相同,而不同之處在於,前者為原子級體積,利用其製造的計算機存儲材料體積更小、密度更大。這可使未來計算機微型化,且存儲信息的功能更為強大。
以上就是本文向大家介紹的存儲器設備發展歷程的7個關鍵時期
『陸』 光存儲器,什麼是光存儲器,光存儲器介紹
光纖存儲系統一般是指伺服器與存儲(盤櫃)之間的i/o是用光纖傳輸。
光纖存儲系統,目前市場上可分為兩種,純光纖和半光纖。
純光纖就是指控制器的前端主機介面和內部磁碟介面都是光纖的。
半光纖就是控制器的前端主機介面是光纖的,內部磁碟是其它介面。
『柒』 只讀存儲器的介紹
只讀存儲器(英語:Read-Only Memory,簡稱:ROM)。ROM所存數據,一般是裝入整機前事先寫好的,整機工作過程中只能讀出,而不像隨機存儲器那樣能快速地、方便地加以改寫。ROM所存數據穩定 ,斷電後所存數據也不會改變;其結構較簡單,讀出較方便,因而常用於存儲各種固定程序和數據。除少數品種的只讀存儲器(如字元發生器)可以通用之外,不同用戶所需只讀存儲器的內容不同。為便於使用和大批量生產,進一步發展了可編程只讀存儲器(PROM)、可擦可編程序只讀存儲器(EPROM)和帶電可擦可編程只讀存儲器(EEPROM)。例如早期的個人電腦如Apple II或IBM PC XT/AT的開機程序(操作系統)或是其他各種微電腦系統中的軔體(Firmware)。
『捌』 存儲器,存儲器的介紹.
第四章 存儲器
存儲器是用來存儲微型計算機工作時使用的信息(程序和數據)的部件,正是因為有了存儲器,計算機才有信息記憶功能。
按這種定義,計算機的存儲器可分為兩大類:
一類叫內部存儲器(簡稱內存或主存);
另一類叫外部存儲器(簡稱外存)。
計算機工作時,一般先由只讀存儲器中的引導程序啟動系統,再從外存中讀取系統程序和應用程序送到內存中運行。
本章的內容主要是關於內部存儲器的。我們將講述微型計算機系統中構成內存的各種半導體存儲器件,也將討論它們如何和系統匯流排相連。
靜態存儲器介面 動態存儲器介面 只讀存儲器 存儲器工作時序 半導體存儲器備份電源 存儲器新技術
『玖』 sram存儲器的特點是什麼
關於SRAM存儲容量及基本特點。
半導體隨機存儲器晶元內集成有記憶功能的存儲矩陣,解碼驅動電路和讀/寫電路等等。
下面介紹幾個重要的概念:
讀寫電路:包括讀出放大器和寫入電路,用來完成讀/寫操作。
地址線:單向輸入,其位數與晶元的容量有關
片選線:確定哪個晶元被選中(用來選擇晶元)
數據線:雙向輸入,其位數與晶元可讀出或者寫入的位數有關,也與晶元容量有關。
存儲容量
通常我們將存儲容量表示為:字數X位數,比如64KX8位,其含義為,以8位構成一個字,一共有64個字。這個概念要相當熟悉,後面理解題目很有用。
『拾』 內存儲器的介紹
內存又稱為內存儲器,通常也泛稱為主存儲器,是計算機中的主要部件,它是相對於外存而言的。