A. hash破解 有什麼用
你應該也網路過,hash是微軟存儲密碼的一種計算方式,也就是所謂的加密方式。當然這種計算方式並非唯一的,有很多種加密方式,一般的系統的加密採用的是lm跟nthash,兩者一個是7+7的大寫轉化,另外一個是128位元組的加密方式,,,,我說的不好,你可以另外網路確認,簡單點說,你破解了hash也就得到了密碼。跟使用者一樣的密碼,這樣你就可以使用它的身份做操作了。
B. 哈希表、哈希演算法、一致性哈希表
散列表(Hash table,也叫哈希表),是根據關鍵碼值(Key value)而直接進行訪問的數據結構。它通過把關鍵碼映射到表中一個位置來訪問記錄,以加快查找的速度。這個映射函數叫做散列函數(哈希函數),存放記錄的數組叫做散列表。
優點:
哈希表可以提供快速的操作。
缺點:
哈希表通常是基於數組的,數組創建後難於擴展。
也沒有一種簡便的方法可以以任何一種順序〔例如從小到大)遍歷表中的數據項 。
綜上, 如果不需要有序遍歷數據,井且可以提前預測數據量的大小。那麼哈希表在速度和易用性方面是無與倫比的。
1. 使用哈希函數將被查找的鍵轉換為數組的索引。
2. 處理哈希碰撞沖突。
若關鍵字為 k ,則其值存放在 f(k) 的存儲位置上。由此,不需比較便可直接取得所查記錄。稱這個對應關系 f 為散列函數,按這個思想建立的表為散列表。
若對於關鍵字集合中的任一個關鍵字,經散列函數映象到地址集合中任何一個地址的概率是相等的,則稱此類散列函數為 均勻散列函數 (Uniform Hash function),這就是使關鍵字經過散列函數得到一個"隨機的地址",從而減少碰撞。
散列函數能使對一個數據序列的訪問過程更加迅速有效,通過散列函數,數據元素將被更快地定位。
一個好的散列函數一般應該考慮下列因素 :
1.計算簡單,以便提高轉換速度。
2.關鍵詞對應的地址空間分布均勻,以盡量減少沖突。
1. 直接定址法
取關鍵字或者關鍵字的某個線性函數值作為哈希地址,即H(Key)=Key或者H(Key)=a*Key+b(a,b為整數),這種散列函數也叫做自身函數.如果H(Key)的哈希地址上已經有值了,那麼就往下一個位置找,直到找到H(Key)的位置沒有值了就把元素放進去。
2. 數字分析法
數字分析法就是找出數字的規律,盡可能利用這些數據來構造沖突幾率較低的散列地址。
3. 平方取中法
取關鍵字平方後的中間幾位作為散列地址。這種方法的原理是通過取平方擴大差別,平方值的中間幾位和這個數的每一位都相關,則對不同的關鍵字得到的哈希函數值不易產生沖突,由此產生的哈希地址也較為均勻。該方法適用於關鍵字中的每一位都有某些數字重復出現頻度很高的現象。
4. 折疊法
折疊法是將關鍵字分割成位數相同的幾部分,最後一部分位數可以不同,然後取這幾部分的疊加和(注意:疊加和時去除進位)作為散列地址。
數位疊加可以有移位疊加和間界疊加兩種方法。移位疊加是將分割後的每一部分的最低位對齊,然後相加;間界疊加是從一端向另一端沿分割界來回折疊,然後對齊相加。
該方法適用於關鍵字特別多的情況。
5. 隨機數法
選擇一個隨機數,作為散列地址,通常用於關鍵字長度不同的場合。
6. 除留余數法
取關鍵字被某個不大於散列表表長m的數p除後所得的余數為散列地址.即H(Key)=Key MOD p,p<=m.不僅可以對關鍵字直接取模,也可在折疊、平方取中等運算之後取模。對p的選擇很重要,一般取素數或m,若p選得不好,則很容易產生沖突。
對不同的關鍵字可能得到同一散列地址,即 k1≠k2 ,而 f(k1)=f(k2) ,這種現象稱為碰撞(英語:Collision)。具有相同函數值的關鍵字對該散列函數來說稱做同義詞。
通過構造性能良好的散列函數,可以減少沖突,但一般不可能完全避免沖突,因此解決沖突是哈希法的另一個關鍵問題。 創建哈希表和查找哈希表都會遇到沖突,兩種情況下解決沖突的方法應該一致。
下面以創建哈希表為例,說明解決沖突的方法。
1.開放定址法
這種方法也稱再散列法,其基本思想是:當關鍵字key的哈希地址p=H(key)出現沖突時,以p為基礎,產生另一個哈希地址p1,如果p1仍然沖突,再以p為基礎,產生另一個哈希地址p2,…,直到找出一個不沖突的哈希地址pi ,將相應元素存入其中。這種方法有一個通用的再散列函數形式:Hi=(H(key)+di)%m i=1,2,…,m-1,其中H(key)為哈希函數,m 為表長,di稱為增量序列,i為碰撞次數。增量序列的取值方式不同,相應的再散列方式也不同。增量序列主要有以下幾種:
(1) 線性探測再散列
di=1,2,3,…,m-1
這種方法的特點是:沖突發生時,順序查看錶中下一單元,直到找出一個空單元或查遍全表。
(2)二次探測再散列
di=12,-12,22,-22,…,k2,-k2( k<=m/2 )
這種方法的特點是:沖突發生時,在表的左右進行跳躍式探測,比較靈活。
(3)偽隨機探測再散列
di=偽隨機數序列。
線性探測再散列的 優點 是:只要哈希表不滿,就一定能找到一個不沖突的哈希地址,而二次探測再散列和偽隨機探測再散列則不一定。線性探測再散列容易產生「二次聚集」,即在處理同義詞的沖突時又導致非同義詞的沖突。
其實除了上面的幾種方法,開放定址法還有很多變種,不過都是對di有不同的表示方法。(如雙散列探測法:di=i*h2(k))
2.再哈希法
這種方法是同時構造多個不同的哈希函數:Hi=RHi(key),i=1,2,3,…,n。
當哈希地址H1=RH1(key)發生沖突時,再計算H2=RH2(key)……,直到沖突不再產生。這種方法不易產生聚集,但增加了計算時間。
3.鏈地址法(拉鏈法)
這種方法的基本思想是將所有哈希地址相同的元素構成一個稱為同義詞鏈的單鏈表,並將單鏈表的頭指針存在哈希表(數組)中,因而查找、插入和刪除主要在同義詞鏈中進行。若選定的散列表長度為m,則可將散列表定義為一個由m個頭指針組成的指針數組T[0..m-1]。凡是散列地址為i的結點,均插入到以T[i]為頭指針的單鏈表中。T中各分量的初值均應為空指針。鏈地址法適用於經常進行插入和刪除的情況。
拉鏈法的優點
與開放定址法相比,拉鏈法有如下幾個優點:
(1)拉鏈法處理沖突簡單,且無堆積現象,即非同義詞決不會發生沖突,因此平均查找長度較短;
(2)由於拉鏈法中各鏈表上的結點空間是動態申請的,故它更適合於造表前無法確定表長的情況;
(3)開放定址法為減少沖突,要求裝填因子α較小,故當結點規模較大時會浪費很多空間。而拉鏈法中理論上可取α≥1,且結點較大時,拉鏈法中增加的指針域可忽略不計,因此節省空間;(散列表的裝填因子定義為:α= 填入表中的元素個數 / 散列表的長度)
註:HashMap默認裝填因子是0.75。
(4)在用拉鏈法構造的散列表中,刪除結點的操作易於實現。只要簡單地刪去鏈表上相應的結點即可。而對開放定址法構造的散列表,刪除結點不能簡單地將被刪結點的空間置為空,否則將截斷在它之後填入散列表的同義詞結點的查找路徑。這是因為各種開放定址法中,空地址單元都被理解沒有查找到元素。 因此在用開放定址法處理沖突的散列表上執行刪除操作,只能在被刪結點上做刪除標記,而不能真正刪除結點。
拉鏈法的缺點
拉鏈法的缺點是:指針需要額外的空間,故當結點規模較小時,開放定址法較為節省空間,此時將節省的指針空間用來擴大散列表的規模,可使裝填因子變小,這又減少了開放定址法中的沖突,從而提高平均查找速度。
4、建立公共溢出區
這種方法的基本思想是:將哈希表分為基本表和溢出表兩部分,凡是和基本表發生沖突的元素,一律填入溢出表(在這個方法裡面是把元素分開兩個表來存儲)。
散列表的查找過程基本上和造表過程相同。一些關鍵碼可通過散列函數轉換的地址直接找到,另一些關鍵碼在散列函數得到的地址上產生了沖突,需要按處理沖突的方法進行查找。在介紹的三種處理沖突的方法中,產生沖突後的查找仍然是給定值與關鍵碼進行比較的過程。所以,對散列表查找效率的量度,依然用平均查找長度來衡量。
查找過程中,關鍵碼的比較次數,取決於產生沖突的多少,產生的沖突少,查找效率就高,產生的沖突多,查找效率就低。因此,影響產生沖突多少的因素,也就是影響查找效率的因素。
影響產生沖突多少有以下三個因素:
1. 散列函數是否均勻;
2. 處理沖突的方法;
3. 散列表的裝填因子。
散列表的裝填因子
定義為:α= 填入表中的元素個數 / 散列表的長度
α是散列表裝滿程度的標志因子。由於表長是定值,α與"填入表中的元素個數"成正比,所以,α越大,填入表中的元素較多,產生沖突的可能性就越大;α越小,填入表中的元素較少,產生沖突的可能性就越小。
實際上,散列表的平均查找長度是裝填因子α的函數,只是不同處理沖突的方法有不同的函數。
這個HASH演算法不是大學里數據結構課里那個HASH表的演算法。這里的HASH演算法是密碼學的基礎,了解了hash基本定義,就不能不提到一些著名的hash演算法,MD5 和 SHA-1 可以說是目前應用最廣泛的Hash演算法,而它們都是以 MD4 為基礎設計的。
Hash演算法在信息安全方面的應用主要體現在以下的3個方面:
⑴ 文件校驗
我們比較熟悉的校驗演算法有奇偶校驗和CRC校驗,這2種校驗並沒有抗 數據篡改 的能力,它們一定程度上能檢測出數據傳輸中的信道誤碼,但卻不能防止對數據的惡意破壞。
MD5 Hash演算法的"數字指紋"特性,使它成為目前應用最廣泛的一種文件完整性 校驗和 (Checksum)演算法,不少Unix系統有提供計算md5 checksum的命令。
⑵ 數字簽名
Hash 演算法也是現代密碼體系中的一個重要組成部分。由於非對稱演算法的運算速度較慢,所以在 數字簽名 協議中,單向散列函數扮演了一個重要的角色。對 Hash 值,又稱"數字摘要"進行數字簽名,在統計上可以認為與對文件本身進行數字簽名是等效的。而且這樣的協議還有其他的優點。
⑶ 鑒權協議
如下的鑒權協議又被稱作挑戰--認證模式:在傳輸信道是可被偵聽,但不可被篡改的情況下,這是一種簡單而安全的方法。
一致性哈希表簡稱DHT,主要應用於分布式緩存中,可以用來解決分布式存儲結構下動態增加和刪除節點所帶來的問題。比如,一個分布式的存儲系統,要將數據存儲到具體的節點上,如果採用普通的hash方法,將數據映射到具體的節點上,如key%N(key是數據的key,N是機器節點數),如果有一個機器加入或退出這個集群,則所有的數據映射都無效了,如果是持久化存儲則要做數據遷移,如果是分布式緩存,則其他緩存就失效了。
判定哈希演算法好壞的四個定義 :
1、平衡性(Balance):平衡性是指哈希的結果能夠盡可能分布到所有的緩沖中去,這樣可以使得所有的緩沖空間都得到利用。
2、單調性(Monotonicity):單調性是指如果已經有一些內容通過哈希分派到了相應的緩沖中,又有新的緩沖加入到系統中。哈希的結果應能夠保證原有已分配的內容可以被映射到原有的或者新的緩沖中去,而不會被映射到舊的緩沖集合中的其他緩沖區。
3、分散性(Spread):在分布式環境中,終端有可能看不到所有的緩沖,而是只能看到其中的一部分。當終端希望通過哈希過程將內容映射到緩沖上時,由於不同終端所見的緩沖范圍有可能不同,從而導致哈希的結果不一致,最終的結果是相同的內容被不同的終端映射到不同的緩沖區中。這種情況顯然是應該避免的,因為它導致相同內容被存儲到不同緩沖中去,降低了系統存儲的效率。 分散性的定義就是上述情況發生的嚴重程度。好的哈希演算法應能夠盡量避免不一致的情況發生,也就是盡量降低分散性。
4、負載(Load):負載問題實際上是從另一個角度看待分散性問題。既然不同的終端可能將相同的內容映射到不同的緩沖區中,那麼對於一個特定的緩沖區而言,也可能被不同的用戶映射為不同的內容。與分散性一樣,這種情況也是應當避免的, 因此好的哈希演算法應能夠盡量降低緩沖的負荷。
在分布式集群中,對機器的添加刪除,或者機器故障後自動脫離集群這些操作是分布式集群管理最基本的功能。如果採用常用的hash取模演算法,那麼在有機器添加或者刪除後,很多原有的數據就無法找到了,這樣嚴重的違反了單調性原則。接下來主要說明一下一致性哈希演算法是如何設計的。
以SpyMemcached的ketama演算法來說,思路是這樣的:
把數據用hash函數,映射到一個很大的空間里,如圖所示。數據的存儲時,先得到一個hash值,對應到這個環中的每個位置,如k1對應到了圖中所示的位置,然後沿順時針找到一個機器節點B,將k1存儲到B這個節點中。
如果B節點宕機了,則B上的數據就會落到C節點上,如下圖所示:
這樣,只會影響C節點,對其他的節點A,D的數據不會造成影響。然而,這又會造成一個「雪崩」的情況,即C節點由於承擔了B節點的數據,所以C節點的負載會變高,C節點很容易也宕機,這樣依次下去,這樣造成整個集群都掛了。
為此,引入了「虛擬節點」的概念:即把想像在這個環上有很多「虛擬節點」,數據的存儲是沿著環的順時針方向找一個虛擬節點,每個虛擬節點都會關聯到一個真實節點,如下圖所使用:
圖中的A1、A2、B1、B2、C1、C2、D1、D2都是虛擬節點,機器A負載存儲A1、A2的數據,機器B負載存儲B1、B2的數據,機器C負載存儲C1、C2的數據。由於這些虛擬節點數量很多,均勻分布,因此不會造成「雪崩」現象。
C. 哈希演算法的原理
什麼是哈希演算法?哈希是一種加密演算法,也稱為散列函數或雜湊函數。哈希函數是一個公開函數,可以將任意長度的消息M映射成為一個長度較短且長度固定的值H(M),稱H(M)為哈希值、散列值(Hash Value)、雜湊值或者消息摘要。它是一種單向密碼體制,即一個從明文到密文的不可逆映射,只有加密過程,沒有解密過程。
Hash的特點
易壓縮:對於任意大小的輸入x,Hash值的長度很小,在實際應用中,函數H產生的Hash值其長度是固定的。
易計算:對於任意給定的消息,計算其Hash值比較容易。
單向性:對於給定的Hash值,要找到使得在計算上是不可行的,即求Hash的逆很困難。在給定某個哈希函數H和哈希值H(M)的情況下,得出M在計算上是不可行的。即從哈希輸出無法倒推輸入的原始數值。這是哈希函數安全性的基礎。
抗碰撞性:理想的Hash函數是無碰撞的,但在實際演算法的設計中很難做到這一點。
有兩種抗碰撞性:一種是弱抗碰撞性,即對於給定的消息,要發現另一個消息,滿足在計算上是不可行的;另一種是強抗碰撞性,即對於任意一對不同的消息,使得在計算上也是不可行的。
高靈敏性:這是從比特位角度出發的,指的是1比特位的輸入變化會造成1/2的比特位發生變化。消息M的任何改變都會導致哈希值H(M)發生改變。即如果輸入有微小不同,哈希運算後的輸出一定不同。
D. 十大常見密碼加密方式
一、密鑰散列
採用MD5或者SHA1等散列演算法,對明文進行加密。嚴格來說,MD5不算一種加密演算法,而是一種摘要演算法。無論多長的輸入,MD5都會輸出一個128位(16位元組)的散列值。而SHA1也是流行的消息摘要演算法,它可以生成一個被稱為消息摘要的160位(20位元組)散列值。MD5相對SHA1來說,安全性較低,但是速度快;SHA1和MD5相比安全性高,但是速度慢。
二、對稱加密
採用單鑰密碼系統的加密方法,同一個密鑰可以同時用作信息的加密和解密,這種加密方法稱為對稱加密。對稱加密演算法中常用的演算法有:DES、3DES、TDEA、Blowfish、RC2、RC4、RC5、IDEA、SKIPJACK等。
三、非對稱加密
非對稱加密演算法是一種密鑰的保密方法,它需要兩個密鑰來進行加密和解密,這兩個密鑰是公開密鑰和私有密鑰。公鑰與私鑰是一對,如果用公鑰對數據進行加密,只有用對應的私鑰才能解密。非對稱加密演算法有:RSA、Elgamal、背包演算法、Rabin、D-H、ECC(橢圓曲線加密演算法)。
四、數字簽名
數字簽名(又稱公鑰數字簽名)是只有信息的發送者才能產生的別人無法偽造的一段數字串,這段數字串同時也是對信息的發送者發送信息真實性的一個有效證明。它是一種類似寫在紙上的普通的物理簽名,但是在使用了公鑰加密領域的技術來實現的,用於鑒別數字信息的方法。
五、直接明文保存
早期很多這樣的做法,比如用戶設置的密碼是「123」,直接就將「123」保存到資料庫中,這種是最簡單的保存方式,也是最不安全的方式。但實際上不少互聯網公司,都可能採取的是這種方式。
六、使用MD5、SHA1等單向HASH演算法保護密碼
使用這些演算法後,無法通過計算還原出原始密碼,而且實現比較簡單,因此很多互聯網公司都採用這種方式保存用戶密碼,曾經這種方式也是比較安全的方式,但隨著彩虹表技術的興起,可以建立彩虹表進行查表破解,目前這種方式已經很不安全了。
七、特殊的單向HASH演算法
由於單向HASH演算法在保護密碼方面不再安全,於是有些公司在單向HASH演算法基礎上進行了加鹽、多次HASH等擴展,這些方式可以在一定程度上增加破解難度,對於加了「固定鹽」的HASH演算法,需要保護「鹽」不能泄露,這就會遇到「保護對稱密鑰」一樣的問題,一旦「鹽」泄露,根據「鹽」重新建立彩虹表可以進行破解,對於多次HASH,也只是增加了破解的時間,並沒有本質上的提升。
八、PBKDF2
該演算法原理大致相當於在HASH演算法基礎上增加隨機鹽,並進行多次HASH運算,隨機鹽使得彩虹表的建表難度大幅增加,而多次HASH也使得建表和破解的難度都大幅增加。
九、BCrypt
BCrypt 在1999年就產生了,並且在對抗 GPU/ASIC 方面要優於 PBKDF2,但是我還是不建議你在新系統中使用它,因為它在離線破解的威脅模型分析中表現並不突出。
十、SCrypt
SCrypt 在如今是一個更好的選擇:比 BCrypt設計得更好(尤其是關於內存方面)並且已經在該領域工作了 10 年。另一方面,它也被用於許多加密貨幣,並且我們有一些硬體(包括 FPGA 和 ASIC)能實現它。 盡管它們專門用於采礦,也可以將其重新用於破解。
E. 如何安全的存儲密碼
大多數的web開發者都會遇到設計用戶賬號系統的需求。賬號系統最重要的一個方面就是如何保護用戶的密碼。一些大公司的用戶資料庫泄露事件也時有發生,所以我們必須採取一些措施來保護用戶的密碼,即使網站被攻破的情況下也不會造成較大的危害。如果你還在存儲用戶密碼的MD5,那可真的有點弱了。趕緊來看看這篇文章吧。
保護密碼最好的的方式就是使用帶鹽的密碼hash(salted password hashing).對密碼進行hash操作是一件很簡單的事情,但是很多人都犯了錯。接下來我希望可以詳細的闡述如何恰當的對密碼進行hash,以及為什麼要這樣做。
重要提醒
如果你打算自己寫一段代碼來進行密碼hash,那麼趕緊停下吧。這樣太容易犯錯了。這個提醒適用於每一個人,不要自己寫密碼的hash演算法 !關於保存密碼的問題已經有了成熟的方案,那就是使用phpass或者本文提供的源碼。
什麼是hash
hash("hello") =
hash("hbllo") =
hash("waltz") = 演算法是一種單向的函數。它可以把任意數量的數據轉換成固定長度的「指紋」,這個過程是不可逆的。而且只要輸入發生改變,哪怕只有一個bit,輸出的hash值也會有很大不同。這種特性恰好合適用來用來保存密碼。因為我們希望使用一種不可逆的演算法來加密保存的密碼,同時又需要在用戶登陸的時候驗證密碼是否正確。
在一個使用hash的賬號系統中,用戶注冊和認證的大致流程如下:
1, 用戶創建自己的賬號
2, 用戶密碼經過hash操作之後存儲在資料庫中。沒有任何明文的密碼存儲在伺服器的硬碟上。
3, 用戶登陸的時候,將用戶輸入的密碼進行hash操作後與資料庫里保存的密碼hash值進行對比。
4, 如果hash值完全一樣,則認為用戶輸入的密碼是正確的。否則就認為用戶輸入了無效的密碼。
5, 每次用戶嘗試登陸的時候就重復步驟3和步驟4。在步驟4的時候不要告訴用戶是賬號還是密碼錯了。只需要顯示一個通用的提示,比如賬號或密碼不正確就可以了。這樣可以防止攻擊者枚舉有效的用戶名。
還需要注意的是用來保護密碼的hash函數跟數據結構課上見過的hash函數不完全一樣。比如實現hash表的hash函數設計的目的是快速,但是不夠安全。只有加密hash函數(cryptographic hash functions)可以用來進行密碼的hash。這樣的函數有SHA256, SHA512, RipeMD, WHIRLPOOL等。
一個常見的觀念就是密碼經過hash之後存儲就安全了。這顯然是不正確的。有很多方式可以快速的從hash恢復明文的密碼。還記得那些md5破解網站吧,只需要提交一個hash,不到一秒鍾就能知道結果。顯然,單純的對密碼進行hash還是遠遠達不到我們的安全需求。
F. hash是什麼意思
是用來加密的一種方式文件校驗
我們比較熟悉的校驗演算法有奇偶校驗和CRC校驗,這2種校驗並沒有抗數據篡改的能力,它們一定程度上能檢測並糾正數據傳輸中的信道誤碼,但卻不能防止對數據的惡意破壞。
MD5 Hash演算法的"數字指紋"特性,使它成為目前應用最廣泛的一種文件完整性校驗和(Checksum)演算法,不少Unix系統有提供計算md5 checksum的命令。
數字簽名
Hash 演算法也是現代密碼體系中的一個重要組成部分。由於非對稱演算法的運算速度較慢,所以在數字簽名協議中,單向散列函數扮演了一個重要的角色。 對 Hash 值,又稱"數字摘要"進行數字簽名,在統計上可以認為與對文件本身進行數字簽名是等效的。而且這樣的協議還有其他的優點。
鑒權協議
如下的鑒權協議又被稱作"挑戰--認證模式:在傳輸信道是可被偵聽,但不可被篡改的情況下,這是一種簡單而安全的方法。
以上就是一些關於hash以及其相關的一些基本預備知識。那麼在emule裡面他具體起到什麼作用呢?
參考資料:www.hash.com.cn
G. 密碼學HASH與對稱加密
Hash,一般翻譯做「散列」,也有直接音譯為「哈希」的,就是把任意長度的輸入通過散列演算法變換成固定長度的輸出,該輸出就是散列值。這種轉換是一種壓縮映射,也就是,散列值的空間通常遠小於輸入的空間,不同的輸入可能會散列成相同的輸出,所以不可能從散列值來確定唯一的輸入值。簡單的說就是一種將任意長度的消息壓縮到某一固定長度的消息摘要的函數。
MD5信息摘要演算法 (英語:MD5 Message-Digest Algorithm),一種被廣泛使用的 密碼散列函數 ,可以產生出一個128位(16 位元組 )的散列值(hash value),用於確保信息傳輸完整一致。2004年,證實MD5演算法無法防止碰撞(collision)(如網站: CMD5 ),因此不適用於安全性認證,如 SSL 公開密鑰認證或是 數字簽名 等用途。
MD5 是哈希演算法的一種。
密碼加密常見的有以下幾種方式:
HMAC是密鑰相關的哈希運算消息認證碼(Hash-based Message Authentication Code)的縮寫,並在 IPSec 和其他網路協議(如 SSL )中得以廣泛應用,現在已經成為事實上的Internet安全標准。它可以與任何迭代散列函數捆綁使用。
如上圖中,共有兩個流程:
授權設備登錄流程:
1、輸入賬號過後,就把賬號作為參數向伺服器發送請求
2、伺服器根據賬號生成對應的key,並傳遞給客戶端
3、客戶端拿到key,進行HMAC運算,並將運算結果的哈希值傳給伺服器
其他設備登錄流程:
1、輸入賬號過後,在本地緩存中找伺服器傳過來的key,有就登錄,沒有就把賬號作為參數向伺服器發送請求
2、伺服器要先看這個賬號是否開啟了設備鎖,沒有開啟就不允許登錄,開啟了,就向授權設備發送請求,是否授權,如果授權,就將這個賬號的key傳給其他客戶端
3、客戶端拿到key,進行HMAC運算,並將運算結果的哈希值傳給伺服器
但是在這之中有一個潛在的安全隱患問題: 當別人拿到賬號和傳遞的哈希值過後,也就能拿到登錄許可權,從而不安全。
為了防止上面的問題,注冊流程不變,伺服器還是保存的有加了key的HMAC哈希值。
1、只是登錄的時候,客戶端將哈希值與時間戳拼接過後,進行MD5加密,再傳給伺服器。
2、伺服器將注冊保存的賬號對應的HMAC哈希值,分別與當前時間,和前一分鍾拼接再MD5加密,再和客戶端傳過來的進行匹配,匹配成功則登錄成功,否則不成功。
3、注意這里的時間戳是伺服器給的時間戳。
常見的加密演算法:
應用模式:
AES加密解密都是用到的CCCrypt函數,並且需要導入 CommonCrypto 框架。
H. Windows系統中用戶的密碼採用什麼Hash演算法有什麼區別
NTLMhash和Net-NTLMhash
區別:1、NTLMhash通常是指Windows系統下SecurityAccountManager中保存的用戶密碼hash,該hash的生成方法:將明文口令轉換成十六進制的格式,轉換成Unicode格式,即在每個位元組之後添加0x00,對Unicode字元串作MD4加密,生成32位的十六進制數字串。2、Net-NTLMhash,通過是指網路環境下NTLM認證中的hash。
I. 如何安全的存儲用戶的密碼
保護密碼最好的的方式就是使用帶鹽的密碼hash(salted password hashing).對密碼進行hash操作是一件很簡單的事情,但是很多人都犯了錯。接下來我希望可以詳細的闡述如何恰當的對密碼進行hash,以及為什麼要這樣做。
重要提醒
如果你打算自己寫一段代碼來進行密碼hash,那麼趕緊停下吧。這樣太容易犯錯了。這個提醒適用於每一個人,不要自己寫密碼的hash演算法 !關於保存密碼的問題已經有了成熟的方案,那就是使用phpass或者本文提供的源碼。
什麼是hash
hash("hello") =
hash("hbllo") =
hash("waltz") =
Hash演算法是一種單向的函數。它可以把任意數量的數據轉換成固定長度的「指紋」,這個過程是不可逆的。而且只要輸入發生改變,哪怕只有一個bit,輸出的hash值也會有很大不同。這種特性恰好合適用來用來保存密碼。因為我們希望使用一種不可逆的演算法來加密保存的密碼,同時又需要在用戶登陸的時候驗證密碼是否正確。
在一個使用hash的賬號系統中,用戶注冊和認證的大致流程如下:
1, 用戶創建自己的賬號
2, 用戶密碼經過hash操作之後存儲在資料庫中。沒有任何明文的密碼存儲在伺服器的硬碟上。
3, 用戶登陸的時候,將用戶輸入的密碼進行hash操作後與資料庫里保存的密碼hash值進行對比。
4, 如果hash值完全一樣,則認為用戶輸入的密碼是正確的。否則就認為用戶輸入了無效的密碼。
5, 每次用戶嘗試登陸的時候就重復步驟3和步驟4。
在步驟4的時候不要告訴用戶是賬號還是密碼錯了。只需要顯示一個通用的提示,比如賬號或密碼不正確就可以了。這樣可以防止攻擊者枚舉有效的用戶名。
還需要注意的是用來保護密碼的hash函數跟數據結構課上見過的hash函數不完全一樣。比如實現hash表的hash函數設計的目的是快速,但是不夠安全。只有加密hash函數(cryptographic hash functions)可以用來進行密碼的hash。這樣的函數有SHA256, SHA512, RipeMD, WHIRLPOOL等。
一個常見的觀念就是密碼經過hash之後存儲就安全了。這顯然是不正確的。有很多方式可以快速的從hash恢復明文的密碼。還記得那些md5破解網站吧,只需要提交一個hash,不到一秒鍾就能知道結果。顯然,單純的對密碼進行hash還是遠遠達不到我們的安全需求。下一部分先討論一下破解密碼hash,獲取明文常見的手段。
如何破解hash
字典和暴力破解攻擊(Dictionary and Brute Force Attacks)
最常見的破解hash手段就是猜測密碼。然後對每一個可能的密碼進行hash,對比需要破解的hash和猜測的密碼hash值,如果兩個值一樣,那麼之前猜測的密碼就是正確的密碼明文。猜測密碼攻擊常用的方式就是字典攻擊和暴力攻擊。
Dictionary Attack
Trying apple : failed
Trying blueberry : failed
Trying justinbeiber : failed
...
Trying letmein : failed
Trying s3cr3t : success!
字典攻擊是將常用的密碼,單詞,短語和其他可能用來做密碼的字元串放到一個文件中,然後對文件中的每一個詞進行hash,將這些hash與需要破解的密碼hash比較。這種方式的成功率取決於密碼字典的大小以及字典的是否合適。
Brute Force Attack
Trying aaaa : failed
Trying aaab : failed
Trying aaac : failed
...
Trying acdb : failed
Trying acdc : success!
暴力攻擊就是對於給定的密碼長度,嘗試每一種可能的字元組合。這種方式需要花費大量的計算機時間。但是理論上只要時間足夠,最後密碼一定能夠破解出來。只是如果密碼太長,破解花費的時間就會大到無法承受。
目前沒有方式可以阻止字典攻擊和暴力攻擊。只能想辦法讓它們變的低效。如果你的密碼hash系統設計的是安全的,那麼破解hash唯一的方式就是進行字典或者暴力攻擊了。
查表破解(Lookup Tables)
對於特定的hash類型,如果需要破解大量hash的話,查表是一種非常有效而且快速的方式。它的理念就是預先計算(pre-compute)出密碼字典中每一個密碼的hash。然後把hash和對應的密碼保存在一個表裡。一個設計良好的查詢表結構,即使存儲了數十億個hash,每秒鍾仍然可以查詢成百上千個hash。
如果你想感受下查表破解hash的話可以嘗試一下在CraskStation上破解下下面的sha256 hash。
反向查表破解(Reverse Lookup Tables)
Searching for hash(apple) in users' hash list... : Matches [alice3, 0bob0, charles8]
Searching for hash(blueberry) in users' hash list... : Matches [usr10101, timmy, john91]
Searching for hash(letmein) in users' hash list... : Matches [wilson10, dragonslayerX, joe1984]
Searching for hash(s3cr3t) in users' hash list... : Matches [bruce19, knuth1337, john87]
Searching for hash(z@29hjja) in users' hash list... : No users used this password
這種方式可以讓攻擊者不預先計算一個查詢表的情況下同時對大量hash進行字典和暴力破解攻擊。
首先,攻擊者會根據獲取到的資料庫數據製作一個用戶名和對應的hash表。然後將常見的字典密碼進行hash之後,跟這個表的hash進行對比,就可以知道用哪些用戶使用了這個密碼。這種攻擊方式很有效果,因為通常情況下很多用戶都會有使用相同的密碼。
彩虹表 (Rainbow Tables)
彩虹表是一種使用空間換取時間的技術。跟查表破解很相似。只是它犧牲了一些破解時間來達到更小的存儲空間的目的。因為彩虹表使用的存儲空間更小,所以單位空間就可以存儲更多的hash。彩虹表已經能夠破解8位長度的任意md5hash。彩虹表具體的原理可以參考http://www.project-rainbowcrack.com/
下一章節我們會討論一種叫做「鹽」(salting)的技術。通過這種技術可以讓查表和彩虹表的方式無法破解hash。
加鹽(Adding Salt)
hash("hello") =
hash("hello" + "QxLUF1bgIAdeQX") =
hash("hello" + "bv5PehSMfV11Cd") =
hash("hello" + "YYLmfY6IehjZMQ") =
查表和彩虹表的方式之所以有效是因為每一個密碼的都是通過同樣的方式來進行hash的。如果兩個用戶使用了同樣的密碼,那麼一定他們的密碼hash也一定相同。我們可以通過讓每一個hash隨機化,同一個密碼hash兩次,得到的不同的hash來避免這種攻擊。
具體的操作就是給密碼加一個隨即的前綴或者後綴,然後再進行hash。這個隨即的後綴或者前綴成為「鹽」。正如上面給出的例子一樣,通過加鹽,相同的密碼每次hash都是完全不一樣的字元串了。檢查用戶輸入的密碼是否正確的時候,我們也還需要這個鹽,所以鹽一般都是跟hash一起保存在資料庫里,或者作為hash字元串的一部分。
鹽不需要保密,只要鹽是隨機的話,查表,彩虹表都會失效。因為攻擊者無法事先知道鹽是什麼,也就沒有辦法預先計算出查詢表和彩虹表。如果每個用戶都是使用了不同的鹽,那麼反向查表攻擊也沒法成功。
下一節,我們會介紹一些鹽的常見的錯誤實現。
錯誤的方式:短的鹽和鹽的復用
最常見的錯誤實現就是一個鹽在多個hash中使用或者使用的鹽很短。
鹽的復用(Salt Reuse)
不管是將鹽硬編碼在程序里還是隨機一次生成的,在每一個密碼hash里使用相同的鹽會使這種防禦方法失效。因為相同的密碼hash兩次得到的結果還是相同的。攻擊者就可以使用反向查表的方式進行字典和暴力攻擊。只要在對字典中每一個密碼進行hash之前加上這個固定的鹽就可以了。如果是流行的程序的使用了硬編碼的鹽,那麼也可能出現針對這種程序的這個鹽的查詢表和彩虹表,從而實現快速破解hash。
用戶每次創建或者修改密碼一定要使用一個新的隨機的鹽
短的鹽
如果鹽的位數太短的話,攻擊者也可以預先製作針對所有可能的鹽的查詢表。比如,3位ASCII字元的鹽,一共有95x95x95 = 857,375種可能性。看起來好像很多。假如每一個鹽製作一個1MB的包含常見密碼的查詢表,857,375個鹽才是837GB。現在買個1TB的硬碟都只要幾百塊而已。
基於同樣的理由,千萬不要用用戶名做為鹽。雖然對於每一個用戶來說用戶名可能是不同的,但是用戶名是可預測的,並不是完全隨機的。攻擊者完全可以用常見的用戶名作為鹽來製作查詢表和彩虹表破解hash。
根據一些經驗得出來的規則就是鹽的大小要跟hash函數的輸出一致。比如,SHA256的輸出是256bits(32bytes),鹽的長度也應該是32個位元組的隨機數據。
錯誤的方式:雙重hash和古怪的hash函數
這一節討論另外一個常見的hash密碼的誤解:古怪的hash演算法組合。人們可能解決的將不同的hash函數組合在一起用可以讓數據更安全。但實際上,這種方式帶來的效果很微小。反而可能帶來一些互通性的問題,甚至有時候會讓hash更加的不安全。本文一開始就提到過,永遠不要嘗試自己寫hash演算法,要使用專家們設計的標准演算法。有些人會覺得通過使用多個hash函數可以降低計算hash的速度,從而增加破解的難度。通過減慢hash計算速度來防禦攻擊有更好的方法,這個下文會詳細介紹。
下面是一些網上找到的古怪的hash函數組合的樣例。
md5(sha1(password))
md5(md5(salt) + md5(password))
sha1(sha1(password))
sha1(str_rot13(password + salt))
md5(sha1(md5(md5(password) + sha1(password)) + md5(password)))
不要使用他們!
注意:這部分的內容其實是存在爭議的!我收到過大量郵件說組合hash函數是有意義的。因為如果攻擊者不知道我們用了哪個函數,就不可能事先計算出彩虹表,並且組合hash函數需要更多的計算時間。
攻擊者如果不知道hash演算法的話自然是無法破解hash的。但是考慮到Kerckhoffs』s principle,攻擊者通常都是能夠接觸到源碼的(尤其是免費軟體和開源軟體)。通過一些目標系統的密碼–hash對應關系來逆向出演算法也不是非常困難。
如果你想使用一個標準的」古怪」的hash函數,比如HMAC,是可以的。但是如果你的目的是想減慢hash的計算速度,那麼可以讀一下後面討論的慢速hash函數部分。基於上面討論的因素,最好的做法是使用標準的經過嚴格測試的hash演算法。
hash碰撞(Hash Collisions)
因為hash函數是將任意數量的數據映射成一個固定長度的字元串,所以一定存在不同的輸入經過hash之後變成相同的字元串的情況。加密hash函數(Cryptographic hash function)在設計的時候希望使這種碰撞攻擊實現起來成本難以置信的高。但時不時的就有密碼學家發現快速實現hash碰撞的方法。最近的一個例子就是MD5,它的碰撞攻擊已經實現了。
碰撞攻擊是找到另外一個跟原密碼不一樣,但是具有相同hash的字元串。但是,即使在相對弱的hash演算法,比如MD5,要實現碰撞攻擊也需要大量的算力(computing power),所以在實際使用中偶然出現hash碰撞的情況幾乎不太可能。一個使用加鹽MD5的密碼hash在實際使用中跟使用其他演算法比如SHA256一樣安全。不過如果可以的話,使用更安全的hash函數,比如SHA256, SHA512, RipeMD, WHIRLPOOL等是更好的選擇。
正確的方式:如何恰當的進行hash
這部分會詳細討論如何恰當的進行密碼hash。第一個章節是最基礎的,這章節的內容是必須的。後面一個章節是闡述如何繼續增強安全性,讓hash破解變得異常困難。
基礎:使用加鹽hash
我們已經知道惡意黑客可以通過查表和彩虹表的方式快速的獲得hash對應的明文密碼,我們也知道了通過使用隨機的鹽可以解決這個問題。但是我們怎麼生成鹽,怎麼在hash的過程中使用鹽呢?
鹽要使用密碼學上可靠安全的偽隨機數生成器(Cryptographically Secure Pseudo-Random Number Generator (CSPRNG))來產生。CSPRNG跟普通的偽隨機數生成器比如C語言中的rand(),有很大不同。正如它的名字說明的那樣,CSPRNG提供一個高標準的隨機數,是完全無法預測的。我們不希望我們的鹽能夠被預測到,所以一定要使用CSPRNG。