㈠ 虛擬存儲的特點分析
一提起虛擬化,大家第一時間就會想到節約,綠色。因為它的使用可以為我們減少設備上的資金投入,降低成本壓力。一段時間以來,不同版本的虛擬存儲(Storage Virtulization)概念相繼涌現,有從軟體角度詮釋的,也有從硬體角度進行例證的。每個廠商都有根據對虛擬技術的理解向用戶提供的實用產品。在虛擬存儲方面真可謂百家爭鳴,所以很難對虛擬存儲技術的概念給出一個清晰而准確的描述。
盡管如此,總結一些虛擬存儲的共同特性可以看出,所謂虛擬存儲,就是把多個存儲介質模塊(如磁碟、磁碟陣列)通過一定的手段集中管理起來,所有的存儲模塊在一存儲池(Storage Pool)中得到統一管理。在虛擬存儲環境下,無論後台物理存儲是什麼設備,伺服器及工作站看到的都是其熟悉的存儲設備的邏輯鏡像。即使物理存儲發生了變化,這種邏輯鏡像也不會改變,系統管理員不必關心後台存儲,只需專注於管理存儲空間,所有的存儲管理操作,例如系統升級、建立和分配虛擬磁碟、改變RAID級別、擴充存儲空間等都比以前容易的多,存儲管理變得輕松簡單。
從用戶的角度來看,可以用一句更簡單的話來概括虛擬存儲--使用存儲空間而不是使用物理存儲硬體(磁碟、磁帶),管理存儲空間而不是管理物理存儲硬體。
虛擬存儲技術具有以下幾個特點:
1、虛擬存儲可以大大提高存儲系統的整體訪問帶寬,這也是其對於視頻網路系統來說最有價值的一個特點。我們知道,視頻網路的存儲系統一般是由多個存儲模塊組成,而虛擬存儲系統可以很好地進行負載平衡,把每一次數據訪問所需要的帶寬合理地分配到各個存儲模塊上,這樣系統的整體訪問帶寬就增大了。例如,一個存儲系統中有4個存儲模塊,每一個存儲模塊的訪問帶寬為50MB/s,則這個存儲系統的總訪問帶寬就可以接近各存儲模塊帶寬之和,即200MB/s。
2、虛擬存儲技術提供了一個大容量存儲系統的集中管理手段,由網路中的一個環節 (如伺服器)進行統一管理,避免了由於存儲設備擴充而帶來的管理方面的麻煩。例如,使用一般的存儲系統,當在增加新的存儲設備時,整個系統(包括網路中的諸多用戶設備)都需要重新進行繁瑣的配置工作,這樣才可以使這個新成員加入到存儲系統中。而使用虛擬存儲技術,在增加新的存儲設備時,只需要網路管理員對存儲系統進行較為簡單的系統配置更改,客戶端無需任何操作、只是感到存儲系統的容量增大了。
3、虛擬存儲技術為存儲資源管理提供了更好的靈活性。它可以將不同類型的存儲設備集中管理使用,保障了用戶以往購買存儲設備的投資。
㈡ 用9158虛擬視頻錄屏不管錄制多久保存的時候只有0.01M而且不能播放怎麼回事格式是wmv
重裝一下你的軟體試試
㈢ 什麼是虛擬存儲技術
1 虛擬存儲技術的產生
虛擬化技術並不是一件很新的技術,它的發展,應該說是隨著計算機技術的發展而發展起來的,最早是始於70年代。由於當時的存儲容量,特別是內存容量成本非常高、容量也很小,對於大型應用程序或多程序應用就受到了很大的限制。為了克服這樣的限制,人們就採用了虛擬存儲的技術,最典型的應用就是虛擬內存技術。隨著計算機技術以及相關信息處理技術的不斷發展,人們對存儲的需求越來越大。這樣的需求刺激了各種新技術的出現,比如磁碟性能越來越好、容量越來越大。但是在大量的大中型信息處理系統中,單個磁碟是不能滿足需要,這樣的情況下存儲虛擬化技術就發展起來了。在這個發展過程中也由幾個階段和幾種應用。首先是磁碟條帶集(RAID,可帶容錯)技術,將多個物理磁碟通過一定的邏輯關系集合起來,成為一個大容量的虛擬磁碟。而隨著數據量不斷增加和對數據可用性要求的不斷提高,又一種新的存儲技術應運而生,那就是存儲區域網路(SAN)技術。SAN的廣域化則旨在將存儲設備實現成為一種公用設施,任何人員、任何主機都可以隨時隨地獲取各自想要的數據。目前討論比較多的包括iSCSI、FC Over IP 等技術,由於一些相關的標准還沒有最終確定,但是存儲設備公用化、存儲網路廣域化是一個不可逆轉的潮流。
2 虛擬存儲的概念
所謂虛擬存儲,就是把多個存儲介質模塊(如硬碟、RAID)通過一定的手段集中管理起來,所有的存儲模塊在一個存儲池(Storage Pool)中得到統一管理,從主機和工作站的角度,看到就不是多個硬碟,而是一個分區或者卷,就好象是一個超大容量(如1T以上)的硬碟。這種可以將多種、多個存儲設備統一管理起來,為使用者提供大容量、高數據傳輸性能的存儲系統,就稱之為虛擬存儲。
㈣ 虛擬存儲技術的虛擬存儲的分類
目前虛擬存儲的發展尚無統一標准,從虛擬化存儲的拓撲結構來講主要有兩種方式:即對稱式與非對稱式。對稱式虛擬存儲技術是指虛擬存儲控制設備與存儲軟體系統、交換設備集成為一個整體,內嵌在網路數據傳輸路徑中;非對稱式虛擬存儲技術是指虛擬存儲控制設備獨立於數據傳輸路徑之外。從虛擬化存儲的實現原理來講也有兩種方式;即數據塊虛擬與虛擬文件系統。具體如下: 圖1對稱式虛擬存儲解決方案的示意圖
在圖1所示的對稱式虛擬存儲結構圖中,存儲控制設備 High Speed Traffic Directors(HSTD)與存儲池子系統Storage Pool集成在一起,組成SAN Appliance。可以看到在該方案中存儲控制設備HSTD在主機與存儲池數據交換的過程中起到核心作用。該方案的虛擬存儲過程是這樣的:由HSTD內嵌的存儲管理系統將存儲池中的物理硬碟虛擬為邏輯存儲單元(LUN),並進行埠映射(指定某一個LUN能被哪些埠所見),主機端將各可見的存儲單元映射為操作系統可識別的盤符。當主機向SAN Appliance寫入數據時,用戶只需要將數據寫入位置指定為自己映射的盤符(LUN),數據經過HSTD的高速並行埠,先寫入高速緩存,HSTD中的存儲管理系統自動完成目標位置由LUN到物理硬碟的轉換,在此過程中用戶見到的只是虛擬邏輯單元,而不關心每個LUN的具體物理組織結構。該方案具有以下主要特點:
(1)採用大容量高速緩存,顯著提高數據傳輸速度。
緩存是存儲系統中廣泛採用的位於主機與存儲設備之間的I/O路徑上的中間介質。當主機從存儲設備中讀取數據時,會把與當前數據存儲位置相連的數據讀到緩存中,並把多次調用的數據保留在緩存中;當主機讀數據時,在很大幾率上能夠從緩存中找到所需要的數據。直接從緩存上讀出。而從緩存讀取數據時的速度只受到電信號傳播速度的影響(等於光速),因此大大高於從硬碟讀數據時碟片機械轉動的速度。當主機向存儲設備寫入數據時,先把數據寫入緩存中,待主機端寫入動作停止,再從緩存中將數據寫入硬碟,同樣高於直接寫入硬碟的速度
(2)多埠並行技術,消除了I/O瓶頸。
傳統的FC存儲設備中控制埠與邏輯盤之間是固定關系,訪問一塊硬碟只能通過控制它的控制器埠。在對稱式虛擬存儲設備中,SAN Appliance的存儲埠與LUN的關系是虛擬的,也就是說多台主機可以通過多個存儲埠(最多8個)並發訪問同一個LUN;在光纖通道100MB/帶寬的大前提下,並行工作的埠數量越多,數據帶寬就越高。
(3)邏輯存儲單元提供了高速的磁碟訪問速度。
在視頻應用環境中,應用程序讀寫數據時以固定大小的數據塊為單位(從512byte到1MB之間)。而存儲系統為了保證應用程序的帶寬需求,往往設計為傳輸512byte以上的數據塊大小時才能達到其最佳I/O性能。在傳統SAN結構中,當容量需求增大時,唯一的解決辦法是多塊磁碟(物理或邏輯的)綁定為帶區集,實現大容量LUN。在對稱式虛擬存儲系統中,為主機提供真正的超大容量、高性能LUN,而不是用帶區集方式實現的性能較差的邏輯卷。與帶區集相比,Power LUN具有很多優勢,如大塊的I/O block會真正被存儲系統所接受,有效提高數據傳輸速度;並且由於沒有帶區集的處理過程,主機CPU可以解除很大負擔,提高了主機的性能。
(4)成對的HSTD系統的容錯性能。
在對稱式虛擬存儲系統中,HSTD是數據I/O的必經之地,存儲池是數據存放地。由於存儲池中的數據具有容錯機制保障安全,因此用戶自然會想到HSTD是否有容錯保護。象許多大型存儲系統一樣,在成熟的對稱式虛擬存儲系統中,HSTD是成對配製的,每對HSTD之間是通過SAN Appliance內嵌的網路管理服務實現緩存數據一致和相互通信的。
(5)在SAN Appliance之上可方便的連接交換設備,實現超大規模Fabric結構的SAN。
因為系統保持了標準的SAN結構,為系統的擴展和互連提供了技術保障,所以在SAN Appliance之上可方便的連接交換設備,實現超大規模Fabric結構的SAN。 圖2非對稱式虛擬存儲系統示意圖
在圖2所示的非對稱式虛擬存儲系統結構圖中,網路中的每一台主機和虛擬存儲管理設備均連接到磁碟陣列,其中主機的數據路徑通過FC交換設備到達磁碟陣列;虛擬存儲設備對網路上連接的磁碟陣列進行虛擬化操作,將各存儲陣列中的LUN虛擬為邏輯帶區集(Strip),並對網路上的每一台主機指定對每一個Strip的訪問許可權(可寫、可讀、禁止訪問)。當主機要訪問某個Strip時,首先要訪問虛擬存儲設備,讀取Strip信息和訪問許可權,然後再通過交換設備訪問實際的Strip中的數據。在此過程中,主機只會識別到邏輯的Strip,而不會直接識別到物理硬碟。這種方案具有如下特點:
(1)將不同物理硬碟陣列中的容量進行邏輯組合,實現虛擬的帶區集,將多個陣列控制器埠綁定,在一定程度上提高了系統的可用帶寬。
(2)在交換機埠數量足夠的情況下,可在一個網路內安裝兩台虛擬存儲設備,實現Strip信息和訪問許可權的冗餘。
但是該方案存在如下一些不足:
(1)該方案本質上是帶區集——磁碟陣列結構,一旦帶區集中的某個磁碟陣列控制器損壞,或者這個陣列到交換機路徑上的銅纜、GBIC損壞,都會導致一個虛擬的LUN離線,而帶區集本身是沒有容錯能力的,一個LUN的損壞就意味著整個Strip裡面數據的丟失。
(2)由於該方案的帶寬提高是通過陣列埠綁定來實現的,而普通光纖通道陣列控制器的有效帶寬僅在40MB/S左右,因此要達到幾百兆的帶寬就意味著要調用十幾台陣列,這樣就會佔用幾十個交換機埠,在只有一兩台交換機的中小型網路中,這是不可實現的。
(3)由於各種品牌、型號的磁碟陣列其性能不完全相同,如果出於虛擬化的目的將不同品牌、型號的陣列進行綁定,會帶來一個問題:即數據寫入或讀出時各並發數據流的速度不同,這就意味著原來的數據包順序在傳輸完畢後被打亂,系統需要佔用時間和資源去重新進行數據包排序整理,這會嚴重影響系統性能。
3.數據塊虛擬與虛擬文件系統
以上從拓撲結構角度分析了對稱式與非對稱式虛擬存儲方案的異同,實際從虛擬化存儲的實現原理來講也有兩種方式;即數據塊虛擬與虛擬文件系統。
數據塊虛擬存儲方案著重解決數據傳輸過程中的沖突和延時問題。在多交換機組成的大型Fabric結構的SAN中,由於多台主機通過多個交換機埠訪問存儲設備,延時和數據塊沖突問題非常嚴重。數據塊虛擬存儲方案利用虛擬的多埠並行技術,為多台客戶機提供了極高的帶寬,最大限度上減少了延時與沖突的發生,在實際應用中,數據塊虛擬存儲方案以對稱式拓撲結構為表現形式。
虛擬文件系統存儲方案著重解決大規模網路中文件共享的安全機制問題。通過對不同的站點指定不同的訪問許可權,保證網路文件的安全。在實際應用中,虛擬文件系統存儲方案以非對稱式拓撲結構為表現形式。
㈤ 如何設置虛擬硬碟存儲
VMware和Hyper-V都採用了虛擬硬碟方式(VHD-virtual hard disk),虛擬機的硬碟本質上都是作為一個文件來存放的。如果希望為某台虛擬機提供存儲空間,您需要做的僅僅是創建一個VHD文件並把它鏈接到虛擬機。然而,當真正涉及操作細節時會有大量的問題產生。 雖然創建一個VHD文件本身並不是非常的困難,但是有些時候會遇到各種各樣的問題。這些文件必須以最適合目標虛擬機的方式來創建。 保存VHD文件 ·通常最經濟的選擇是直連存儲(DAS),這也是最容易配置的一種方式。DAS最適合於那些僅僅運行了少量虛擬機的主機。這些虛擬機不允許運行那些磁碟訪問密集型的應用程序,因為這台伺服器上的所有虛擬機都在共享相同的硬碟資源。雖然一般來講磁碟的存儲空間大小不是問題,,而多個虛擬機同時並發的I/O需求則很容易導致性能瓶頸。 ·網路連接存儲(NAS)通常是在網路上保留了一個共享磁碟卷,用於存放虛擬磁碟文件。但是我之前也提到過,最重要的是了解您採用的虛擬化軟體自身的限制,例如微軟就不支持把Hyper-V的VHD文件保存在NAS系統上。 ·存儲區域網絡(SAN),和NAS一樣這是一種基於網路的存儲方式,這是兩種方式的相似點。它們在架構上最大的不同就是SAN是專用於存儲系統的網路(它通常也採用了存儲系統獨有的協議)。在這種方式下,存儲子系統的數據流量方式也有別於存儲於NAS系統上的文件。採用SAN是最昂貴虛擬存儲解決方案,同時也是性能最好的方式。 物理存儲和虛擬存儲的區別 對於一個新的虛擬化系統管理員而言,掌握物理存儲和虛擬存儲架構之間的區別往往會遇到一些困難。例如,Hyper-V採用了虛擬的IDE(Integrated Drive Electronics)硬碟控制器模式。虛擬機被要求必須從IDE硬碟上啟動,然而這並不意味著Hyper-V虛擬主機上的虛擬機只能選擇從本地直連存儲系統(DAS)上啟動。 虛擬機可以選擇從一個硬碟驅動器文件啟動,而這個文件被映射到一個虛擬的IDE控制器上,從而模擬出虛擬機從IDE硬碟啟動的假象。而實際上,該VHD文件本身可以位於本地磁碟(可以是IDE、SATA、eSATA、PATA、SAS或SCSI磁碟)上。同樣,把該VHD文件放到SAN系統上也是可以的。 最大化存儲資源池利用率 無論您採用了DAS或者是SAN作為虛擬伺服器的存儲資源池,存儲系統的性能都是必須要考慮的問題,因為所有的虛擬機都在爭奪硬碟資源。這里有一些方法可以實現對存儲資源池的性能優化。 對於新用戶而言,可以使用RAID0+1存儲系統架構。這種架構通過條帶化的方式,在提供更佳性能的同時也提供了鏡像的容錯功能。另外,請確保您的存儲陣列採用了10,000rpm的硬碟系統。 在SAN當中,如果可能的話盡量為每台虛擬機選擇獨立的光纖適配器通道。這可以防止光纖通道本身成為連接瓶頸。 最後,一些虛擬化平台在創建虛擬硬碟時,可以選擇是創建固定大小還是可以動態擴展的磁碟。固定空間的磁碟在創建的時候需要花費更多的時間,但是通常也提供了更好的性能,因為它們採用了物理磁碟上連續的數據塊。除去性能降低之外,動態擴展磁碟文件還有一些問題就是可以降低管理員對它的關注,所以可能會發生在擴展後物理卷溢出的情況。 當然,所有的這些辦法都是在假設物理磁碟資源池裡包含了兩個或更多虛擬磁碟的前提下。如果可以,請盡量為每個VHD文件創建獨立的物理磁碟卷(或LUN)。
㈥ 電腦安裝了視頻開視頻時顯示虛擬內存不足而且很卡該怎麼辦
怎樣設置虛擬內存:/(一)合理設置虛擬內存/虛擬內存的設定主要根據你的物理內存大小和電腦的用途來設定,在桌面上用滑鼠右擊「我的電腦」,選擇「屬性」,就可以看到內存了。根據微軟公司的建議,虛擬內存設為物理內存容量的1.5--3倍,例如512MB的內存,虛擬內存設定為768--1536MB;1G的內存,虛擬內存設定為1536--3072MB。也可讓Windows來自動分配管理虛擬內存,它能根據實際內存的使用情況,動態調整虛擬內存的大小。在虛擬內存設置頁面下方有一個推薦數值,如果確實不知道設置多少為最佳,建議虛擬內存就設為推薦的數值。虛擬內存有初始大小與最大值兩個數值,最好把初始大小和最大值設為相同,以避免系統頻繁改變頁面文件的大小,影響電腦運行。內存容量2GB或以上的,如果不運行大型文件或游戲,也可以關閉虛擬內存。/虛擬內存就是在你的物理內存不夠用時把一部分硬碟空間作為內存來使用,不過由於硬碟傳輸的速度要比內存傳輸速度慢的多,所以使用虛擬內存比物理內存效率要慢。個人實際需要的值應該自己多次調整為好。 設的太大會產生大量的碎片,嚴重影響系統速度,設的太小就不夠用,於是系統就會提示你虛擬內存太小。/(二)虛擬內存設置方法/右擊「我的電腦」選擇「屬性--高級--性能--設置--高級--虛擬內存--更改」,選擇虛擬內存所在的磁碟,然後在下邊單擊「自定義大小」 並輸入「初始大小」和「最大值」,最後按「設置」按鈕,再確定即可。虛擬內存從C盤設置到其它磁碟的方法(如果在其它盤,設置方法一樣):右擊我的電腦--屬性--高級--性能設置--高級--虛擬內存更改--點選C盤--單選「無分頁文件」--「設置」,此時C盤旁的虛擬內存就消失了;然後選中D或F盤,單選「自定義大小」--在下面的「初始大小」和「最大值」兩個文本框中輸入數值--「設置」—確定--重啟電腦,便完成了設置。/虛擬內存最好不要與系統設在同一個磁碟內,內存是隨著使用而動態地變化,設在C盤就容易產生磁碟碎片,影響系統運行速度。所以,最好將虛擬內存設置在磁碟剩餘空間較大而又不常用的磁碟,如D、F,這樣可以避免系統在C盤進行頻繁的讀寫操作而影響系統速度。虛擬內存在一台電腦,只用設置一次,可設置在任何一個磁碟。/(三)減輕內存負擔:/1、打開的程序不可太多。如果同時打開的文檔過多或者運行的程序過多,就沒有足夠的內存運行其他程序,要關閉不用的程序和窗口。/2、自動運行的程序不可太多 。==========================================
㈦ 下載了一個虛擬視頻,但是不知道放到哪了,誰能告訴我怎麼找到
重新下載,出來的下載頁面裡面的保存地址跟上次下載的東西存放的地址是同一個。然後就在這個電腦里地址找就行
㈧ 虛擬存儲技術的基本思想是什麼
1 虛擬存儲技術的產生
虛擬化技術並不是一件很新的技術,它的發展,應該說是隨著計算機技術的發展而發展起來的,最早是始於70年代.由於當時的存儲容量,特別是內存容量成本非常高,容量也很小,對於大型應用程序或多程序應用就受到了很大的限制.為了克服這樣的限制,人們就採用了虛擬存儲的技術,最典型的應用就是虛擬內存技術.隨著計算機技術以及相關信息處理技術的不斷發展,人們對存儲的需求越來越大.這樣的需求刺激了各種新技術的出現,比如磁碟性能越來越好,容量越來越大.但是在大量的大中型信息處理系統中,單個磁碟是不能滿足需要,這樣的情況下存儲虛擬化技術就發展起來了.在這個發展過程中也由幾個階段和幾種應用.首先是磁碟條帶集(RAID,可帶容錯)技術,將多個物理磁碟通過一定的邏輯關系集合起來,成為一個大容量的虛擬磁碟.而隨著數據量不斷增加和對數據可用性要求的不斷提高,又一種新的存儲技術應運而生,那就是存儲區域網路(SAN)技術.SAN的廣域化則旨在將存儲設備實現成為一種公用設施,任何人員,任何主機都可以隨時隨地獲取各自想要的數據.目前討論比較多的包括iSCSI,FC Over IP 等技術,由於一些相關的標准還沒有最終確定,但是存儲設備公用化,存儲網路廣域化是一個不可逆轉的潮流.
2 虛擬存儲的概念
所謂虛擬存儲,就是把多個存儲介質模塊(如硬碟,RAID)通過一定的手段集中管理起來,所有的存儲模塊在一個存儲池(Storage Pool)中得到統一管理,從主機和工作站的角度,看到就不是多個硬碟,而是一個分區或者卷,就好象是一個超大容量(如1T以上)的硬碟.這種可以將多種,多個存儲設備統一管理起來,為使用者提供大容量,高數據傳輸性能的存儲系統,就稱之為虛擬存儲.
虛擬存儲的分類
目前虛擬存儲的發展尚無統一標准,從虛擬化存儲的拓撲結構來講主要有兩種方式:即對稱式與非對稱式.對稱式虛擬存儲技術是指虛擬存儲控制設備與存儲軟體系統,交換設備集成為一個整體,內嵌在網路數據傳輸路徑中;非對稱式虛擬存儲技術是指虛擬存儲控制設備獨立於數據傳輸路徑之外.從虛擬化存儲的實現原理來講也有兩種方式;即數據塊虛擬與虛擬文件系統.具體如下:
A.對稱式虛擬存儲
圖1
圖1對稱式虛擬存儲解決方案的示意圖
在圖1所示的對稱式虛擬存儲結構圖中,存儲控制設備 High Speed Traffic Directors(HSTD)與存儲池子系統Storage Pool集成在一起,組成SAN Appliance.可以看到在該方案中存儲控制設備HSTD在主機與存儲池數據交換的過程中起到核心作用.該方案的虛擬存儲過程是這樣的:由HSTD內嵌的存儲管理系統將存儲池中的物理硬碟虛擬為邏輯存儲單元(LUN),並進行埠映射(指定某一個LUN能被哪些埠所見),主機端將各可見的存儲單元映射為操作系統可識別的盤符.當主機向SAN Appliance寫入數據時,用戶只需要將數據寫入位置指定為自己映射的盤符(LUN),數據經過HSTD的高速並行埠,先寫入高速緩存,HSTD中的存儲管理系統自動完成目標位置由LUN到物理硬碟的轉換,在此過程中用戶見到的只是虛擬邏輯單元,而不關心每個LUN的具體物理組織結構.該方案具有以下主要特點:
(1)採用大容量高速緩存,顯著提高數據傳輸速度.
緩存是存儲系統中廣泛採用的位於主機與存儲設備之間的I/O路徑上的中間介質.當主機從存儲設備中讀取數據時,會把與當前數據存儲位置相連的數據讀到緩存中,並把多次調用的數據保留在緩存中;當主機讀數據時,在很大幾率上能夠從緩存中找到所需要的數據.直接從緩存上讀出.而從緩存讀取數據時的速度只受到電信號傳播速度的影響(等於光速),因此大大高於從硬碟讀數據時碟片機械轉動的速度.當主機向存儲設備寫入數據時,先把數據寫入緩存中,待主機端寫入動作停止,再從緩存中將數據寫入硬碟,同樣高於直接寫入硬碟的速度
(2)多埠並行技術,消除了I/O瓶頸.
傳統的FC存儲設備中控制埠與邏輯盤之間是固定關系,訪問一塊硬碟只能通過控制它的控制器埠.在對稱式虛擬存儲設備中,SAN Appliance的存儲埠與LUN的關系是虛擬的,也就是說多台主機可以通過多個存儲埠(最多8個)並發訪問同一個LUN;在光纖通道100MB/帶寬的大前提下,並行工作的埠數量越多,數據帶寬就越高.
(3)邏輯存儲單元提供了高速的磁碟訪問速度.
在視頻應用環境中,應用程序讀寫數據時以固定大小的數據塊為單位(從512byte到1MB之間).而存儲系統為了保證應用程序的帶寬需求,往往設計為傳輸512byte以上的數據塊大小時才能達到其最佳I/O性能.在傳統SAN結構中,當容量需求增大時,唯一的解決辦法是多塊磁碟(物理或邏輯的)綁定為帶區集,實現大容量LUN.在對稱式虛擬存儲系統中,為主機提供真正的超大容量,高性能LUN,而不是用帶區集方式實現的性能較差的邏輯卷.與帶區集相比,Power LUN具有很多優勢,如大塊的I/O block會真正被存儲系統所接受,有效提高數據傳輸速度;並且由於沒有帶區集的處理過程,主機CPU可以解除很大負擔,提高了主機的性能.
(4)成對的HSTD系統的容錯性能.
在對稱式虛擬存儲系統中,HSTD是數據I/O的必經之地,存儲池是數據存放地.由於存儲池中的數據具有容錯機制保障安全,因此用戶自然會想到HSTD是否有容錯保護.象許多大型存儲系統一樣,在成熟的對稱式虛擬存儲系統中,HSTD是成對配製的,每對HSTD之間是通過SAN Appliance內嵌的網路管理服務實現緩存數據一致和相互通信的.
(5)在SAN Appliance之上可方便的連接交換設備,實現超大規模Fabric結構的SAN.
因為系統保持了標準的SAN結構,為系統的擴展和互連提供了技術保障,所以在SAN Appliance之上可方便的連接交換設備,實現超大規模Fabric結構的SAN.
B.非對稱式虛擬存儲系統
圖2
圖2非對稱式虛擬存儲系統示意圖
在圖2所示的非對稱式虛擬存儲系統結構圖中,網路中的每一台主機和虛擬存儲管理設備均連接到磁碟陣列,其中主機的數據路徑通過FC交換設備到達磁碟陣列;虛擬存儲設備對網路上連接的磁碟陣列進行虛擬化操作,將各存儲陣列中的LUN虛擬為邏輯帶區集(Strip),並對網路上的每一台主機指定對每一個Strip的訪問許可權(可寫,可讀,禁止訪問).當主機要訪問某個Strip時,首先要訪問虛擬存儲設備,讀取Strip信息和訪問許可權,然後再通過交換設備訪問實際的Strip中的數據.在此過程中,主機只會識別到邏輯的strip,而不會直接識別到物理硬碟.這種方案具有如下特點:
(1)將不同物理硬碟陣列中的容量進行邏輯組合,實現虛擬的帶區集,將多個陣列控制器埠綁定,在一定程度上提高了系統的可用帶寬.
(2)在交換機埠數量足夠的情況下,可在一個網路內安裝兩台虛擬存儲設備,實現Strip信息和訪問許可權的冗餘.
但是該方案存在如下一些不足:
(1)該方案本質上是帶區集——磁碟陣列結構,一旦帶區集中的某個磁碟陣列控制器損壞,或者這個陣列到交換機路徑上的銅纜,GBIC損壞,都會導致一個虛擬的LUN離線,而帶區集本身是沒有容錯能力的,一個LUN的損壞就意味著整個Strip裡面數據的丟失.
(2)由於該方案的帶寬提高是通過陣列埠綁定來實現的,而普通光纖通道陣列控制器的有效帶寬僅在40MB/S左右,因此要達到幾百兆的帶寬就意味著要調用十幾台陣列,這樣就會佔用幾十個交換機埠,在只有一兩台交換機的中小型網路中,這是不可實現的.
(3)由於各種品牌,型號的磁碟陣列其性能不完全相同,如果出於虛擬化的目的將不同品牌,型號的陣列進行綁定,會帶來一個問題:即數據寫入或讀出時各並發數據流的速度不同,這就意味著原來的數據包順序在傳輸完畢後被打亂,系統需要佔用時間和資源去重新進行數據包排序整理,這會嚴重影響系統性能.
4 數據塊虛擬與虛擬文件系統
以上從拓撲結構角度分析了對稱式與非對稱式虛擬存儲方案的異同,實際從虛擬化存儲的實現原理來講也有兩種方式;即數據塊虛擬與虛擬文件系統.
數據塊虛擬存儲方案著重解決數據傳輸過程中的沖突和延時問題.在多交換機組成的大型Fabric結構的SAN中,由於多台主機通過多個交換機埠訪問存儲設備,延時和數據塊沖突問題非常嚴重.數據塊虛擬存儲方案利用虛擬的多埠並行技術,為多台客戶機提供了極高的帶寬,最大限度上減少了延時與沖突的發生,在實際應用中,數據塊虛擬存儲方案以對稱式拓撲結構為表現形式.
虛擬文件系統存儲方案著重解決大規模網路中文件共享的安全機制問題.通過對不同的站點指定不同的訪問許可權,保證網路文件的安全.在實際應用中,虛擬文件系統存儲方案以非對稱式拓撲結構為表現形式.
虛擬存儲技術和這門課的結合點
本學期的這門課中,所涉及的虛擬存儲技術,實際上是虛擬存儲技術的一個方面,特指以CPU時間和外存空間換取昂貴內存空間的操作系統中的資源轉換技術
基本思想:程序,數據,堆棧的大小可以超過內存的大小,操作系統把程序當前使用的部分保留在內存,而把其他部分保存在磁碟上,並在需要時在內存和磁碟之間動態交換,虛擬存儲器支持多道程序設計技術
目的:提高內存利用率
管理方式
A 請求式分頁存儲管理
在進程開始運行之前,不是裝入全部頁面,而是裝入一個或零個頁面,之後根據進程運行的需要,動態裝入其他頁面;當內存空間已滿,而又需要裝入新的頁面時,則根據某種演算法淘汰某個頁面,以便裝入新的頁面
B 請求式分段存儲管理
為了能實現虛擬存儲,段式邏輯地址空間中的程序段在運行時並不全部裝入內存,而是如同請求式分頁存儲管理,首先調入一個或若干個程序段運行,在運行過程中調用到哪段時,就根據該段長度在內存分配一個連續的分區給它使用.若內存中沒有足夠大的空閑分區,則考慮進行段的緊湊或將某段或某些段淘汰出去,這種存儲管理技術稱為請求式分段存儲管理
㈨ 真實機上能不能找到在虛擬機上保存的圖片和視頻
真實機上能不能找到在虛擬機上保存的圖片和視頻?
一般情況是不能的,有些情況是可以的一下列舉一些可以的情況:
虛擬機硬碟用實體硬碟,不是創建虛擬磁碟。
虛擬機磁碟開啟文件共享。
這種情況算是硬來了,直接拷貝走虛擬機虛擬磁碟,在另外機器上重新打開虛擬機。