㈠ 科學家已經研製出了最小尺寸的相變存儲單元,這對計算系統有怎樣的意義呢
科學家已經研製出了最小尺寸的相變存儲單元,這對計算系統有怎樣的意義呢,如今數據產量呈爆炸式增長,傳統的馮諾依曼計算架構成為未來繼續提升計算系統性能的主要技術障礙。能夠集存儲和計算功能於一身的相變隨機存儲器是突破馮諾依曼計算架構瓶頸的理想路徑選擇。它具有非易失性、編程速度快、循環壽命長等優點。然而,在PCRAM中相變材料和加熱電極之間的接觸面積很大,這導致相變存儲器的高功耗。如何進一步降低功耗已經成為相變存儲器未來發展的最大挑戰之一。
非易失性存儲技術在許多方面取得了重大進展,為提高計算機系統的存儲能效帶來了新的機遇。利用新型非易失性存儲技術取代傳統存儲技術,可以滿足計算機技術發展對高存儲能效的需求。以相變存儲器(PCM)為代表的許多新型存儲技術,以其高集成度、低功耗的特點,引起了國內外研究者的關注。以上就是對科學家已經研製出了最小尺寸的相變存儲單元,這對計算系統有怎樣的意義呢這個問題的解答。
㈡ 什麼是雲存儲你如何看待雲存儲
雲存儲的幾十年發展歷程,其計算架構模型,也從Scale Up走向Scale Out。但是展望未來數字世界的海量需求,目前流行的模型還能夠持續滿足嗎?本文通過對雲存儲 歷史 的回顧,及對Scale Up和Scale Out兩種擴展模型的詮釋,來揭開雲存儲的未來模式。
1. 雲存儲及其 歷史
簡而言之,雲存儲(cloud storage)就是將數字內容安全的存儲在伺服器上,從而任何連接互聯網的設備可以方便的獲取。首先讓我們簡單回顧一下雲存儲的 歷史 。
雲存儲的早期雛形要回溯到上個世紀的90年代,也就是互聯網泡沫時期(dot-com boom),當時有許多家公司,例如EVault, NetMass, Arkeia和CommVault等等[1]均提供在線數據備份服務,當然它們絕大部分也隨著互聯網泡沫的破碎而煙消雲散了。少數倖存下來的有一家叫Veritas NetBackup最後也被Symantec收購,現在依舊提供Symantec NetBackup的在線存儲服務。
而真正讓大家耳熟能詳的雲存儲是2006年由Amazon提供的AWS S3雲存儲服務,其最具有革命意義的變革是,提出了即買即用(pay-per-use)的價格模型,使得雲存儲的使用像水電一樣可計算衡量。從此雲存儲以S3為標准一路絕塵,我們所熟悉的大廠,比如Netflix, Pinterest, Dropbox也是S3的顧客。尾隨的Microsoft和Google也於2010年分別發布了類似的Azure Blob Storage和Google Storage的存儲服務。
雲存儲真正發展的十幾年中,見證了移動互聯網的崛起,大數據的生機勃發,人工智慧的再次復興,並能夠展望到未來物聯網,無人駕駛及各類機器人自動化的世界。海量數據的產生,存儲,分析,預測及應用,快速以正反饋循環方式,推進著人類 社會 向數字世界大步邁進。所以,為了適應數據存儲新的需求,各家雲存儲產品的應用場景及價格模型,已從單一向多元發展,比如AWS S3就有Standard,Intelligent-Tiering, Standard-IA,One Zone-IA,Glacier和Glacier Deep Archive六類存儲產品來滿足各類使用場景,我會在未來的文章里針對性的細講一下。而本文重點所探討的是,目前雲存儲的基礎架構體系是否能夠適應未來數據存儲的要求和挑戰?為了回答這個問題,讓我們先簡單回顧一下計算機體系架構里的Scale Up和Scale Out擴展模型。
2. Scale Up和Scale Out?
Scale Up又稱為垂直擴展(scale vertically)[2],意為在單節點上添加資源,如CPU,內存和存儲,在縱向上擴展從而獲得更多計算或存儲能力;Scale Up初期能夠快速達到升級目的,操作起來相對比較簡單,但隨著計算或存儲的要求越來越高,硬體資源的添加可能已經達到極限,不僅單節點的造價非常昂貴,維護成本很高,而且更容易留下單點故障的隱患。傳統的RAID(Rendant Array of Inexpensive Disks)存儲就是此種模式。
Scale Out又稱為水平擴展(scale horizontally)[2],意為在分布式環境下,通過添加節點計算或存儲資源,在橫向上滿足更多的計算存儲需求;隨著計算和存儲單位價格的降低和效率的提升,使用低端的商用(commodity)系統,利用分布式技術可以搭建起「超級計算」中心,以及後來衍生出來的私有或公有雲平台解決方案。雖然分布式系統會帶來一定程度上的軟體復雜度和管理困難,但由軟體定義的計算和存儲解決方案,能夠以較低的價格和較高的魯棒性,優雅的解決了海量增長的計算存儲需求,也是目前雲平台的主流技術。但它就一定能夠承載未來的更加海量的需求嗎?雲存儲的未來是什麼?方向是向左還是向右?
3. 未來向左還是向右?
話說天下大勢, 分久必合, 合久必分,事物發展的規律似乎從來就沒有什麼絕對。當下,雲平台內部似乎已完全是Scale Out模式了,但當我們把鏡頭再拉遠一點,從雲平台在全球部署的每一個可用區來看,整體上它又是一個Scale Up模型,不是嗎?單點投入巨大,耗費能源,使用成本高昂。而相反,隨著強大的計算,存儲和帶寬能力能夠進入尋常家庭、工作和生活等邊緣節點,資源閑置或者不均衡使用也變得越來越明顯。
那麼,是否能夠將這些邊緣節點的計算存儲能力結合起來,組成一個真正意義上的Scale Out平台,提供人們日益增長的計算存儲需求?
可否將浪費或者不對等的資源重新組合,提供一個更加節能環保的綠色Scale Out平台?
可否摒棄中心化的單點故障和數據安全隱患,真正做到廉價高效,零數據泄露的Scale Out平台?
答案是應該可以而且必須可以!
縱觀雲存儲平台的發展 歷史 ,從單節點的Scale Up模式走向可用區內部的Scale Out模式,又從內部的Scale Out模式走向整體上相對的Scale Up模式。而未來數字世界的海量計算和存儲需求的滿足,一定需要真正意義上的全球Scale Out模型,那就是把邊緣節點和半中心化節點高效且系統的組織起來,減少浪費,提高效率,節省成本,去除中心。將天空中幾塊為數不多的白雲,變成漫天遍布的朵朵白雲,讓人們自由定價、自由選擇、自由組合。
挑戰雖然巨大,但未來很美好,讓我們一起努力迎接雲存儲的明天!
[1]: History of Online Storage
[2]: Wiki Scalability
文章作者:Bruce Lee(http://PP.IO總架構師)
轉載請註明出處
如果有關於PPIO的交流,可以通過下面的方式聯系我:
加我微信,注意備注來源
wechat:omnigeeker
雲存儲服務平台,很精練吧
網路解釋:雲存儲是在雲計算(cloud computing)概念上延伸和發展出來的一個新的概念,是一種新興的網路存儲技術,是指通過集群應用、網路技術或分布式文件系統等功能,將網路中大量各種不同類型的存儲設備通過應用軟體集合起來協同工作,共同對外提供數據存儲和業務訪問功能的系統。
雲存儲可以簡單的理解為將數據保存在一個第三方空間,隨時取用和處理。雲存儲也可以說是一個以數據存儲和管理為核心的雲計算系統。雲存儲對用戶來講,不只是一個簡單的設備,而是整個雲存儲系統的一種數據訪問服務。
通過集群應用,網路技術等功能把網路中不同類型的存儲設備通過應用軟體集合起來工作。
雲儲存就是企業的公用空間(伺服器),定期有人維護不用自己操心不怕數據丟失,但是數據都會在企業無保密可言,
就是網上的存儲空間,不佔自身內存,要用時聯網下載
雲存儲是指通過集群應用、網格技術或分布式文件系統或類似網格計算等功能聯合起來協同工作,並通過一定的應用軟體或應用介面,對用戶提供一定類型的存儲服務和訪問服務。
雲存儲的優勢樓主有需要的話可以了解一下企業共享辦公系統,可支持手機端、雲端、公司伺服器存儲、為企業獨立搭建維護企業網盤,從而實現文件歸檔存儲、文檔管理、協同辦公等功能。
雲存儲就是將文件內存存儲在雲端的一種方式,不佔用自己本身電腦或者手機的內存,海量存儲輕松搞定,解決了很多的存儲難與存儲傳輸難的問題。
使用呆貓雲盤的幾大好處,企業存儲資產更安全:1、使用呆貓遠程桌面時可直接掛載雲盤,輕松上傳下載文件,支持在線修改文件。
2、項目資源統一集中管理,釋放本地存儲空間;支持彈性擴容,按需使用,降低本地硬體使用成本;
3、呆貓同一賬號內存儲互通,資源可異地共享,減少傳輸成本。
4、呆貓雲盤與渲雲網盤存儲互通,使用渲雲提交渲染任務時,內網同步,文件秒傳,節省傳輸時間。
5、支持高並發讀取資產文件,可同一賬號最多可支持上千台機器同時讀取雲盤文件,提高工作效率。
6、高性能存儲,百萬級IOPS,超高算力助力設計行業發展。
7、雲盤基於域控的安全策略,免受病毒攻擊;提供多副本可靠性機制,即使機器出現故障,也不會引起數據丟失。
把你需要存儲的數據放到網上,不佔用你自己設備的內存,當你需要使用時從網上下載。這之間會產生數據流量。
雲存儲其實我們都經歷過,2013年-2016年蓬勃發展,而後被玩壞的雲盤,就是典型代表,雖然我們控制權益不多,只能上傳下載,離線,共享,基本當作網路硬碟和交流工具使用,但卻解決了人們的燃眉之急。我們現在部分手機上還有雲端保存照片的功能。
實際的雲存儲並不是這么簡單,引用一下網路:
雲存儲是建立在雲計算的基礎上,為雲計算服務。對於我們似乎太深奧,但又息息相關,我們只需要知道它是好東西就行了。不單單能當作個人網路上的儲存空間。
㈢ 雲端存儲技術未來的發展前景如何
海量數據催生新型的存儲模式——雲存儲
近年來,大數據發展浪潮席捲全球,企業對信息存儲提出了新的需求,雲存儲由此而誕生。雲存儲是基於雲計算相關技術延伸和發展而來的全新的產品形態。
雲存儲的核心技術主要包括虛擬化技術、重復數據刪除技術、分布式存儲技術、數據備份技術、內容分發網路技術和存儲加密技術。雲存儲利用這些核心技術將網路中大量各種不同類型的存儲設備通過應用軟體集合起來協同工作,共同對外提供數據存儲和業務訪問功能,從而保證數據的安全性,並節約存儲空間。
雲存儲往企業級方向發展,市場規模持續擴大
我國雲存儲行業的發展可以追溯到2007年,雲計算、雲存儲的概念在國內開始出現。2011年,雲計算、雲存儲的概念落地;2012年,國家將雲計算列為重點發展的戰略性新興產業,各大互聯網企業紛紛推出自己的雲存儲應用,類Dropbox和類Evernote的應用層出不窮。該階段雲存儲的發展以個人雲存儲發展為主。
2016年,監管政策收緊導致大批網盤企業關停,致使個人雲存儲用戶規模急劇下降。企業雲存儲迎來高速發展期,國家積極鼓勵企業上雲。同時伴隨著海量數據的增長,市場對信息存儲的安全提出了更高的要求,各大企業也紛紛推出了存儲容災、專屬企業存儲等服務。
據統計,目前企業雲存儲占據了98.63%的雲存儲市場規模,個人雲存儲市場規模佔比僅在1.37%左右。
從整體市場規模看,2015年我國雲存儲市場規模約為115億元,2019年我國雲存儲市場規模已經達到了326億元。2020年,海量數據的持續增長進一步推動了我國企業對雲存儲的需求,2020年我國雲存儲市場規模預計接近400億元。
萬物互聯將催生更大雲存儲市場
未來,我國5G的發展與雲計算交織並進,5G時代網路速度的提升帶來萬物互聯,而其背後大量的數據需要有雲計算強大的計算和存儲能力支撐,我國雲存儲市場發展空間大,市場規模在未來幾年仍將保持較快的增速增長,2026年有望突破1800億元。
㈣ 大數據時代下的三種存儲架構
大數據時代下的三種存儲架構_數據分析師考試
大數據時代,移動互聯、社交網路、數據分析、雲服務等應用的迅速普及,對數據中心提出革命性的需求,存儲基礎架構已經成為IT核心之一。政府、軍隊軍工、科研院所、航空航天、大型商業連鎖、醫療、金融、新媒體、廣電等各個領域新興應用層出不窮。數據的價值日益凸顯,數據已經成為不可或缺的資產。作為數據載體和驅動力量,存儲系統成為大數據基礎架構中最為關鍵的核心。
傳統的數據中心無論是在性能、效率,還是在投資收益、安全,已經遠遠不能滿足新興應用的需求,數據中心業務急需新型大數據處理中心來支撐。除了傳統的高可靠、高冗餘、綠色節能之外,新型的大數據中心還需具備虛擬化、模塊化、彈性擴展、自動化等一系列特徵,才能滿足具備大數據特徵的應用需求。這些史無前例的需求,讓存儲系統的架構和功能都發生了前所未有的變化。
基於大數據應用需求,「應用定義存儲」概念被提出。存儲系統作為數據中心最核心的數據基礎,不再僅是傳統分散的、單一的底層設備。除了要具備高性能、高安全、高可靠等特徵之外,還要有虛擬化、並行分布、自動分層、彈性擴展、異構資源整合、全局緩存加速等多方面的特點,才能滿足具備大數據特徵的業務應用需求。
尤其在雲安防概念被熱炒的時代,隨著高清技術的普及,720P、1080P隨處可見,智能和高清的雙向需求、動輒500W、800W甚至上千萬更高解析度的攝像機面市,大數據對存儲設備的容量、讀寫性能、可靠性、擴展性等都提出了更高的要求,需要充分考慮功能集成度、數據安全性、數據穩定性,系統可擴展性、性能及成本各方面因素。
目前市場上的存儲架構如下:
(1)基於嵌入式架構的存儲系統
節點NVR架構主要面向小型高清監控系統,高清前端數量一般在幾十路以內。系統建設中沒有大型的存儲監控中心機房,存儲容量相對較小,用戶體驗度、系統功能集成度要求較高。在市場應用層面,超市、店鋪、小型企業、政法行業中基本管理單元等應用較為廣泛。
(2)基於X86架構的存儲系統
平台SAN架構主要面向中大型高清監控系統,前端路數成百上千甚至上萬。一般多採用IPSAN或FCSAN搭建高清視頻存儲系統。作為監控平台的重要組成部分,前端監控數據通過錄像存儲管理模塊存儲到SAN中。
此種架構接入高清前端路數相對節點NVR有了較高提升,具備快捷便利的可擴展性,技術成熟。對於IPSAN而言,雖然在ISCSI環節數據並發讀寫傳輸速率有所消耗,但其憑借擴展性良好、硬體平台通用、海量數據可充分共享等優點,仍然得到很多客戶的青睞。FCSAN在行業用戶、封閉存儲系統中應用較多,比如縣級或地級市高清監控項目,大數據量的並發讀寫對千兆網路交換提出了較大的挑戰,但應用FCSAN構建相對獨立的存儲子系統,可以有效解決上述問題。
面對視頻監控系統大文件、隨機讀寫的特點,平台SAN架構系統不同存儲單元之間的數據共享冗餘方面還有待提高;從高性能伺服器轉發視頻數據到存儲空間的策略,從系統架構而言也增加了隱患故障點、ISCSI帶寬瓶頸導致無法充分利用硬體數據並發性能、接入前端數據較少。上述問題催生了平台NVR架構解決方案。
該方案在系統架構上省去了存儲伺服器,消除了上文提到的性能瓶頸和單點故障隱患。大幅度提高存儲系統的寫入和檢索速度;同時也徹底消除了傳統文件系統由於供電和網路的不穩定帶來的文件系統損壞等問題。
平台NVR中存儲的數據可同時供多個客戶端隨時查詢,點播,當用戶需要查看多個已保存的視頻監控數據時,可通過授權的視頻監控客戶端直接查詢並點播相應位置的視頻監控數據進行歷史圖像的查看。由於數據管理伺服器具有監控系統所有監控點的錄像文件的索引,因此通過平台CMS授權,視頻監控客戶端可以查詢並點播整個監控系統上所有監控點的數據,這個過程對用戶而言也是透明的。
(3)基於雲技術的存儲方案
當前,安防行業可謂「雲」山「物」罩。隨著視頻監控的高清化和網路化,存儲和管理的視頻數據量已有海量之勢,雲存儲技術是突破IP高清監控存儲瓶頸的重要手段。雲存儲作為一種服務,在未來安防監控行業有著客觀的應用前景。
與傳統存儲設備不同,雲存儲不僅是一個硬體,而是一個由網路設備、存儲設備、伺服器、軟體、接入網路、用戶訪問介面以及客戶端程序等多個部分構成的復雜系統。該系統以存儲設備為核心,通過應用層軟體對外提供數據存儲和業務服務。
一般分為存儲層、基礎管理層、應用介面層以及訪問層。存儲層是雲存儲系統的基礎,由存儲設備(滿足FC協議、iSCSI協議、NAS協議等)構成。基礎管理層是雲存儲系統的核心,其擔負著存儲設備間協同工作,數據加密,分發以及容災備份等工作。應用介面層是系統中根據用戶需求來開發的部分,根據不同的業務類型,可以開發出不同的應用服務介面。訪問層指授權用戶通過應用介面來登錄、享受雲服務。其主要優勢在於:硬體冗餘、節能環保、系統升級不會影響存儲服務、海量並行擴容、強大的負載均衡功能、統一管理、統一向外提供服務,管理效率高,雲存儲系統從系統架構、文件結構、高速緩存等方面入手,針對監控應用進行了優化設計。數據傳輸可採用流方式,底層採用突破傳統文件系統限制的流媒體數據結構,大幅提高了系統性能。
高清監控存儲是一種大碼流多並發寫為主的存儲應用,對性能、並發性和穩定性等方面有很高的要求。該存儲解決方案採用獨特的大緩存順序化演算法,把多路隨機並發訪問變為順序訪問,解決了硬碟磁頭因頻繁尋道而導致的性能迅速下降和硬碟壽命縮短的問題。
針對系統中會產生PB級海量監控數據,存儲設備的數量達數十台上百台,因此管理方式的科學高效顯得十分重要。雲存儲可提供基於集群管理技術的多設備集中管理工具,具有設備集中監控、集群管理、系統軟硬體運行狀態的監控、主動報警,圖像化系統檢測等功能。在海量視頻存儲檢索應用中,檢索性能尤為重要。傳統文件系統中,文件檢索採用的是「目錄-》子目錄-》文件-》定位」的檢索步驟,在海量數據的高清視頻監控,目錄和文件數量十分可觀,這種檢索模式的效率就會大打折扣。採用序號文件定位可以有效解決該問題。
雲存儲可以提供非常高的的系統冗餘和安全性。當在線存儲系統出現故障後,熱備機可以立即接替服務,當故障恢復時,服務和數據回遷;若故障機數據需要調用,可以將故障機的磁碟插入到冷備機中,實現所有數據的立即可用。
對於高清監控系統,隨著監控前端的增加和存儲時間的延長,擴展能力十分重要。市場中已有友商可提供單純針對容量的擴展櫃擴展模式和性能容量同步線性擴展的堆疊擴展模式。
雲存儲系統除上述優點之外,在平台對接整合、業務流程梳理、視頻數據智能分析深度挖掘及成本方面都將面臨挑戰。承建大型系統、構建雲存儲的商業模式也亟待創新。受限於寬頻網路、web2.0技術、應用存儲技術、文件系統、P2P、數據壓縮、CDN技術、虛擬化技術等的發展,未來雲存儲還有很長的路要走。
以上是小編為大家分享的關於大數據時代下的三種存儲架構的相關內容,更多信息可以關注環球青藤分享更多干貨
㈤ 存儲介質採用磁碟陣列或IP-SAN方式進行存儲是什麼意思
磁碟陣列(Rendant Arrays of Independent Disks,RAID),有"獨立磁碟構成的具有冗餘能力的陣列"之意。磁碟陣列是由很多價格較便宜的磁碟,組合成一個容量巨大的磁碟組,利用個別磁碟提供數據所產生加成效果提升整個磁碟系統效能。利用這項技術,將數據切割成許多區段,分別存放在各個硬碟上。磁碟陣列還能利用同位檢查(Parity Check)的觀念,在數組中任意一個硬碟故障時,仍可讀出數據,在數據重構時,將數據經計算後重新置入新硬碟中。
SAN (Storage Area Network-存儲區域網路):是計算機信息處理技術中的一種架構,它將伺服器和遠程的計算機存儲設備(如磁碟陣列、磁帶庫)連接起來,使得這些存儲設備看起來就像是本地一樣,SAN是存儲虛擬化。而IP-SAN就是採用iscsi協議構建成的SAN存儲區域網路。
iSCSI:Internet 小型計算機系統介面 (iSCSI:Internet Small Computer System Interface)。iSCSI技術是一種由IBM公司研究開發的,是一個供硬體設備使用的可以在IP協議的上層運行的SCSI指令集,這種指令集合可以實現在IP網路上運行SCSI協議,使其能夠在諸如高速千兆乙太網上進行路由選擇。iSCSI技術是一種新儲存技術,該技術是將現有SCSI介面與乙太網絡(Ethernet)技術結合,使伺服器可與使用IP網路的儲存裝置互相交換資料。
㈥ 使用量子力學技術的新型超低功耗存儲器或將取代DRAM和Flash
看到了當前的數字技術能源危機,蘭開斯特大學的研究人員開發出了一種可以解決這一問題的新型計算機並申請了專利。
這種新型的存儲器有望取代動態隨機存取存儲器(DRAM)和快閃記憶體(Flash)驅動器。強大且超低能耗計算時代即將來臨,你准備好了嗎?
研究人員對這一進展有充分的理由感到興奮。物聯網在家庭和辦公室的出現在很大程度上方便了我們的智能生活,但以數據為中心也將消耗大量的能源。無論是互聯智能設備、音箱還是其它的家用設備將需要能量來處理所有「數據」以提供最佳功能。
事實上,能源消耗是一個非常令人關切的問題,而高效率的照明和電器節省的能源實際上可以通過更多地使用計算機和小工具。根據一個研究預測,到2025年,數據洪流預計將消耗全球電力的五分之一。
新開發的電子存儲設備能夠以超低的能耗為服務所有人日常生活。這種低功耗意味著,存儲設備不需要啟動,甚至在按鍵切換時也可以立即進入節能模式。
正如蘭開斯特大學物理學教授Manus Hayne 所說,「通用存儲器穩定的存儲數據,輕易改存儲的數據被廣泛認為是不可行,甚至是不可能的,新的設備證明了其矛盾性。」
「理想的是結合兩者的優點而沒有缺點,這就是我們已經證明的。我們的設備有一個固有的數據存儲時間,預計超過宇宙的年齡,但它可以用比DRAM少100倍的能量存儲或刪除數據。」 Manus Hayne表示。
為了解決和創造這種新的存儲設備,研究人員使用量子力學來解決穩定的長期數據存儲和低能量寫入和擦除之間選擇的困境。
剛剛獲得專利的新設備和研究已經有幾家公司表示對此感興趣,新的存儲設備預計將取代1000億美元的動態隨機存取存儲器(DRAM)市場。
上述這種技術到底如何實現?雷鋒網找到了蘭開斯特大學的研究人員發表的《Room-temperature Operation of Low-voltage, Non-volatile, Compound-semiconctor Memory Cells》的論文,可以再進一步了解這個技術。
文章中指出,雖然不同形式的傳統(基於電荷)存儲器非常適合應用於計算機和其他電子設備,靜態隨機存取存儲器(SRAM),動態隨機存取存儲器(DRAM)和快閃記憶體(Flash)具有互補的特性,它們分別非常適合在高速緩存、動態存儲器和數據存儲中的發揮作用。然而,他們又都有自身的缺點。這就意味著市場需要新的存儲器,特別是,同時實現穩定性和快速、低壓(低能量)的矛盾要求已證明是具有挑戰性的。
研究團隊報告了一種基於III-V半導體異質結構的無氧化浮柵存儲器單元,其具有無結通道和存儲數據的非破壞性讀取。非易失性數據保留至少100000s ,通過使用InAs/AlSb的2.1eV導帶偏移和三勢壘共振隧穿結構,可以實現與≤2.6V的開關相結合。低電壓操作和小電容的組合意味著每單位面積的固有開關能量分別比動態隨機存取存儲器和快閃記憶體小100和1000倍。因此,該設備可以被認為是具有相當大潛力的新興存儲器。
具體結構方面,這是一種新型低壓,化合物半導體,基於電荷的非易失性存儲器件的概念進行設計、建模、製造適合室溫運行。利用AlSb / InAs驚人的導帶陣列進行電荷保持,以及形成諧振隧道勢壘,使研究團隊能夠證明低壓(低能耗)操作與非易變儲存。該器件是由InAs / AlSb / GaSb異質結構構成的FG存儲器結構,其中InAs用作FG和無結通道。研究團隊通過模擬驗證了器件的工作原理,並給出了器件的關鍵存儲特性,如編程/擦除狀態的保留特性,並給出了在單個元件上的實驗結果。
雷鋒網編譯,via interestingengineering、nature
㈦ 什麼是虛擬存儲技術
1 虛擬存儲技術的產生
虛擬化技術並不是一件很新的技術,它的發展,應該說是隨著計算機技術的發展而發展起來的,最早是始於70年代。由於當時的存儲容量,特別是內存容量成本非常高、容量也很小,對於大型應用程序或多程序應用就受到了很大的限制。為了克服這樣的限制,人們就採用了虛擬存儲的技術,最典型的應用就是虛擬內存技術。隨著計算機技術以及相關信息處理技術的不斷發展,人們對存儲的需求越來越大。這樣的需求刺激了各種新技術的出現,比如磁碟性能越來越好、容量越來越大。但是在大量的大中型信息處理系統中,單個磁碟是不能滿足需要,這樣的情況下存儲虛擬化技術就發展起來了。在這個發展過程中也由幾個階段和幾種應用。首先是磁碟條帶集(RAID,可帶容錯)技術,將多個物理磁碟通過一定的邏輯關系集合起來,成為一個大容量的虛擬磁碟。而隨著數據量不斷增加和對數據可用性要求的不斷提高,又一種新的存儲技術應運而生,那就是存儲區域網路(SAN)技術。SAN的廣域化則旨在將存儲設備實現成為一種公用設施,任何人員、任何主機都可以隨時隨地獲取各自想要的數據。目前討論比較多的包括iSCSI、FC Over IP 等技術,由於一些相關的標准還沒有最終確定,但是存儲設備公用化、存儲網路廣域化是一個不可逆轉的潮流。
2 虛擬存儲的概念
所謂虛擬存儲,就是把多個存儲介質模塊(如硬碟、RAID)通過一定的手段集中管理起來,所有的存儲模塊在一個存儲池(Storage Pool)中得到統一管理,從主機和工作站的角度,看到就不是多個硬碟,而是一個分區或者卷,就好象是一個超大容量(如1T以上)的硬碟。這種可以將多種、多個存儲設備統一管理起來,為使用者提供大容量、高數據傳輸性能的存儲系統,就稱之為虛擬存儲。
㈧ 象限晉級,「挑戰者」浪潮存儲的新挑戰
一生二,二生三,三生萬物。三年之後,浪潮存儲完成了從「利基者」向「挑戰者」的挑戰。
日前, Gartner公布2020年全球主存儲魔力象限報告(Magic Quadrant for Primary Storage Arrays),包括Dell、Pure Storage、NetApp、HPE、Infinidat、Hitachi Vantara、浪潮在內的13家全球主流存儲廠商入選。其中,浪潮存儲實現跨象限晉升,從利基者象限晉級到挑戰者象限,成為本年度唯一實現象限跨越的存儲廠商。
跨越了象限 ,「挑戰者」浪潮存儲如何應對未來道路上更大的挑戰?未來,浪潮存儲應該如何再次實現象限的跨越,成為全球存儲市場的「領導者」?
在發布2020年最新版主流存儲陣列魔力象限報告中,Gartner將主流存儲陣列定義為全快閃記憶體或混合快閃記憶體及磁碟本地存儲陣列,提供塊服務(結構化數據工作負載)以及可能的文件和對象訪問。
針對主存儲市場未來走向,Gartner分析師還列出了三個戰略規劃設想:
總結來說,未來隨著企業數字化轉型加速推進,NVMe、AIOps、公有雲集成等新技術將重塑下一代主存儲系統。
先看NVMe,如果說全快閃記憶體是未來存儲市場的大勢所趨,那麼NVMe SSD則是全快閃記憶體市場的發展大勢。如今,全球各大存儲廠商都在加速推出基於NVMe的新一代存儲產品,甚至,NVMe已經被認為是存儲領域的事實標准。
同時,存儲系統的生命周期是一個復雜的體系,解決存儲系統的復雜生命周期運行和管理需要AI技術的加持,例如,利用AIOps做內部負載的識別,模式特徵識別,把硬體資源使用率調到最高位置,從運維管理角度打造更易用的存儲。
除此之外,雲計算使得企業的數據分布從本地的數據中心擴展到了更高算力、更大空間的公有雲平台。在整個IT架構當中,存儲是最接近數據的行業,要能夠幫助應用企業實現自身的數據中心與公有雲平台之間更密切關聯,以期建立一個順暢的數據流動模式。
這是主存儲市場的大勢,也是存儲廠商未來發展的方向。
對於浪潮的跨象限,Gartner這樣評價,"浪潮存儲產品組合包括HF和AS系列,能夠滿足用戶對中、高端存儲的需求。在評估期間浪潮存儲發布了基於端到端NVMe技術的全快閃記憶體陣列HF5000G5,同時發布了適用於K8S環境的CSI驅動程序並對AIOps平台進行了升級,實現了整體軟體和平台功能的增強"。
從中可以看到,浪潮的「晉級」與當下主存儲市場的發展趨勢高度吻合。
其一,市場突破:
浪潮存儲首席架構師孫斌分享了一組數據,浪潮存儲的大項目,即10萬到40萬美元之間的訂單,在今年實現了翻倍增長,這表明浪潮存儲的產品正被一些大型企業所選擇。銷售方面,浪潮存儲30%的訂單是通過ISV、SI系統集成商以及分銷商等銷售,這一比例相比之前提高了10個點,這證明了浪潮存儲還在賦能合作夥伴。
浪潮存儲有近二十年的技術創新和積累,在行業用戶中占據重要份額。其中包括在通信行業,浪潮存儲三年4次中標中移動分布式存儲集采,特別是在2020年浪潮高端存儲中標中移動核心業務系統,為中國移動的數據要素「托底」;在科研行業,浪潮存儲承載中國天眼天文研究、清華大學活腦成像、復旦大學類腦研究、華中大腦圖譜研究、中山大學精準醫療研究等等行業Top用戶的海量數據。與此同時浪潮存儲開始在俄羅斯、德國、波蘭、日本、韓國等海外市場進行推廣。
其二,技術突破:
從2019年Q3到2020年Q2,一年時間內,浪潮申請受理專利超過一千件,大約三分之一都是跟全快閃記憶體有關。浪潮存儲開發了NVMe SSD,也在積極參與行業和全閃的標准以及測試規范,以及企業的標准規范建設。同時,浪潮存儲也在積極和國內一流高校,研究所,像清華大學、華中 科技 大學等在存儲的前沿新興的技術領域進行合作。
浪潮存儲基於「雲存智用 運籌新數據」理念,在統一存儲領域持續加大投入,推出了業界首款搭載傲騰雙埠NVMe SSD的全快閃記憶體儲,基於iTurbo智能引擎技術進一步提升存儲系統的智能感知、多路徑選擇、自組織和調用的能力,目前浪潮存儲在SPC-1中包攬了16控、8控、單位成本性能測試的全球最高成績。
從「利基者」到「挑戰者」,意味著浪潮存儲的產品和市場實力得到全面躍升,並且未來有機會成為行業領袖。
隨著新基建的加速推動和數字經濟的快速發展,一個全新的數據時代正在撲面而來。
數據作為新生產要素,在人工智慧、大數據、5G新技術驅動下,發生了本質改變,從過去「人工採集、人工干預」過渡到現在「機器產生、機器處理」的新時代,數據類型越來越豐富、數據量的規模也越來越大,數據正在成為管理、控制、生產、服務、決策等環節重要的要素,需要從采、存、管、用進行全生命周期提速。
新的數據時代,需要新的存儲理念,也孕育著新的市場機會。「挑戰者」浪潮存儲能否借機再次實現象限的晉級呢?
聚焦新數據時代,浪潮存儲提出了「雲存智用、運籌新數據」的存儲理念,聚焦極致技術、存儲即平台、數據「系」存儲基礎設施的打造,希望通過「理念、技術、產品、方案」四個關鍵要素的閉環,加速數據流動、數據處理、數據共享、數據在線和數據安全,幫助企業徹底釋放數據價值。如今,浪潮存儲正全面推進端到端NVMe、智能運維、多雲對接等新興技術在存儲產品中的應用,驅動企業數字化轉型。
由於在行業新場景領域的深厚積累,浪潮存儲收獲了Gartner的高度認可,從象限晉級的背後可以看出,不論在產品性能、市場地位,還是在用戶滿意度上,浪潮存儲都交出了一份滿意的「答卷」。
未來魔力象限,我們能否見到「領導者」浪潮存儲?這正是浪潮存儲接下來的新挑戰。
㈨ 常見的伺服器存儲技術有哪幾種
磁碟陣列(Rendant Arrays of Inexpensive Disks,RAID),是利用數組方式來作磁碟組,配合數據分散排列的設計,提升數據的安全性。磁碟陣列是由很多價格較便宜的磁碟,組合成一個容量巨大的磁碟組,利用個別磁碟提供數據所產生加成效果提升整個磁碟系統效能。利用這項技術,將數據切割成許多區段,分別存放在各個硬碟上。磁碟陣列還能利用同位檢查(Parity Check)的觀念,在數組中任一顆硬碟故障時,仍可讀出數據,在數據重構時,將數據經計算後重新置入新硬碟中。
NAS(Network Attached Storage:網路附屬存儲)是一種將分布、獨立的數據整合為大型、集中化管理的數據中心,以便於對不同主機和應用伺服器進行訪問的技術。按字面簡單說就是連接在網路上,具備資料存儲功能的裝置,因此也稱為「網路存儲器」。它是一種專用數據存儲伺服器。它以數據為中心,將存儲設備與伺服器徹底分離,集中管理數據,從而釋放帶寬、提高性能、降低總擁有成本、保護投資。其成本遠遠低於使用伺服器存儲,而效率卻遠遠高於後者。
存儲區域網路(SAN)是一種高速網路或子網路,提供在計算機與存儲系統之間的數據傳輸。存儲設備是指一張或多張用以存儲計算機數據的磁碟設備。一個 SAN 網路由負責網路連接的通信結構、負責組織連接的管理層、存儲部件以及計算機系統構成,從而保證數據傳輸的安全性和力度。
典型的 SAN 是一個企業整個計算機網路資源的一部分。通常 SAN 與其它計算資源緊密集群來實現遠程備份和檔案存儲過程。SAN 支持磁碟鏡像技術(disk mirroring)、備份與恢復(backup and restore)、檔案數據的存檔和檢索、存儲設備間的數據遷移以及網路中不同伺服器間的數據共享等功能。此外 SAN 還可以用於合並子網和網路附接存儲(NAS:network-attached storage)系統。
㈩ 內存擴充之虛擬存儲技術
傳統存儲管理
特徵
時間局部性:如果執行了程序中的某條指令,那麼不久後這條指令很有可能再次執行;如果某個數據被訪問過,不久之後該數據很可能再次被訪問(因為程序中存在大量循環)
空間局部性:一旦程序訪問了某個存儲單元,在不久之後,其附近的存儲單元很有可能被訪問(因為很多數據在內存中是連續存放的,並且程序的指令也是順序地在內存中存放的
寄存器
高速緩存
內存
外存(如磁碟、磁帶等)
越往上容量越小,訪問速度越快,成本越高
越往下容量越大,訪問速度越慢,成本越低
高速緩存技術的思想:將近期會頻繁訪問到的數據放到更高速的存儲器中,暫時用不到的數據放在更低速存儲器中
快表機構就是將近期常訪問的頁表項副本放到更高速的cache中
基於局部性原理,在程序裝入時,可以將程序中很快就會用到的部分裝入內存,暫時用不到的部分留在外存,就可以讓程序開始執行
在程序執行過程中,當所訪問的信息不在內存時,由操作系統負責將所需信息從外存調入內存,然後繼續執行程序
若內存空間不夠,由操作系統將內存中暫時用不到的信息換出到外存
因此,在操作系統的管理下,在用戶看來似乎有一個比實際內存大得多的內存,這就是虛擬內存
操作系統虛擬性的一個體現,實際的物理內存大小沒有變,只是在邏輯上進行了擴充
虛擬內存的最大容量是由計算機的地址結構(CPU定址范圍)確定的
虛擬內存的實際容量 = min(內存外存容量之和,CPU定址范圍)
虛擬內存有以下三個主要特徵
虛擬內存技術,允許一個作業多次調入內存。如果採用連續分配方式,會不方便實現。因此,虛擬內存的實現需要建立在離散分配的內存管理方式基礎上
傳統的非連續分配存儲管理
基本分頁存儲管理
基本分段存儲管理
基本段頁式存儲管理
虛擬內存的實現
請求分頁存儲管理
請求分段存儲管理
請求段頁式存儲管理
主要區別:在程序執行過程中,當所訪問的信息不在內存時,由操作系統負責將所需信息從外存調入內存,然後繼續執行程序。若內存空間不夠,由操作系統負責將內存中暫時用不到的信息換出到外存
操作系統要提供請求調頁/段功能、頁面/段置換功能
請求分頁存儲管理和基本分頁存儲管理的主要區別
頁表機制
頁表項:內存塊號、狀態位、訪問欄位、修改位、外存地址,頁號時隱含的
內存塊號是頁面在內存中對應的頁框號,如果狀態位為0,則內存塊號為無
狀態位表示是否已被調入內存
訪問欄位記錄最近被訪問過幾次,或者上次訪問時間,由此操作系統能夠提供置換演算法
修改位記錄頁面被調入內存後是否被修改過,如果沒有,就不需要浪費時間寫回外存
外存地址是頁面在外存中的存放位置
缺頁中斷機構
在請求分頁系統中,每當要訪問的頁面不在內存時,便會產生一個缺頁中斷,然後由操作系統的缺頁中斷處理程序處理中斷(內中斷)
此時缺頁的進程阻塞,放入阻塞隊列,調頁完成後再將其喚醒,放回就緒隊列
如果內存中有空閑塊,則為進程分配一個空閑塊,將所缺頁面裝入該塊,並修改頁表中相應的頁表項
如果內存中沒有空閑塊,則由頁面置換演算法選擇一個頁面淘汰,若該頁面在內存期間被修改過,則要將其寫回外存,為修改過的頁面不用寫回外存
一條指令再執行期間可能產生多次缺頁中斷( A to B)
新增的步驟
頁面的換入、換出需要磁碟IO,會有較大的開銷,因此好的頁面置換演算法應該追求更少的缺頁率
缺頁中斷≠頁面置換
發生缺頁中斷會發生調頁,只有內存塊滿了才發生頁面置換
最佳置換演算法OPT:每次淘汰以後永不使用或最長時間內不再被訪問的頁面
理想化的演算法,很難實現
先進先出演算法FIFO:每次淘汰最先進入內存的頁面
實現:把調入內存的頁面根據調入的先後順序排成隊列,頁面置換時換出隊頭頁面,新調入的頁面排到隊尾
優點:實現簡單
缺點1:belady異常,為進程分配的物理塊數增大時,缺頁次數不減反增的異常現象。只有FIFO會產生belady異常。
缺點2:演算法與進程實際運行時的規律不適應,因為先調入的頁面有可能最經常被訪問,因此演算法性能差
最近最久未使用置換演算法LRU:淘汰最近最久未使用的頁面
實現方法:賦予每個頁面對應的頁表項中,用訪問欄位記錄該頁面自上次被訪問以來所經歷的時間t
優點:性能最接近OPT
缺點:實現困難、開銷大
時鍾置換演算法CLOCK/NRU
簡單NRU:為每一個頁表項設置一個訪問位,再將內存中的頁面都通過連接指針連成一個循環隊列,當某頁被訪問時,訪問位為1,只需檢查頁的訪問位。如果為0,就將該頁換出,否則將其改為0,暫不換出,繼續向後掃描,若第一輪掃描都是1,將這也頁面的訪問位改為0後,進行第二輪掃描,第二輪掃描中一定會有訪問位為0的頁面,將其換出。因此最多經過兩輪掃描
改進NRU:如果淘汰的頁面沒有被修改過,就不需要執行IO操作,只有淘汰的頁面被修改過時,才需要寫回外存。因此,同時考慮最近有無訪問和有無修改,在其他條件相同時,優先淘汰沒有修改過的頁面,避免IO操作
第一輪:找到第一個訪問位和修改位都為0的頁面進行替換,如果沒有找到進行下一輪掃描
第二輪:查找第一個訪問位為0,修改位為1的頁面進行替換,本輪將所有被掃描過的訪問位設置為0,如果沒有進行下一輪掃描
第三輪:查找0,0替換否則下一輪
第四輪:查找0,1替換
最多會進行四輪掃描
駐留集:請求分頁管理中給進程分配的物理塊的集合
在採用了虛擬存儲技術的系統中,駐留集大小一般小於進程的總大小
駐留集太小,導致缺頁頻繁,系統要花大量時間處理缺頁,實際用於進程推進的時間很少
駐留集太大,會導致多道程序並發度下降,資源利用率降低
固定分配:操作系統為每個進程分配一組固定數目的物理塊,在進程運行期間不再改變
可變分配:先為每個進程分配一定數目的物理塊,在進程運行期間,可根據情況作適當的增加或減少
局部置換:發生缺頁時只能選進程自己的物理地址塊進行置換
全局置換:可以將操作系統保留的空閑物理塊分配給缺頁進程,也可以將別的進程持有的物理塊置換到外存,再分配給缺頁進程
不存在固定分配全局置換的策略,因為全局置換意味著一個進程擁有的物理塊數量必然改變
其他三種組合存在
固定分配局部置換:系統為每個進程分配一定數量的物理塊,在整個運行期間都不改變。若進程在運行中發生缺頁,並且需要進行頁面置換,則只能從該進程在內存中的頁面中選出一頁換出,然後再調入需要的頁面
缺點:很難在剛開始就確定應為每個進程分配多少個物理地址塊才算合理(採用這種策略的系統可以根據進程大小、優先順序、或是根據程序員給出的參數來確定為一個進程分配的內存塊數
可變分配全局置換:剛開始會為進程分配一定數量的物理塊。操作系統會保持一個空閑物理塊隊列,當某進程發生缺頁時,從空閑物理塊中取出一塊分給該進程;若無空閑物理塊,則選擇一個未鎖定的頁面換出到外存,再將該物理塊分配給缺頁的進程。採用這種策略時,只要某進程發生缺頁,都將獲得新的物理塊,僅當空閑物理塊用完時,系統才選擇一個未鎖定的頁面調出。被選擇調出的頁面可能是系統中任何一個進程的頁面,因此這個被選中的進程擁有的物理塊會減少,缺頁率會增加
只要缺頁就給該進程分配新的物理塊
可變分配局部置換:剛開始會為每個進程分配一定數量的物理塊,當某進程發生缺頁時,只允許從該進程自己的物理塊中選出一個進行頁面置換。如果進程在運行過程中頻繁缺頁,系統會為該進程多分配幾個物理塊,直至該進程缺頁率趨於適當程度;反之,如果缺頁率太低,就是當減少分配給該進程的內存塊數
要根據發生缺頁的頻率來動態增加或減少進程的物理塊
何時調入頁面
從何處調入頁面
對換區:讀寫速度更快,採用連續分配方式
文件區:讀寫速度更慢,採用離散分配方式
抖動/顛簸現象:剛剛換出的頁面馬上要換入內存,剛剛換入的頁面馬上要換出外存,這種頻繁的頁面調度行為稱為抖動/顛簸
主要原因是進程頻繁訪問的頁面數目高於可用的物理塊數(分配給進程的物理塊不夠)
為進程分配物理塊太少會使進程發生抖動現象,為進程分配的物理塊太多會降低系統的並發度降低某些資源的利用率。因此提出了「工作集」的概念
工作集:在某段時間間隔里,進程實際訪問頁面的集合
駐留集:請求分頁存儲管理中給進程分配的內存塊的集合
駐留集不能小於工作集,否則進程運行過程中將頻繁缺頁