Ⅰ 雨是怎麼形成的為什麼會儲存這么多.下這么多陽光有什麼作用
我們已經知道,雲是由許多小水滴和小冰晶組成的,雨滴和雪花就是由它們增長變大而成的。那麼,小水滴和小冰晶在雲內是怎樣增長變大的呢?
在水雲中,雲滴都是小水滴。它們主要是靠繼續凝結和互相碰撞並合而增大的。因此,在水雲里,雲滴要增大到雨滴的大小,首先需要雲很厚,雲滴濃密,含水量多,這樣,它才能繼續凝結增長;其次,在水雲內還需要存在較強的垂直運動,這樣才能增加多次碰撞並合的機會。而在比較薄的和比較穩定的水雲中,雲滴沒有足夠的凝結和並合增長的機會,只能引起多雲、陰天,不大會下雨。
在各種不同的雲內,其雲滴大小的分布是各不相同的,造成雲滴大小不均的原因就是周圍空氣中水汽的轉移以及雲滴的蒸發。使雲滴增長的因素是凝結過程和碰撞並和過程,在只有凝結作用的情況下,雲滴的大小是均勻的,但由於水汽的補充,使某些雲滴有所增長,再加上並和作用的結果,就使較大的雲滴繼續增長變大成為雨滴。雨滴受地心引力的作用而下降,當有上升氣流時,就會有一個向上的力加在雨滴上,使其下降的速度變慢,並且一些小雨滴還可能被帶上去。只有當雨滴增大到一定的程度時,才能下降到地面,形成降雨。
Ⅱ 天上怎麼會有這么多雨啊
雨是由雲「變」來的。雨滴的體積是雲滴體積的100萬倍。也就是說,要100萬個雲滴才能構成一個雨滴。在濕空氣中,因冷卻而凝結出雲滴。對於雲體溫度高於0℃的暖雲來說,雲中存在大小不同的雲滴,大雲滴下降速度快,上升速度慢;小雲滴下降速度慢,上升速度快。於是,由於大小雲滴相對速度的差異,使得大雲滴有機會與小雲滴相撞,結果小雲滴就合並到大雲滴中去了。這樣,大雲滴不斷地增大,又因為上升氣流分布不均勻,大雲滴可以在雲中多次上下運動,再加上雲內的湍流作用,大雲滴增大的機會就增加,於是大雲滴越來越大,直到上升氣流托不住它,掉下來成為雨
還有一種比較專業的意見,我覺得更有道理:
當你飛行在1萬米高空,看到更高處仍有少量霧障與淡雲時,往往會有這樣的疑問,為什麼大多數雲粒都在雲海海面以下,這些高雲有什麼特殊,能比其它雲飄得更高呢?�實際上,20公里高空都還有極稀薄的水分子存在,如前所述,這個高度的水分子不是從地面直接就蒸騰上來的,而是「第二次蒸發」後,負氫氧根離子還原出來的水分子。因為氫氧根(OH�-)的分子量是17,比水氣分子量小1,故比水氣浮得更高。當它們在平流層底部還原成水(H�2O)後,在-45℃的氣溫環境下,立即凝結成固態的霰粒,其直徑在1微米以下,反射陽光,就像是霧障,特別濃密時,便猶如淡雲。
由於大量霰粒向雲海掉落,雲層的水霧向霰粒聚集,凍成較大的霰粒。當聚到1毫米左右直徑時,原霰粒熔解為水,成為雨滴下落到地面。在冬季,原霰粒未被熔解,形成雪花或大霰粒下落到地面,這便是雨和雪的成因。�在晴天時,高空霰粒在穿過沒有雲的雲層時,因氣溫增高而在半空熔解,化為薄霧,或降落地面成為露、霜、或在降落途中,又被第二天的陽光和風再次蒸發。這些高空霰粒體積太小,容易熔解,不易現場「抓獲」,故它的存在和作用常被氣象學家們忽略。
�現氣象學一講雨雪的成因,就說是暖濕氣流遇到了冷氣團,或濕熱空氣上升後冷卻凝結雲雲。問題是,在夏秋雨季里,這些冷氣團是從哪裡來的呢?難道是從南北極圈專門跑來下雨的不成?既然濕熱空氣把地面的水汽與熱能帶到了高空,高空應該更熱,為何又會冷卻凝結為雨雪的呢?不首先弄清對流層頂部出現低溫的原因,這種雨雪成因理論就根本不能自圓其說。
�如前所述,第二次蒸發是高空寒冷的主因,大量霰粒落入雲海並吸熱熔解,會使雲海「雪上加霜」,當雲汽在這種寒冷條件下凝結為雨滴和雪粒後,比重增大,浮力消失,當然會向下飄落,形成雨雪。現在所說的「對流雨」、「地形雨」、「鋒面雨」、「台風雨」、「人工降雨」等都只是在說明降雨過程所伴隨的現象,並沒有說清降雨的原因
=========================================
我們都知道,雲是由許多小水滴和小冰晶組成的,雨滴和雪花是由這些小水滴和小冰晶增長變大而成的。那麼,雪是怎麼形成的呢?
在水雲中,雲滴都是小水滴。它們主要是靠繼續凝結和互相碰撞並合而增大成為雨滴的。
冰雲是由微小的冰晶組成的。這些小冰晶在相互碰撞時,冰晶表面會增熱而有些融化,並且會互相沾合又重新凍結起來。這樣重復多次,冰晶便增大了。另外,在雲內也有水汽,所以冰晶也能靠凝華繼續增長。但是,冰雲一般都很高,而且也不厚,在那裡水汽不多,凝華增長很慢,相互碰撞的機會也不多,所以不能增長到很大而形成降水。即使引起了降水,也往往在下降途中被蒸發掉,很少能落到地面。
最有利於雲滴增長的是混合雲。混合雲是由小冰晶和過冷卻水滴共同組成的。當一團空氣對於冰晶說來已經達到飽和的時候,對於水滴說來卻還沒有達到飽和。這時雲中的水汽向冰晶表面上凝華,而過冷卻水滴卻在蒸發,這時就產生了冰晶從過冷卻水滴上"吸附"水汽的現象。在這種情況下,冰晶增長得很快。另外,過冷卻水是很不穩定的。一碰它,它就要凍結起來。所以,在混合雲里,當過冷卻水滴和冰晶相碰撞的時候,就會凍結沾附在冰晶表面上,使它迅速增大。當小冰晶增大到能夠克服空氣的阻力和浮力時,便落到地面,這就是雪花。
在初春和秋末,靠近地面的空氣在0℃以上,但是這層空氣不厚,溫度也不很高,會使雪花沒有來得及完全融化就落到了地面。這叫做降"濕雪",或"雨雪並降"。這種現象在氣象學里叫「雨夾雪」。
同樣雪的大小也按降水量分類. 雪可分為小雪,中雪和大雪三類, 具體見表3.
表3. 各類雪的降水量標准
種類
小雪
中雪
大雪
24小時降水量
2.5以下
2.6-5.0
大於5.0
12小時降水量
1.0以下
1.1-3.0
大於3.0
雪的形成和種類
作者:大山文章來源:網上收集點擊數:97更新時間:2005-1-16
我們都知道,雲是由許多小水滴和小冰晶組成的,雨滴和雪花是由這些小水滴和小冰晶增長變大而成的。那麼,雪是怎麼形成的呢?
在水雲中,雲滴都是小水滴。它們主要是靠繼續凝結和互相碰撞並合而增大成為雨滴的。
冰雲是由微小的冰晶組成的。這些小冰晶在相互碰撞時,冰晶表面會增熱而有些融化,並且會互相沾合又重新凍結起來。這樣重復多次,冰晶便增大了。另外,在雲內也有水汽,所以冰晶也能靠凝華繼續增長。但是,冰雲一般都很高,而且也不厚,在那裡水汽不多,凝華增長很慢,相互碰撞的機會也不多,所以不能增長到很大而形成降水。即使引起了降水,也往往在下降途中被蒸發掉,很少能落到地面。
最有利於雲滴增長的是混合雲。混合雲是由小冰晶和過冷卻水滴共同組成的。當一團空氣對於冰晶說來已經達到飽和的時候,對於水滴說來卻還沒有達到飽和。這時雲中的水汽向冰晶表面上凝華,而過冷卻水滴卻在蒸發,這時就產生了冰晶從過冷卻水滴上"吸附"水汽的現象。在這種情況下,冰晶增長得很快。另外,過冷卻水是很不穩定的。一碰它,它就要凍結起來。所以,在混合雲里,當過冷卻水滴和冰晶相碰撞的時候,就會凍結沾附在冰晶表面上,使它迅速增大。當小冰晶增大到能夠克服空氣的阻力和浮力時,便落到地面,這就是雪花。
在初春和秋末,靠近地面的空氣在0℃以上,但是這層空氣不厚,溫度也不很高,會使雪花沒有來得及完全融化就落到了地面。這叫做降"濕雪",或"雨雪並降"。這種現象在氣象學里叫「雨夾雪」。
同樣雪的大小也按降水量分類. 雪可分為小雪,中雪和大雪三類, 具體見表3.
表3. 各類雪的降水量標准
種類 小雪 中雪 大雪
24小時降水量 2.5以下 2.6-5.0 大於5.0
12小時降水量 1.0以下 1.1-3.0 大於3.0
雪花的形狀
雪花的形狀極多,而且十分美麗.如果把雪花放在放大鏡下,可以發現每片雪花都是一幅極其精美的圖案,連許多藝術家都贊嘆不止。但是,各種各樣的雪花形狀是怎樣形成的呢?雪花大都是六角形的,這是因為雪花屬於六方晶系。雲中雪花"胚胎"的小冰晶,主要有兩種形狀。一種呈六棱體狀,長而細,叫柱晶,但有時它的兩端是尖的,樣子象一根針,叫針晶。別一種則呈六角形的薄片狀,就象從六棱鉛筆上切下來的薄片那樣,叫片晶。
如果周圍的空氣過飽和的程度比較低,冰晶便增長得很慢,並且各邊都在均勻地增長。它增大下降時,仍然保持著原來的樣子,分別被叫做柱狀、針狀和片狀的雪晶。
如果周圍的空氣呈高度過飽和狀態,那麼冰晶在增長過程中不僅體積會增大,而且形狀也會變化。最常見的是由片狀變為星狀。
原來,在冰晶增長的同時,冰晶附近的水汽會被消耗。所以,越靠近冰晶的地方,水汽越稀薄,過飽和程度越低。在緊靠冰晶表面的地方,因為多餘的水汽都已凝華在冰晶上了,所以剛剛達到飽和。這樣,靠近冰晶處的水汽密度就要比離它遠的地方小。水汽就從冰晶周圍向冰晶所在處移動。水汽分子首先遇到冰晶的各個角棱和凸出部分,並在這里凝華而使冰晶增長。於是冰晶的各個角棱和凸出部分將首先迅速地增長,而逐漸成為枝叉狀。以後,又因為同樣的原因在各個枝叉和角棱處長出新的小枝叉來。與此同時,在各個角棱和枝叉之間的凹陷處。空氣已經不再是飽和的了。有時,在這里甚至有升華過程,以致水汽被輸送到其他地方去。這樣就使得角棱和枝叉更為突出,而慢慢地形成了我們熟悉的星狀雪花。
上面說的實際上是一個典型的星狀雪花的形成過程。它的相當部位,不論形狀或大小,都應當是相同的。這種典型的星狀雪花只有在一個理想的、平靜的環境中(譬如在實驗室內)才能形成。在大氣中,它不能象上面說的那樣有步驟地增大,所形成的形狀也就不能那樣典型。這是因為冰晶逐漸在下降著,而且有時在旋轉著,各個枝叉接觸水汽的多少有所不同,而那些接觸水汽較多的枝又便增長得較多。因此,我們平常所看到的雪花雖大體上一樣但又互不相同。
另外,雪花在雲內下降的過程中,也會從適宜於形成這種形狀的環境降到適宜於形成另一種形狀的環境,於是便出觀了各種復雜的雪花形狀。有的象袖扣,有的象刺猾。即使都是星狀雪花,也有三個枝叉的、六個枝叉的,甚至有十二個枝叉、十八個枝又的。
以上所述都是單個雪花的情況。在雪花下降時,各個雪花也很容易互相攀附並合在一起,成為更大的雪片。雪花的並合大多在以下三種情況下出觀。(1)當溫度低於0℃的時候,雪花在緩慢下降的途中相撞。碰撞產生了壓力和熱,使相撞部分有些融化而彼此沾附在一起,隨後這些融化的水又立即凍結起來。這樣,兩個雪花就並合到一起了。(2)在溫度略高於0℃的時候,雪花上本來已覆有一層水膜,這時如果兩個雪花相碰,便借著水的表面張力而沾合在一起。(3)如果雪花的枝叉很復雜,則兩個雪花也可以只因簡單的攀連而相掛在一起。
雪花從雲中下降到地面,路途很長,在條件適合時,可以經多次攀連並合而變得很大。在降大雪的時候,有時有一些鵝毛般的大雪片,就是經過多次並合而成的。
但是,有時雪花互碰時不是互相並合在一起,而是給碰破了,這時便產生一些畸形的雪花。例如,在降雪的時候,有時會見到一些單個的"星枝",就屬於這種情況。
===========================================
雲是降水的基礎,是地球上水分循環的中間環節,並且雲的發生發展總伴隨著能量的交換。雲的形狀千變萬化,一定的雲狀常伴隨著一定的天氣出現,因而雲對於天氣變化具有一定的指示意義。
(一)雲的形成條件和分類
大氣中,凝結的重要條件是,要有凝結核的存在,及空氣達到過飽和。對於雲的形成來說,其過飽和主要是由空氣垂直上升所進行的絕熱冷卻引起的。上升運動的形式和規模不同,形成的雲的狀態、高度、厚度也不同。大氣的上升運動主要有如下四種方式:
1.熱力對流
指地表受熱不均和大氣層結不穩定引起的對流上升運動。由對流運動所形成的雲多屬積狀雲。
2.動力抬升
指暖濕氣流受鋒面、輻合氣流的作用所引起的大范圍上升運動。這種運動形成的雲主要是層狀雲。
3.大氣波動
指大氣流經不平的地面或在逆溫層以下所產生的波狀運動。由大氣波動產生的雲主要屬於波狀雲。
4.地形抬升
指大氣運行中遇地形阻擋,被迫抬升而產生的上升運動。這種運動形成的雲既有積狀雲,有波狀雲和層狀雲,通常稱之為地形雲。
盡管雲的形態千差萬別,但其形成總有一定的規律。根據雲的形成高度並結合其形態,國分類法將雲分為4族10屬。我國於1972年出版的《中國雲圖》將雲分成3族11屬(表3·3,詳見《氣學與氣候學實習》第五章)。
(二)各種雲的形成
1.積狀雲的形成
積狀雲是垂直發展的雲塊,主要包括淡積雲、濃積雲和積雨雲。積狀雲多形成於夏季午後,具孤立分散、雲底平坦和頂部凸起的外貌形態。
積狀雲的形成總是與不穩定大氣中的對流上升運動相聯系。有對流能否形成積雲,除了取決於凝結的條件外,還取決於對流上升所能達到的高度。如果對流上升所能達到的最大高度(對流上限)高於凝結高度,則積狀雲形成,否則就不會形成積狀雲。對流愈強,對流上限高於凝結高度的差值就愈大,積狀雲厚度就愈大。對流上升區的水平范圍廣大,則積狀雲的水平范圍也就愈大。
淡積雲、濃積雲和積雨雲是積狀雲發展的不同階段。氣團內部熱力對流所產生的積狀雲最為典型。夏半年,地面受到太陽強烈輻射,地溫很高,進一步加熱了近地面氣層。由於地表的不均一性,有的地方空氣加熱得厲害些,有的地方空氣濕一些,因而貼地氣層中就生成了大大小小與周圍溫度、濕度及密度稍有不同的氣塊(熱泡)。這些氣塊內部溫度較高,受周圍空氣的浮力作用而隨風飄浮,不斷生消。較大的氣塊上升的高度較大,當到達凝結高度以上,就形成了對流單體,再逐步發展,就形成孤立、分散、底部平坦、頂部凸起的淡積雲。由於空氣運動是連續的,相互補償的,上升部分的空氣因冷卻,水汽凝結成雲,而雲體周圍有空氣下沉補充,下沉空氣絕熱增溫快,不會形成雲。所以積狀雲是分散的,雲塊間露出藍天。對於一定的地區,在同一時間里,空氣溫、濕度的水平分布近於一致,其凝結高度基本相同,因而積雲底部平坦。
如果對流上限稍高於凝結高度,則一般只形成淡積雲。由於雲頂一般在0℃等溫線高度以下,所以雲體由水滴組成,雲內上升氣流的速度不大,一般不超過5m/s,雲中湍流也較弱。在淡積雲出現的高度上,如果有強風和較強的湍流時,淡積雲的雲體會變得破碎,這種雲叫碎積雲。
當對流上限超過凝結高度許多時,雲體高大,頂部呈花椰菜狀,形成濃積雲。其雲頂伸展至低於0℃的高度,頂部由過冷卻水滴組成,雲中上升氣流強,可達15—20m/s,雲中湍流也強。
如果上升氣流更強,濃積雲雲頂即可更向上伸展,雲頂可伸展至-15℃以下的高空。於是雲頂凍結為冰晶,出現絲縷結構,形成積雨雲。積雨雲頂部,在高空風的吹拂下,向水平方向展開成砧狀,稱為砧狀雲。在順高空風的方向上,雲砧能伸展很遠,因而它的伸展方向,可作為判定積雨雲的移動方向。積雨雲的厚度很大,在中緯度地區為5 000—8 000m,在低緯度地區可達10000m以上。雲中上升下沉氣流的速度都很大,上升氣流常可達20—30m/s,曾觀測到60m/s的上升速度,下沉速度也有10—15m/s。雲中湍流十分強烈。
熱力對流形成的積狀雲具有明顯的日變化。通常,上午多為淡積雲。隨著對流的增強,逐漸發展為濃積雲。下午對流最旺盛,往往可發展為積雨雲。傍晚對流減弱,積雨雲逐漸消散,有時可以演變為偽卷雲、積雲性高積雲和積雲性層積雲。如果到了下午,天空還只是淡積雲,這表明空氣比較穩定,積雲不能再發展長大,天氣較好,所以淡積雲又叫晴天積雲,是連續晴天的預兆。夏天,如果早上很早就出現了濃積雲,則表示空氣已很不穩定,就可能發展為積雨雲。因此,早上有濃積雲是有雷雨的預兆。傍晚層積雲是積狀雲消散後演變成的,說明空氣層結穩定,一到夜間雲就散去,這是連晴的預兆。由此可知,利用熱力對流形成的積雲的日變化特點,有助於直接判斷短期天氣的變化。
2.層狀雲的形成
層狀雲是均勻幕狀的雲層,常具有較大的水平范圍,其中包括卷層雲、卷雲、高層雲及雨層雲。
層狀雲是由於空氣大規模的系統性上升運動而產生的,主要是鋒面上的上升運動引起的。這種系統性的上升運動,通常水平范圍大,上升速度只有0.1—1m/s,因持續時間長,能使空氣上升好幾千米。例如當暖空氣向冷空氣一側移動時,由於二者密度不同,穩定的暖濕空氣沿冷空氣斜坡緩慢滑升,絕熱冷卻,形成層狀雲。雲的底部同冷暖空氣交綏的傾斜面(又稱鋒面)大體吻合,雲頂近似水平。在傾斜面的不同部位,雲厚的差別很大。最前面的是卷雲和卷層雲,其厚度最薄,一般為幾百米至2000m,雲體由冰晶組成。
Ⅲ 請問科學家天上為什麼能存下下一天的雨水
我不是科學家,不過下雨因為是天上的積雨雲的緣故,只要雲層足夠,下多久雨都是沒有問題的