當前位置:首頁 » 服務存儲 » 中國發展存儲器的歷程
擴展閱讀
webinf下怎麼引入js 2023-08-31 21:54:13
堡壘機怎麼打開web 2023-08-31 21:54:11

中國發展存儲器的歷程

發布時間: 2022-12-22 12:03:55

㈠ 內存儲器的發展歷程

對於用過386機器的人來說,30pin的內存,我想在很多人的腦海里,一定或多或少的還留有一絲印象,這一次我們特意收集的7根30pin的內存條,並拍成圖片,怎麼樣看了以後,是不是有一種久違的感覺呀!

30pin 反面 30pin 正面

下面是一些常見內存參數的介紹:
bit 比特,內存中最小單位,也叫「位」。它只有兩個狀態分別以0和1表示

byte位元組,8個連續的比特叫做一個位元組。

ns(nanosecond)
納秒,是一秒的10億分之一。內存讀寫速度的單位,其前面數字越小表示速度越快。

72pin正面 72pin反面

72pin的內存,可以說是計算機發展史的一個經典,也正因為它的廉價,以及速度上大幅度的提升,為電腦的普及,提供了堅實的基礎。由於用的人比較多,目前在市場上還可以買得到。

SIMM(Single In-line Memory Moles)
單邊接觸內存模組。是5X86及其較早的PC中常採用的內存介面方式。在486以前,多採用30針的SIMM介面,而在Pentuim中更多的是72針的SIMM介面,或者與DIMM介面類型並存。人們通常把72線的SIMM類型內存模組直接稱為72線內存。

ECC(Error Checking and Correcting)
錯誤檢查和糾正。與奇偶校驗類似,它不但能檢測到錯誤的地方,還可以糾正絕大多數錯誤。它也是在原來的數據位上外加位來實現的,這些額外的位是用來重建錯誤數據的。只有經過內存的糾錯後,計算機操作指令才可以繼續執行。當然在糾錯是系統的性能有著明顯的降低。

EDO DRAM(Extended Data Output RAM)
擴展數據輸出內存。是Micron公司的專利技術。有72線和168線之分、5V電壓、帶寬32bit、基本速度40ns以上。傳統的DRAM和FPM DRAM在存取每一bit數據時必須輸出行地址和列地址並使其穩定一段時間後,然後才能讀寫有效的數據,而下一個bit的地址必須等待這次讀寫操作完成才能輸出。EDO DRAM不必等待資料的讀寫操作是否完成,只要規定的有效時間一到就可以准備輸出下一個地址,由此縮短了存取時間,效率比FPM DRAM高20%—30%。具有較高的性/價比,因為它的存取速度比FPM DRAM快15%,而價格才高出5%。因此,成為中、低檔Pentium級別主板的標准內存。

DIMM(Dual In-line Memory Moles)
雙邊接觸內存模組。也就是說這種類型介面內存的插板兩邊都有數據介面觸片,這種介面模式的內存廣泛應用於現在的計算機中,通常為84針,由於是雙邊的,所以共有84×2=168線接觸,所以人們常把這種內存稱為168線內存。

PC133

SDRAM(Synchronous Burst RAM)
同步突發內存。是168線、3.3V電壓、帶寬64bit、速度可達6ns。是雙存儲體結構,也就是有兩個儲存陣列,一個被CPU讀取數據的時候,另一個已經做好被讀取數據的准備,兩者相互自動切換,使得存取效率成倍提高。並且將RAM與CPU以相同時鍾頻率控制,使RAM與CPU外頻同步,取消等待時間,所以其傳輸速率比EDO DRAM快了13%。SDRAM採用了多體(Bank)存儲器結構和突發模式,能傳輸一整數據而不是一段數據。

SDRAM ECC 伺服器專用內存

RDRAM(Rambus DRAM)
是美國RAMBUS公司在RAMBUSCHANNEL技術基礎上研製的一種存儲器。用於數據存儲的字長為16位,傳輸率極速指標有望達到600MHz。以管道存儲結構支持交叉存取同時執行四條指令,單從封裝形式上看,與DRAM沒有什麼不同,但在發熱量方面與100MHz的SDRAM大致相當。因為它的圖形加速性能是EDO DRAM的3-10倍,所以目前主要應用於高檔顯卡上做顯示內存。

Direct RDRAM
是RDRAM的擴展,它使用了同樣的RSL,但介面寬度達到16位,頻率達到800MHz,效率更高。單個傳輸率可達到1.6GB/s,兩個的傳輸率可達到3.2GB/s。

點評:
30pin和72pin的內存,早已退出市場,現在市場上主流的內存,是SDRAM,而SDRAM的價格越降越底,對於商家和廠家而言,利潤空間已縮到了極限,賠錢的買賣,有誰願意去做了?再者也沒有必要,畢竟廠家或商家們總是在朝著向「錢」的方向發展。

隨著 INTEL和 AMD兩大公司 CPU生產飛速發展,以及各大板卡廠家的支持,RAMBUS 和 DDRAM 也得到了更快的發展和普及,究竟哪一款會成為主流,哪一款更適合用戶,市場終究會證明這一切的。

機存取存儲器是電腦的記憶部件,也被認為是反映集成電路工藝水平的部件。各種存儲器中以動態存儲器(DRAM)的存儲容量為最大,使用最為普及,幾十年間它的存儲量擴大了幾千倍,存取數據的速度提高40多倍。存儲器的集成度的提高是靠不斷縮小器件尺寸達到的。尺寸的縮小,對集成電路的設計和製造技術提出了極為苛刻的要求,可以說是只有一代新工藝的突破,才有一代集成電路。

動態讀寫存儲器DRAM(Dynamic Random Access MeMory)是利用MOS存儲單元分布電容上的電荷來存儲數據位,由於電容電荷會泄漏,為了保持信息不丟失,DRAM需要不斷周期性地對其刷新。由於這種結構的存儲單元所需要的MOS管較少,因此DRAM的集成度高、功耗也小,同時每位的價格最低。DRAM一般都用於大容量系統中。DRAM的發展方向有兩個,一是高集成度、大容量、低成本,二是高速度、專用化。

從1970年Intel公司推出第一塊1K DRAM晶元後,其存儲容量基本上是按每三年翻兩番的速度發展。1995年12月韓國三星公司率先宣布利用0.16μm工藝研製成功集成度達10億以上的1000M位的高速(3lns)同步DRAM。這個領域的競爭非常激烈,為了解決巨額投資和共擔市場風險問題,世界范圍內的各大半導體廠商紛紛聯合,已形成若干合作開發的集團格局。

1996年市場上主推的是4M位和16M位DRAM晶元,1997年以16M位為主,1998年64M位大量上市。64M DRAM的市場佔有率達52%;16M DRAM的市場佔有率為45%。1999年64M DRAM市場佔有率已提高到78%,16M DRAM佔1%。128M DRAM已經普及,明年將出現256M DRAM。

高性能RISC微處理器的時鍾已達到100MHz~700MHz,這種情況下,處理器對存儲器的帶寬要求越來越高。為了適應高速CPU構成高性能系統的需要,DRAM技術在不斷發展。在市場需求的驅動下,出現了一系列新型結構的高速DRAM。例如EDRAM、CDRAM、SDRAM、RDRAM、SLDRAM、DDR DRAM、DRDRAM等。為了提高動態讀寫存儲器訪問速度而採用不同技術實現的DRAM有:

(1) 快速頁面方式FPM DRAM

快速頁面方式FPM(Fast Page Mode)DRAM已經成為一種標准形式。一般DRAM存儲單元的讀寫是先選擇行地址,再選擇列地址,事實上,在大多數情況下,下一個所需要的數據在當前所讀取數據的下一個單元,即其地址是在同一行的下一列,FPM DRAM可以通過保持同一個行地址來選擇不同的列地址實現存儲器的連續訪問。減少了建立行地址的延時時間從而提高連續數據訪問的速度。但是當時鍾頻率高於33MHz時,由於沒有足夠的充電保持時間,將會使讀出的數據不可靠。

(2) 擴展數據輸出動態讀寫存儲器EDO DRAM

在FPM技術的基礎上發展起來的擴展數據輸出動態讀寫存儲器EDODRAM(Extended Data Out DRAM),是在RAM的輸出端加一組鎖存器構成二級內存輸出緩沖單元,用以存儲數據並一直保持到數據被可靠地讀取時為止,這樣就擴展了數據輸出的有效時間。EDODRAM可以在50MHz時鍾下穩定地工作。

由於只要在原DRAM的基礎上集成成本提高並不多的EDO邏輯電路,就可以比較有效地提高動態讀寫存儲器的性能,所以在此之前,EDO DRAM曾成為動態讀寫存儲器設計的主流技術和基本形式。

(3) 突發方式EDO DRAM

在EDO DRAM存儲器的基礎上,又發展了一種可以提供更高有效帶寬的動態讀寫存儲器突發方式EDO DRAM(Burst EDO DRAM)。這種存儲器可以對可能所需的4個數據地址進行預測並自動地預先形成,它把可以穩定工作的頻率提高到66MHz。

(4) 同步動態讀寫存儲器SDRAM

SDRAM(Synchronous DRAM)是通過同步時鍾對控制介面的操作和安排片內隔行突發方式地址發生器來提高存儲器的性能。它僅需要一個首地址就可以對一個存儲塊進行訪問。所有的輸入采樣如輸出有效都在同一個系統時鍾的上升沿。所使用的與CPU同步的時鍾頻率可以高達66MHz~100MHz。它比一般DRAM增加一個可編程方式寄存器。採用SDRAM可大大改善內存條的速度和性能,系統設計者可根據處理器要求,靈活地採用交錯或順序脈沖。

Infineon Technologies(原Siemens半導體)今年已批量供應256Mit SDRAM。其SDRAM用0.2μm技術生產,在100MHz的時鍾頻率下輸出時間為10ns。

(5) 帶有高速緩存的動態讀寫存儲器CDRAM

CDRAM(Cached DRAM)是日本三菱電氣公司開發的專有技術,1992年推出樣品,是通過在DRAM晶元,集成一定數量的高速SRAM作為高速緩沖存儲器Cache和同步控制介面,來提高存儲器的性能。這種晶元用單一+3.3V電源,低壓TTL輸入輸出電平。目前三菱公司可以提供的CDRAM為4Mb和16Mb,其片內Cache為16KB,與128位內部匯流排配合工作,可以實現100MHz的數據訪問。流水線式存取時間為7ns。

(6) 增強型動態讀寫存儲器EDRAM(Enhanced DRAM)

由Ramtron跨國公司推出的帶有高速緩沖存儲器的DRAM產品稱作增強型動態讀寫存儲器EDRAM(Enhanced DRAM),它採用非同步操作方式,單一+5V工作電源,CMOS或TTL輸入輸出電平。由於採用一種改進的DRAM 0.76μm CMOS工藝和可以減小寄生電容和提高晶體管增益的結構技術,其性能大大提高,行訪問時間為35ns,讀/寫訪問時間可以提高到65ns,頁面寫入周期時間為15ns。EDRAM還在片內DRAM存儲矩陣的列解碼器上集成了2K位15ns的靜態RAM高速緩沖存儲器Cache,和後寫寄存器以及另外的控制線,並允許SRAM Cache和DRAM獨立操作。每次可以對一行數據進行高速緩沖。它可以象標準的DRAM對任一個存儲單元用頁面或靜態列訪問模式進行操作,訪問時間只有15ns。當Cache未命中時,EDRAM就把新的一行載入到Cache中,並把選擇的存儲單元數據輸出,這需要花35ns。這種存儲器的突發數據率可以達到267Mbytes/s。

(7) RDRAM(Rambus DRAM)

Rambus DRAM是Rambus公司利用本身研製的一種獨特的介面技術代替頁面方式結構的一種新型動態讀寫存儲器。這種介面在處理機與DRAM之間使用了一種特殊的9位低壓負載發送線,用250MHz同步時鍾工作,位元組寬度地址與數據復用的串列匯流排介面。這種介面又稱作Rambus通道,這種通道嵌入到DRAM中就構成Rambus DRAM,它還可以嵌入到用戶定製的邏輯晶元或微處理機中。它通過使用250MHz時鍾的兩個邊沿可以使突發數據傳輸率達到500MHz。在採用Rambus通道的系統中每個晶元內部都有它自己的控制器,用來處理地址解碼和面頁高速緩存管理。由此一片存儲器子系統的容量可達512K位元組,並含有一個匯流排控制器。不同容量的存儲器有相同的引腳並連接在同一組匯流排上。Rambus公司開發了這種新型結構的DRAM,但是它本身並不生產,而是通過發放許可證的方式轉讓它的技術,已經得到生產許可的半導體公司有NEC、Fujitsu、Toshiba、Hitachi和LG等。

被業界看好的下一代新型DRAM有三種:雙數據傳輸率同步動態讀寫存儲器(DDR SDRAM)、同步鏈動態讀寫存儲器(SLDRAM)和Rambus介面DRAM(RDRAM)。

(1) DDR DRAM(Double Data Rate DRAM)

在同步動態讀寫存儲器SDRAM的基礎上,採用延時鎖定環(Delay-locked Loop)技術提供數據選通信號對數據進行精確定位,在時鍾脈沖的上升沿和下降沿都可傳輸數據(而不是第一代SDRAM僅在時鍾脈沖的下降沿傳輸數據),這樣就在不提高時鍾頻率的情況下,使數據傳輸率提高一倍,故稱作雙數據傳輸率(DDR)DRAM,它實際上是第二代SDRAM。由於DDR DRAM需要新的高速時鍾同步電路和符合JEDEC標準的存儲器模塊,所以主板和晶元組的成本較高,一般只能用於高檔伺服器和工作站上,其價格在中低檔PC機上可能難以接受。

(2) SLDRAM(Synchnonous Link DRAM)

這是由IBM、HP、Apple、NEC、Fujitsu、Hyundai、Micron、TI、Toshiba、Sansung和Siemens等業界大公司聯合制定的一個開放性標准,委託Mosaid Technologies公司設計,所以SLDRAM是一種原本最有希望成為高速DRAM開放性工業標準的動態讀寫存儲器。它是一種在原DDR DRAM基礎上發展的一種高速動態讀寫存儲器。它具有與DRDRAM相同的高數據傳輸率,但是它比其工作頻率要低;另外生產這種存儲器不需要支付專利使用費,使得製造成本較低,所以這種存儲器應該具有市場競爭優勢。但是由於SLDRAM聯盟是一個鬆散的聯合體,眾多成員之間難以協調一致,在研究經費投入上不能達成一致意見,加上Intel公司不支持這種標准,所以這種動態存儲器反而難以形成氣候,敵不過Intel公司鼎立支持的Rambus公司的DRDRAM。SLDRAM可用於通信和消費類電子產品,高檔PC和伺服器。

(3) DRDRAM(Direct Rambus DRAM)

從1996年開始,Rambus公司就在Intel公司的支持下制定新一代RDRAM標准,這就是DRDRAM(Direct RDRAM)。這是一種基於協議的DRAM,與傳統DRAM不同的是其引腳定義會隨命令而變,同一組引腳線可以被定義成地址,也可以被定義成控制線。其引腳數僅為正常DRAM的三分之一。當需要擴展晶元容量時,只需要改變命令,不需要增加硬體引腳。這種晶元可以支持400MHz外頻,再利用上升沿和下降沿兩次傳輸數據,可以使數據傳輸率達到800MHz。同時通過把數據輸出通道從8位擴展成16位,這樣在100MHz時就可以使最大數據輸出率達1.6Gb/s。東芝公司在購買了Rambus公司的高速傳輸介面技術專利後,於1998年9月首先推出72Mb的RDRAM,其中64Mb是數據存儲器,另外8Mb用於糾錯校驗,由此大大提高了數據讀寫可靠性。

Intel公司辦排眾議,堅定地推舉DRDRAM作為下一代高速內存的標准,目前在Intel公司對Micro、Toshiba和Samsung等公司組建DRDRAM的生產線和測試線投入資金。其他眾多廠商也在努力與其抗爭,最近AMD宣布至少今年推出的K7微處理器都不打算採用Rambus DRAM;據說IBM正在考慮放棄對Rambus的支持。當前市場上同樣是64Mb的DRAM,RDRAM就要比其他標準的貴45美元。
由此可見存儲器的發展動向是:大容量化,高速化, 多品種、多功能化,低電壓、低功耗化。
存儲器的工藝發展中有以下趨勢:CHMOS工藝代替NMOS工藝以降低功耗;縮小器件尺寸,外圍電路仍採用ECL結構以提高存取速度同時提高集成度;存儲電容從平面HI-C改為深溝式,保證尺寸減少後的電荷存儲量,以提高可靠性;電路設計中簡化外圍電路結構,注意降低雜訊,運用冗餘技術以提高質量和成品率;工藝中採用了多種新技術;使DRAM的存儲容量穩步上升,為今後繼續開發大容量的新電路奠定基礎。
從電子計算機中的處理器和存儲器可以看出ULSI前進的步伐和幾十年間的巨大變化。

㈡ 2.請講解下 存儲器的發展過程3.光纖的應用領域

存儲器的發展過程:

1.汞延遲線

汞延遲線是基於汞在室溫時是液體,同時又是導體,每比特數據用機械波的波峰(1)和波谷(0)表示。機械波從汞柱的一端開始,一定厚度的熔融態金屬汞通過一振動膜片沿著縱向從一端傳到另一端,這樣就得名「汞延遲線」。在管的另一端,一感測器得到每一比特的信息,並反饋到起點。設想是汞獲取並延遲這些數據,這樣它們便能存儲了。這個過程是機械和電子的奇妙結合。缺點是由於環境條件的限制,這種存儲器方式會受各種環境因素影響而不精確。

1950年,世界上第一台具有存儲程序功能的計算機EDVAC由馮?諾依曼博士領導設計。它的主要特點是採用二進制,使用汞延遲線作存儲器,指令和程序可存入計算機中。

1951年3月,由ENIAC的主要設計者莫克利和埃克特設計的第一台通用自動計算機UNIVAC-I交付使用。它不僅能作科學計算,而且能作數據處理。

2.磁帶

UNIVAC-I第一次採用磁帶機作外存儲器,首先用奇偶校驗方法和雙重運算線路來提高系統的可靠性,並最先進行了自動編程的試驗。

磁帶是所有存儲媒體中單位存儲信息成本最低、容量最大、標准化程度最高的常用存儲介質之一。它互換性好、易於保存,近年來,由於採用了具有高糾錯能力的編碼技術和即寫即讀的通道技術,大大提高了磁帶存儲的可靠性和讀寫速度。根據讀寫磁帶的工作原理可分為螺旋掃描技術、線性記錄(數據流)技術、DLT技術以及比較先進的LTO技術。

根據讀寫磁帶的工作原理,磁帶機可以分為六種規格。其中兩種採用螺旋掃描讀寫方式的是面向工作組級的DAT(4mm)磁帶機和面向部門級的8mm磁帶機,另外四種則是選用數據流存儲技術設計的設備,它們分別是採用單磁頭讀寫方式、磁帶寬度為1/4英寸、面向低端應用的Travan和DC系列,以及採用多磁頭讀寫方式、磁帶寬度均為1/2英寸、面向高端應用的DLT和IBM的3480/3490/3590系列等。

磁帶庫是基於磁帶的備份系統,它能夠提供同樣的基本自動備份和數據恢復功能,但同時具有更先進的技術特點。它的存儲容量可達到數百PB,可以實現連續備份、自動搜索磁帶,也可以在驅動管理軟體控制下實現智能恢復、實時監控和統計,整個數據存儲備份過程完全擺脫了人工干涉。

磁帶庫不僅數據存儲量大得多,而且在備份效率和人工佔用方面擁有無可比擬的優勢。在網路系統中,磁帶庫通過SAN(Storage Area Network,存儲區域網路)系統可形成網路存儲系統,為企業存儲提供有力保障,很容易完成遠程數據訪問、數據存儲備份或通過磁帶鏡像技術實現多磁帶庫備份,無疑是數據倉庫、ERP等大型網路應用的良好存儲設備。

3.磁鼓

1953年,第一台磁鼓應用於IBM 701,它是作為內存儲器使用的。磁鼓是利用鋁鼓筒表面塗覆的磁性材料來存儲數據的。鼓筒旋轉速度很高,因此存取速度快。它採用飽和磁記錄,從固定式磁頭發展到浮動式磁頭,從採用磁膠發展到採用電鍍的連續磁介質。這些都為後來的磁碟存儲器打下了基礎。

磁鼓最大的缺點是利用率不高, 一個大圓柱體只有表面一層用於存儲,而磁碟的兩面都利用來存儲,顯然利用率要高得多。 因此,當磁碟出現後,磁鼓就被淘汰了。

4.磁芯

美國物理學家王安1950年提出了利用磁性材料製造存儲器的思想。福雷斯特則將這一思想變成了現實。

為了實現磁芯存儲,福雷斯特需要一種物質,這種物質應該有一個非常明確的磁化閾值。他找到在新澤西生產電視機用鐵氧體變換器的一家公司的德國老陶瓷專家,利用熔化鐵礦和氧化物獲取了特定的磁性質。

對磁化有明確閾值是設計的關鍵。這種電線的網格和芯子織在電線網上,被人稱為芯子存儲,它的有關專利對發展計算機非常關鍵。這個方案可靠並且穩定。磁化相對來說是永久的,所以在系統的電源關閉後,存儲的數據仍然保留著。既然磁場能以電子的速度來閱讀,這使互動式計算有了可能。更進一步,因為是電線網格,存儲陣列的任何部分都能訪問,也就是說,不同的數據可以存儲在電線網的不同位置,並且閱讀所在位置的一束比特就能立即存取。這稱為隨機存取存儲器(RAM),它是互動式計算的革新概念。福雷斯特把這些專利轉讓給麻省理工學院,學院每年靠這些專利收到1500萬~2000萬美元。

最先獲得這些專利許可證的是IBM,IBM最終獲得了在北美防衛軍事基地安裝「旋風」的商業合同。更重要的是,自20世紀50年代以來,所有大型和中型計算機也採用了這一系統。磁芯存儲從20世紀50年代、60年代,直至70年代初,一直是計算機主存的標准方式。

5.磁碟

世界第一台硬碟存儲器是由IBM公司在1956年發明的,其型號為IBM 350 RAMAC(Random Access Method of Accounting and Control)。這套系統的總容量只有5MB,共使用了50個直徑為24英寸的磁碟。1968年,IBM公司提出「溫徹斯特/Winchester」技術,其要點是將高速旋轉的磁碟、磁頭及其尋道機構等全部密封在一個無塵的封閉體中,形成一個頭盤組合件(HDA),與外界環境隔絕,避免了灰塵的污染,並採用小型化輕浮力的磁頭浮動塊,碟片表面塗潤滑劑,實行接觸起停,這是現代絕大多數硬碟的原型。1979年,IBM發明了薄膜磁頭,進一步減輕了磁頭重量,使更快的存取速度、更高的存儲密度成為可能。20世紀80年代末期,IBM公司又對磁碟技術作出一項重大貢獻,發明了MR(Magneto Resistive)磁阻磁頭,這種磁頭在讀取數據時對信號變化相當敏感,使得碟片的存儲密度比以往提高了數十倍。1991年,IBM生產的3.5英寸硬碟使用了MR磁頭,使硬碟的容量首次達到了1GB,從此,硬碟容量開始進入了GB數量級。IBM還發明了PRML(Partial Response Maximum Likelihood)的信號讀取技術,使信號檢測的靈敏度大幅度提高,從而可以大幅度提高記錄密度。

目前,硬碟的面密度已經達到每平方英寸100Gb以上,是容量、性價比最大的一種存儲設備。因而,在計算機的外存儲設備中,還沒有一種其他的存儲設備能夠在最近幾年中對其統治地位產生挑戰。硬碟不僅用於各種計算機和伺服器中,在磁碟陣列和各種網路存儲系統中,它也是基本的存儲單元。值得注意的是,近年來微硬碟的出現和快速發展為移動存儲提供了一種較為理想的存儲介質。在快閃記憶體晶元難以承擔的大容量移動存儲領域,微硬碟可大顯身手。目前尺寸為1英寸的硬碟,存儲容量已達4GB,10GB容量的1英寸硬碟不久也會面世。微硬碟廣泛應用於數碼相機、MP3設備和各種手持電子類設備。

另一種磁碟存儲設備是軟盤,從早期的8英寸軟盤、5.25英寸軟盤到3.5英寸軟盤,主要為數據交換和小容量備份之用。其中,3.5英寸1.44MB軟盤占據計算機的標准配置地位近20年之久,之後出現過24MB、100MB、200MB的高密度過渡性軟盤和軟碟機產品。然而,由於USB介面的快閃記憶體出現,軟盤作為數據交換和小容量備份的統治地位已經動搖,不久會退出歷史舞台。

6. 光碟

光碟主要分為只讀型光碟和讀寫型光碟。只讀型指光碟上的內容是固定的,不能寫入、修改,只能讀取其中的內容。讀寫型則允許人們對光碟內容進行修改,可以抹去原來的內容,寫入新的內容。用於微型計算機的光碟主要有CD-ROM、CD-R/W和DVD-ROM等幾種。

上世紀60年代,荷蘭飛利浦公司的研究人員開始使用激光光束進行記錄和重放信息的研究。1972年,他們的研究獲得了成功,1978年投放市場。最初的產品就是大家所熟知的激光視盤(LD,Laser Vision Disc)系統。

從LD的誕生至計算機用的CD-ROM,經歷了三個階段,即LD-激光視盤、CD-DA激光唱盤、CD-ROM。下面簡單介紹這三個階段性的產品特點。

LD-激光視盤,就是通常所說的LCD,直徑較大,為12英寸,兩面都可以記錄信息,但是它記錄的信號是模擬信號。模擬信號的處理機制是指,模擬的電視圖像信號和模擬的聲音信號都要經過FM(Frequency Molation)頻率調制、線性疊加,然後進行限幅放大。限幅後的信號以0.5微米寬的凹坑長短來表示。

CD-DA激光唱盤 LD雖然取得了成功,但由於事先沒有制定統一的標准,使它的開發和製作一開始就陷入昂貴的資金投入中。1982年,由飛利浦公司和索尼公司制定了CD-DA激光唱盤的紅皮書(Red Book)標准。由此,一種新型的激光唱盤誕生了。CD-DA激光唱盤記錄音響的方法與LD系統不同,CD-DA激光唱盤系統首先把模擬的音響信號進行PCM(脈沖編碼調制)數字化處理,再經過EMF(8~14位調制)編碼之後記錄到盤上。數字記錄代替模擬記錄的好處是,對干擾和雜訊不敏感,由於盤本身的缺陷、劃傷或沾污而引起的錯誤可以校正。

CD-DA系統取得成功以後,使飛利浦公司和索尼公司很自然地想到利用CD-DA作為計算機的大容量只讀存儲器。但要把CD-DA作為計算機的存儲器,還必須解決兩個重要問題,即建立適合於計算機讀寫的盤的數據結構,以及CD-DA誤碼率必須從現有的10-9降低到10-12以下,由此就產生了CD-ROM的黃皮書(Yellow Book)標准。這個標準的核心思想是,盤上的數據以數據塊的形式來組織,每塊都要有地址,這樣一來,盤上的數據就能從幾百兆位元組的存儲空間上被迅速找到。為了降低誤碼率,採用增加一種錯誤檢測和錯誤校正的方案。錯誤檢測採用了循環冗餘檢測碼,即所謂CRC,錯誤校正採用里德-索洛蒙(Reed Solomon)碼。黃皮書確立了CD-ROM的物理結構,而為了使其能在計算機上完全兼容,後來又制定了CD-ROM的文件系統標准,即ISO 9660。

在上世紀80年代中期,光碟的發展非常快,先後推出了WORM光碟、磁光碟(MO)、相變光碟(Phase Change Disk,PCD)等新品種。20世紀90年代,DVD-ROM、CD-R、CD-R/W等開始出現和普及,目前已成為計算機的標准存儲設備。

光碟技術進一步向高密度發展,藍光光碟是不久將推出的下一代高密度光碟。多層多階光碟和全息存儲光碟正在實驗室研究之中,可望在5年之內推向市場。

7.納米存儲

納米是一種長度單位,符號為nm。1納米=1毫微米,約為10個原子的長度。假設一根頭發的直徑為0.05毫米,把它徑向平均剖成5萬根,每根的厚度即約為1納米。與納米存儲有關的主要進展有如下內容。

1998年,美國明尼蘇達大學和普林斯頓大學制備成功量子磁碟,這種磁碟是由磁性納米棒組成的納米陣列體系。一個量子磁碟相當於我們現在的10萬~100萬個磁碟,而能源消耗卻降低了1萬倍。

1988年,法國人首先發現了巨磁電阻效應,到1997年,採用巨磁電阻原理的納米結構器件已在美國問世,它在磁存儲、磁記憶和計算機讀寫磁頭等方面均有廣闊的應用前景。

2002年9月,美國威斯康星州大學的科研小組宣布,他們在室溫條件下通過操縱單個原子,研製出原子級的硅記憶材料,其存儲信息的密度是目前光碟的100萬倍。這是納米存儲材料技術研究的一大進展。該小組發表在《納米技術》雜志上的研究報告稱,新的記憶材料構建在硅材料表面上。研究人員首先使金元素在硅材料表面升華,形成精確的原子軌道;然後再使硅元素升華,使其按上述原子軌道進行排列;最後,藉助於掃瞄隧道顯微鏡的探針,從這些排列整齊的硅原子中間隔抽出硅原子,被抽空的部分代表「0」,餘下的硅原子則代表「1」,這就形成了相當於計算機晶體管功能的原子級記憶材料。整個試驗研究在室溫條件下進行。研究小組負責人赫姆薩爾教授說,在室溫條件下,一次操縱一批原子進行排列並不容易。更為重要的是,記憶材料中硅原子排列線內的間隔是一個原子大小。這保證了記憶材料的原子級水平。赫姆薩爾教授說,新的硅記憶材料與目前硅存儲材料存儲功能相同,而不同之處在於,前者為原子級體積,利用其製造的計算機存儲材料體積更小、密度更大。這可使未來計算機微型化,且存儲信息的功能更為強大。

光纖應用領域:

計算機和微電子製造

用於各種不同的微電子製造工藝和數據儲存處理。

.圖像記錄和列印

用於所有形式的圖像處理和永久性圖像記錄。

.工業製造

用於傳統的工業製造和用作高功率二極體激光泵浦光源

.醫學用於醫學診斷和治療

.科學研究

用於科學研究,包括可調、窄帶寬系統,超快和高能量激光器和高功率泵浦光源。

.通信

用於通信市場上的有源和無源光電產品。

㈢ 全息存儲器容量的發展史

存儲器設備發展

1.存儲器設備發展之汞延遲線

汞延遲線是基於汞在室溫時是液體,同時又是導體,每比特數據用機械波的波峰(1)和波谷(0)表示。機械波從汞柱的一端開始,一定厚度的熔融態金屬汞通過一振動膜片沿著縱向從一端傳到另一端,這樣就得名「汞延遲線」。在管的另一端,一感測器得到每一比特的信息,並反饋到起點。設想是汞獲取並延遲這些數據,這樣它們便能存儲了。這個過程是機械和電子的奇妙結合。缺點是由於環境條件的限制,這種存儲器方式會受各種環境因素影響而不精確。

1950年,世界上第一台具有存儲程序功能的計算機EDVAC由馮.諾依曼博士領導設計。它的主要特點是採用二進制,使用汞延遲線作存儲器,指令和程序可存入計算機中。

1951年3月,由ENIAC的主要設計者莫克利和埃克特設計的第一台通用自動計算機UNIVAC-I交付使用。它不僅能作科學計算,而且能作數據處理。

2.存儲器設備發展之磁帶

UNIVAC-I第一次採用磁帶機作外存儲器,首先用奇偶校驗方法和雙重運算線路來提高系統的可靠性,並最先進行了自動編程的試驗。

磁帶是所有存儲器設備發展中單位存儲信息成本最低、容量最大、標准化程度最高的常用存儲介質之一。它互換性好、易於保存,近年來,由於採用了具有高糾錯能力的編碼技術和即寫即讀的通道技術,大大提高了磁帶存儲的可靠性和讀寫速度。根據讀寫磁帶的工作原理可分為螺旋掃描技術、線性記錄(數據流)技術、DLT技術以及比較先進的LTO技術。

根據讀寫磁帶的工作原理,磁帶機可以分為六種規格。其中兩種採用螺旋掃描讀寫方式的是面向工作組級的DAT(4mm)磁帶機和面向部門級的8mm磁帶機,另外四種則是選用數據流存儲技術設計的設備,它們分別是採用單磁頭讀寫方式、磁帶寬度為1/4英寸、面向低端應用的Travan和DC系列,以及採用多磁頭讀寫方式、磁帶寬度均為1/2英寸、面向高端應用的DLT和IBM的3480/3490/3590系列等。

磁帶庫是基於磁帶的備份系統,它能夠提供同樣的基本自動備份和數據恢復功能,但同時具有更先進的技術特點。它的存儲容量可達到數百PB,可以實現連續備份、自動搜索磁帶,也可以在驅動管理軟體控制下實現智能恢復、實時監控和統計,整個數據存儲備份過程完全擺脫了人工干涉。

磁帶庫不僅數據存儲量大得多,而且在備份效率和人工佔用方面擁有無可比擬的優勢。在網路系統中,磁帶庫通過SAN(Storage Area Network,存儲區域網路)系統可形成網路存儲系統,為企業存儲提供有力保障,很容易完成遠程數據訪問、數據存儲備份或通過磁帶鏡像技術實現多磁帶庫備份,無疑是數據倉庫、ERP等大型網路應用的良好存儲設備。

3.存儲器設備發展之磁鼓

1953年,隨著存儲器設備發展,第一台磁鼓應用於IBM 701,它是作為內存儲器使用的。磁鼓是利用鋁鼓筒表面塗覆的磁性材料來存儲數據的。鼓筒旋轉速度很高,因此存取速度快。它採用飽和磁記錄,從固定式磁頭發展到浮動式磁頭,從採用磁膠發展到採用電鍍的連續磁介質。這些都為後來的磁碟存儲器打下了基礎。

磁鼓最大的缺點是利用率不高, 一個大圓柱體只有表面一層用於存儲,而磁碟的兩面都利用來存儲,顯然利用率要高得多。 因此,當磁碟出現後,磁鼓就被淘汰了。

4.存儲器設備發展之磁芯

美國物理學家王安1950年提出了利用磁性材料製造存儲器的思想。福雷斯特則將這一思想變成了現實。

為了實現磁芯存儲,福雷斯特需要一種物質,這種物質應該有一個非常明確的磁化閾值。他找到在新澤西生產電視機用鐵氧體變換器的一家公司的德國老陶瓷專家,利用熔化鐵礦和氧化物獲取了特定的磁性質。

對磁化有明確閾值是設計的關鍵。這種電線的網格和芯子織在電線網上,被人稱為芯子存儲,它的有關專利對發展計算機非常關鍵。這個方案可靠並且穩定。磁化相對來說是永久的,所以在系統的電源關閉後,存儲的數據仍然保留著。既然磁場能以電子的速度來閱讀,這使互動式計算有了可能。更進一步,因為是電線網格,存儲陣列的任何部分都能訪問,也就是說,不同的數據可以存儲在電線網的不同位置,並且閱讀所在位置的一束比特就能立即存取。這稱為隨機存取存儲器(RAM),在存儲器設備發展歷程中它是互動式計算的革新概念。福雷斯特把這些專利轉讓給麻省理工學院,學院每年靠這些專利收到1500萬~2000萬美元。

最先獲得這些專利許可證的是IBM,IBM最終獲得了在北美防衛軍事基地安裝「旋風」的商業合同。更重要的是,自20世紀50年代以來,所有大型和中型計算機也採用了這一系統。磁芯存儲從20世紀50年代、60年代,直至70年代初,一直是計算機主存的標准方式。

5.存儲器設備發展之磁碟

世界第一台硬碟存儲器是由IBM公司在1956年發明的,其型號為IBM 350 RAMAC(Random Access Method of Accounting and Control)。這套系統的總容量只有5MB,共使用了50個直徑為24英寸的磁碟。1968年,IBM公司提出「溫徹斯特/Winchester」技術,其要點是將高速旋轉的磁碟、磁頭及其尋道機構等全部密封在一個無塵的封閉體中,形成一個頭盤組合件(HDA),與外界環境隔絕,避免了灰塵的污染,並採用小型化輕浮力的磁頭浮動塊,碟片表面塗潤滑劑,實行接觸起停,這是現代絕大多數硬碟的原型。1979年,IBM發明了薄膜磁頭,進一步減輕了磁頭重量,使更快的存取速度、更高的存儲密度成為可能。20世紀80年代末期,IBM公司又對存儲器設備發展作出一項重大貢獻,發明了MR(Magneto Resistive)磁阻磁頭,這種磁頭在讀取數據時對信號變化相當敏感,使得碟片的存儲密度比以往提高了數十倍。1991年,IBM生產的3.5英寸硬碟使用了MR磁頭,使硬碟的容量首次達到了1GB,從此,硬碟容量開始進入了GB數量級。IBM還發明了PRML(Partial Response Maximum Likelihood)的信號讀取技術,使信號檢測的靈敏度大幅度提高,從而可以大幅度提高記錄密度。

目前,硬碟的面密度已經達到每平方英寸100Gb以上,是容量、性價比最大的一種存儲設備。因而,在計算機的外存儲設備中,還沒有一種其他的存儲設備能夠在最近幾年中對其統治地位產生挑戰。硬碟不僅用於各種計算機和伺服器中,在磁碟陣列和各種網路存儲系統中,它也是基本的存儲單元。值得注意的是,近年來微硬碟的出現和快速發展為移動存儲提供了一種較為理想的存儲介質。在快閃記憶體晶元難以承擔的大容量移動存儲領域,微硬碟可大顯身手。目前尺寸為1英寸的硬碟,存儲容量已達4GB,10GB容量的1英寸硬碟不久也會面世。微硬碟廣泛應用於數碼相機、MP3設備和各種手持電子類設備。

另一種磁碟存儲設備是軟盤,從早期的8英寸軟盤、5.25英寸軟盤到3.5英寸軟盤,主要為數據交換和小容量備份之用。其中,3.5英寸1.44MB軟盤占據計算機的標准配置地位近20年之久,之後出現過24MB、100MB、200MB的高密度過渡性軟盤和軟碟機產品。然而,由於USB介面的快閃記憶體出現,軟盤作為數據交換和小容量備份的統治地位已經動搖,不久會退出存儲器設備發展歷史舞台。

6. 存儲器設備發展之光碟

光碟主要分為只讀型光碟和讀寫型光碟。只讀型指光碟上的內容是固定的,不能寫入、修改,只能讀取其中的內容。讀寫型則允許人們對光碟內容進行修改,可以抹去原來的內容,寫入新的內容。用於微型計算機的光碟主要有CD-ROM、CD-R/W和DVD-ROM等幾種。

上世紀60年代,荷蘭飛利浦公司的研究人員開始使用激光光束進行記錄和重放信息的研究。1972年,他們的研究獲得了成功,1978年投放市場。最初的產品就是大家所熟知的激光視盤(LD,Laser Vision Disc)系統。

從LD的誕生至計算機用的CD-ROM,經歷了三個階段,即LD-激光視盤、CD-DA激光唱盤、CD-ROM。下面簡單介紹這三個存儲器設備發展階段性的產品特點。

LD-激光視盤,就是通常所說的LCD,直徑較大,為12英寸,兩面都可以記錄信息,但是它記錄的信號是模擬信號。模擬信號的處理機制是指,模擬的電視圖像信號和模擬的聲音信號都要經過FM(Frequency Molation)頻率調制、線性疊加,然後進行限幅放大。限幅後的信號以0.5微米寬的凹坑長短來表示。

CD-DA激光唱盤 LD雖然取得了成功,但由於事先沒有制定統一的標准,使它的開發和製作一開始就陷入昂貴的資金投入中。1982年,由飛利浦公司和索尼公司制定了CD-DA激光唱盤的紅皮書(Red Book)標准。由此,一種新型的激光唱盤誕生了。CD-DA激光唱盤記錄音響的方法與LD系統不同,CD-DA激光唱盤系統首先把模擬的音響信號進行PCM(脈沖編碼調制)數字化處理,再經過EMF(8~14位調制)編碼之後記錄到盤上。數字記錄代替模擬記錄的好處是,對干擾和雜訊不敏感,由於盤本身的缺陷、劃傷或沾污而引起的錯誤可以校正。

CD-DA系統取得成功以後,使飛利浦公司和索尼公司很自然地想到利用CD-DA作為計算機的大容量只讀存儲器。但要把CD-DA作為計算機的存儲器,還必須解決兩個重要問題,即建立適合於計算機讀寫的盤的數據結構,以及CD-DA誤碼率必須從現有的10-9降低到10-12以下,由此就產生了CD-ROM的黃皮書(Yellow Book)標准。這個標準的核心思想是,盤上的數據以數據塊的形式來組織,每塊都要有地址,這樣一來,盤上的數據就能從幾百兆位元組的存儲空間上被迅速找到。為了降低誤碼率,採用增加一種錯誤檢測和錯誤校正的方案。錯誤檢測採用了循環冗餘檢測碼,即所謂CRC,錯誤校正採用里德-索洛蒙(Reed Solomon)碼。黃皮書確立了CD-ROM的物理結構,而為了使其能在計算機上完全兼容,後來又制定了CD-ROM的文件系統標准,即ISO 9660。

在上世紀80年代中期,光碟存儲器設備發展速度非常快,先後推出了WORM光碟、磁光碟(MO)、相變光碟(Phase Change Disk,PCD)等新品種。20世紀90年代,DVD-ROM、CD-R、CD-R/W等開始出現和普及,目前已成為計算機的標准存儲設備。

光碟技術進一步向高密度發展,藍光光碟是不久將推出的下一代高密度光碟。多層多階光碟和全息存儲光碟正在實驗室研究之中,可望在5年之內推向市場。

7.存儲器設備發展之納米存儲

納米是一種長度單位,符號為nm。1納米=1毫微米,約為10個原子的長度。假設一根頭發的直徑為0.05毫米,把它徑向平均剖成5萬根,每根的厚度即約為1納米。與納米存儲有關的主要進展有如下內容。

1998年,美國明尼蘇達大學和普林斯頓大學制備成功量子磁碟,這種磁碟是由磁性納米棒組成的納米陣列體系。一個量子磁碟相當於我們現在的10萬~100萬個磁碟,而能源消耗卻降低了1萬倍。

1988年,法國人首先發現了巨磁電阻效應,到1997年,採用巨磁電阻原理的納米結構器件已在美國問世,它在磁存儲、磁記憶和計算機讀寫磁頭等方面均有廣闊的應用前景。

2002年9月,美國威斯康星州大學的科研小組宣布,他們在室溫條件下通過操縱單個原子,研製出原子級的硅記憶材料,其存儲信息的密度是目前光碟的100萬倍。這是納米存儲材料技術研究的一大進展。該小組發表在《納米技術》雜志上的研究報告稱,新的記憶材料構建在硅材料表面上。研究人員首先使金元素在硅材料表面升華,形成精確的原子軌道;然後再使硅元素升華,使其按上述原子軌道進行排列;最後,藉助於掃瞄隧道顯微鏡的探針,從這些排列整齊的硅原子中間隔抽出硅原子,被抽空的部分代表「0」,餘下的硅原子則代表「1」,這就形成了相當於計算機晶體管功能的原子級記憶材料。整個試驗研究在室溫條件下進行。研究小組負責人赫姆薩爾教授說,在室溫條件下,一次操縱一批原子進行排列並不容易。更為重要的是,記憶材料中硅原子排列線內的間隔是一個原子大小。這保證了記憶材料的原子級水平。赫姆薩爾教授說,新的硅記憶材料與目前硅存儲材料存儲功能相同,而不同之處在於,前者為原子級體積,利用其製造的計算機存儲材料體積更小、密度更大。這可使未來計算機微型化,且存儲信息的功能更為強大。

㈣ 信息儲存技術的發展過程

,信息儲存技術的發展過程:
1,原始社會,人們用結繩記事,或者把各種信息雕刻在石頭等物體上面
2,在奴隸社會,人們在石頭、陶器、木板、竹片等物體上面雕刻信息,這一時期有了最原始的文字,人們可以在皮革和織物、木板、竹片等上面書寫信息。
3,再後來,發明了紙張,人們用紙張來儲存信息。
4,到了近代,人們發明了照相機,於是可以用膠片來存儲信息。同一時期,人們發現了電磁感應現象,開始利用物體電磁感應的規律製造出象磁帶、唱片等來存儲信息。並且在後來進一步發展了這一技術。象現在的大容量硬碟、快閃記憶體晶元、優盤等都是基於這一原理。
5,在20世紀70年代,人們發現了使用激光來存儲信息的方式,這就是我們今天常見到的各種光碟了。


信息儲存技術:是將經過加工整理序化後的信息按照一定的格式和順序存儲在特定的載體中的一種信息活動。其目的是為了便於信息管理者和信息用戶快速地、准確地識別、定位和檢索信息。

㈤ 我國計算機的發展歷程

我國的計算機發展歷程

華羅庚和我國第一個計算機科研小組

華羅庚教授是我國計算技術的奠基人和最主要的開拓者之一。當馮·諾依曼開創性地提出並著手設計存儲程序通用電子計算機EDVAC時,正在美國Princeton大學工作的華羅庚教授參觀過他的實驗室,並經常與他討論有關學術問題,華羅庚教授1950年回國,1952年在全國大學院系調整時,他從清華大學電機系物色了閔乃大、夏培肅和王傳英三位科研人員在他任所長的中國科學院數學所內建立了中國第一個電子計算機科研小組。1956年籌建中科院計算技術研究所時,華羅庚教授擔任籌備委員會主任。

第一代電子管計算機研製(1958-1964年)

我國從1957年開始研製通用數字電子計算機,1958年8月1日該機可以表演短程序運行,標志著我國第一台電子計算機誕生。為紀念這個日子,該機定名為八一型數字電子計算機。該機在738廠開始小量生產,改名為103型計算機(即DJS-1型),共生產38台。

1958年5月我國開始了第一台大型通用電子計算機(104機)研製,以前蘇聯當時正在研製的БЭСМ-II計算機為藍本,在前蘇聯專家的指導幫助下,中科院計算所、四機部、七機部和部隊的科研人員與738廠密切配合,於1959年國慶節前完成了研製任務。

在研製104機同時,夏培肅院士領導的科研小組首次自行設計於1960年4月研製成功一台小型通用電子計算機-107機。

1964年我國第一台自行設計的大型通用數字電子管計算機119機研製成功,平均浮點運算速度每秒5萬次,參加119機研製的科研人員約有250人,有十幾個單位參與協作。

第二代晶體管計算機研製(1965-1972年)

我國在研製第一代電子管計算機的同時,已開始研製晶體管計算機,1965年研製成功的我國第一台大型晶體管計算機(109乙機)實際上從1958年起計算所就開始醞釀啟動。在國外禁運條件下要造晶體管計算機,必須先建立一個生產晶體管的半導體廠(109廠)。經過兩年努力,109廠就提供了機器所需的全部晶體管(109乙機共用2萬多支晶體管,3萬多支二極體)。對109乙機加以改進,兩年後又推出109丙機,為用戶運行了15年,有效算題時間10萬小時以上,在我國兩彈試驗中發揮了重要作用,被用戶譽為「功勛機」。

我國工業部門在第二代晶體管計算機研製與生產中已發揮重要作用。華北計算所先後研製成功108機、108乙機(DJS-6)、121機(DJS-21)和320機(DJS-6),並在738廠等五家工廠生產。哈軍工(國防科大前身)於1965年2月成功推出了441B晶體管計算機並小批量生產了40多台。

第三代基於中小規模集成電路的計算機研製(1973-80年代初)

我國第三代計算機的研製受到文化大革命的沖擊。IBM公司1964年推出360系列大型機是美國進入第三代計算機時代的標志,我國到1970年初期才陸續推出大、中、小型採用集成電路的計算機。1973年,北京大學與北京有線電廠等單位合作研製成功運算速度每秒100萬次的大型通用計算機。進入80年代,我國高速計算機,特別是向量計算機有新的發展。1983年中國科學院計算所完成我國第一台大型向量機-757機,計算速度達到每秒1000萬次。

這一記錄同年就被國防科大研製的銀河-I億次巨型計算機打破。銀河-I巨型機是我國高速計算機研製的一個重要里程碑,它標志著我國文革動亂時期與國外拉大的距離又縮小到7年左右(銀河-I的參考機克雷-1於1976年推出)。

第四代基於超大規模集成電路的計算機研製(80年代中期至今)

和國外一樣,我國第四代計算機研製也是從微機開始的。1980年初我國不少單位也開始採用Z80,X86和M6800晶元研製微機。1983年12電子部六所研製成功與IBM PC機兼容的DJS-0520微機。10多年來我國微機產業走過了一段不平凡道路,現在以聯想微機為代表的國產微機已佔領一大半國內市場。

1992年國防科大研究成功銀河-II通用並行巨型機,峰值速度達每秒4億次浮點運算(相當於每秒10億次基本運算操作),總體上達到80年代中後期國際先進水平。

從90年代初開始,國際上採用主流的微處理機晶元研製高性能並行計算機已成為一種發展趨勢。國家智能計算機研究開發中心於1993年研製成功曙光一號全對稱共享存儲多處理機。1995年,國家智能機中心又推出了國內第一台具有大規模並行處理機(MPP)結構的並行機曙光1000(含36個處理機),峰值速度每秒25億次浮點運算,實際運算速度上了每秒10億次浮點運算這一高性能台階。

1997年國防科大研製成功銀河-III百億次並行巨型計算機系統,採用可擴展分布共享存儲並行處理體系結構,由130多個處理結點組成,峰值性能為每秒130億次浮點運算,系統綜合技術達到90年代中期國際先進水平。

國家智能機中心與曙光公司於1997至1999年先後在市場上推出具有機群結構的曙光1000A,曙光2000-I,曙光2000-II超級伺服器,峰值計算速度已突破每秒1000億次浮點運算,機器規模已超過160個處理機,2000年推出每秒浮點運算速度3000億次的曙光3000超級伺服器。2004年上半年推出每秒浮點運算速度1萬億次的曙光4000超級伺服器。

綜觀40多年來我國高性能通用計算機的研製歷程,從103機到曙光機,走過了一段不平凡的歷程。總的來講,國內外標志性計算機推出的時間,其中國外的代表性機器為ENIAC,IBM 7090,IBM 360,CRAY-1,Intel Paragon,IBM SP-2,國內的代表性計算機為103,109乙,150,銀河-I,曙光1000,曙光2000。

㈥ 當前存儲器系統的發展概況

發展趨勢

存儲器的發展都具有更大、更小、更低的趨勢,這在閃速存儲器行業表現得尤為淋漓盡致。隨著半導體製造工藝的發展,主流閃速存儲器廠家採用0�18μm,甚至0.15μm的製造工藝。藉助於先進工藝的優勢,Flash Memory的容量可以更大:NOR技術將出現256Mb的器件,NAND和AND技術已經有1Gb的器件;同時晶元的封裝尺寸更小:從最初DIP封裝,到PSOP、SSOP、TSOP封裝,再到BGA封裝,Flash Memory已經變得非常纖細小巧;先進的工藝技術也決定了存儲器的低電壓的特性,從最初12V的編程電壓,一步步下降到5V、3.3V、2�7V、1.8V單電壓供電。這符合國際上低功耗的潮流,更促進了攜帶型產品的發展。

另一方面,新技術、新工藝也推動Flash Memory的位成本大幅度下降:採用NOR技術的Intel公司的28F128J3價格為25美元,NAND技術和AND技術的Flash Memory將突破1MB 1美元的價位,使其具有了取代傳統磁碟存儲器的潛質。

世界閃速存儲器市場發展十分迅速,其規模接近DRAM市場的1/4,與DRAM和SRAM一起成為存儲器市場的三大產品。Flash Memory的迅猛發展歸因於資金和技術的投入,高性能低成本的新產品不斷涌現,刺激了Flash Memory更廣泛的應用,推動了行業的向前發展。

㈦ 中國計算機的主要發展歷程(側重比較有里程碑的事件和設備出現事件)

計算機發展歷程
計算機是新技術革命的一支主力,也是推動社會向現代化邁進的活躍因素。計算機科學與技術是第二次世界大戰以來發展最快、影響最為深遠的新興學科之一。計算機產業已在世界范圍內發展成為一種極富生命力的戰略產業。

現代計算機是一種按程序自動進行信息處理的通用工具,它的處理對象是信息,處理結果也是信息。利用計算機解決科學計算、工程設計、經營管理、過程式控制制或人工智慧等各種問題的方法,都是按照一定的演算法進行的。這種演算法是定義精確的一系列規則,它指出怎樣以給定的輸入信息經過有限的步驟產生所需要的輸出信息。

信息處理的一般過程,是計算機使用者針對待解抉的問題,事先編製程序並存入計算機內,然後利用存儲程序指揮、控制計算機自動進行各種基本操作,直至獲得預期的處理結果。計算機自動工作的基礎在於這種存儲程序方式,其通用性的基礎則在於利用計算機進行信息處理的共性方法。

計算機的歷史

現代計算機的誕生和發展 現代計算機問世之前,計算機的發展經歷了機械式計算機、機電式計算機和萌芽期的電子計算機三個階段。

早在17世紀,歐洲一批數學家就已開始設計和製造以數字形式進行基本運算的數字計算機。1642年,法國數學家帕斯卡採用與鍾表類似的齒輪傳動裝置,製成了最早的十進制加法器。1678年,德國數學家萊布尼茲製成的計算機,進一步解決了十進制數的乘、除運算。

英國數學家巴貝奇在1822年製作差分機模型時提出一個設想,每次完成一次算術運算將發展為自動完成某個特定的完整運算過程。1884年,巴貝奇設計了一種程序控制的通用分析機。這台分析機雖然已經描繪出有關程序控制方式計算機的雛型,但限於當時的技術條件而未能實現。

巴貝奇的設想提出以後的一百多年期間,電磁學、電工學、電子學不斷取得重大進展,在元件、器件方面接連發明了真空二極體和真空三極體;在系統技術方面,相繼發明了無線電報、電視和雷達……。所有這些成就為現代計算機的發展准備了技術和物質條件。

與此同時,數學、物理也相應地蓬勃發展。到了20世紀30年代,物理學的各個領域經歷著定量化的階段,描述各種物理過程的數學方程,其中有的用經典的分析方法已根難解決。於是,數值分析受到了重視,研究出各種數值積分,數值微分,以及微分方程數值解法,把計算過程歸結為巨量的基本運算,從而奠定了現代計算機的數值演算法基礎。

社會上對先進計算工具多方面迫切的需要,是促使現代計算機誕生的根本動力。20世紀以後,各個科學領域和技術部門的計算困難堆積如山,已經阻礙了學科的繼續發展。特別是第二次世界大戰爆發前後,軍事科學技術對高速計算工具的需要尤為迫切。在此期間,德國、美國、英國部在進行計算機的開拓工作,幾乎同時開始了機電式計算機和電子計算機的研究。

德國的朱賽最先採用電氣元件製造計算機。他在1941年製成的全自動繼電器計算機Z-3,已具備浮點記數、二進制運算、數字存儲地址的指令形式等現代計算機的特徵。在美國,1940~1947年期間也相繼製成了繼電器計算機MARK-1、MARK-2、Model-1、Model-5等。不過,繼電器的開關速度大約為百分之一秒,使計算機的運算速度受到很大限制。

電子計算機的開拓過程,經歷了從製作部件到整機從專用機到通用機、從「外加式程序」到「存儲程序」的演變。1938年,美籍保加利亞學者阿塔納索夫首先製成了電子計算機的運算部件。1943年,英國外交部通信處製成了「巨人」電子計算機。這是一種專用的密碼分析機,在第二次世界大戰中得到了應用。

1946年2月美國賓夕法尼亞大學莫爾學院製成的大型電子數字積分計算機(ENIAC),最初也專門用於火炮彈道計算,後經多次改進而成為能進行各種科學計算的通用計算機。這台完全採用電子線路執行算術運算、邏輯運算和信息存儲的計算機,運算速度比繼電器計算機快1000倍。這就是人們常常提到的世界上第一台電子計算機。但是,這種計算機的程序仍然是外加式的,存儲容量也太小,尚未完全具備現代計算機的主要特徵。

新的重大突破是由數學家馮·諾伊曼領導的設計小組完成的。1945年3月他們發表了一個全新的存儲程序式通用電子計算機方案—電子離散變數自動計算機(EDVAC)。隨後於1946年6月,馮·諾伊曼等人提出了更為完善的設計報告《電子計算機裝置邏輯結構初探》。同年7~8月間,他們又在莫爾學院為美國和英國二十多個機構的專家講授了專門課程《電子計算機設計的理論和技術》,推動了存儲程序式計算機的設計與製造。

1949年,英國劍橋大學數學實驗室率先製成電子離散時序自動計算機(EDSAC);美國則於1950年製成了東部標准自動計算機(SFAC)等。至此,電子計算機發展的萌芽時期遂告結束,開始了現代計算機的發展時期。

在創制數字計算機的同時,還研製了另一類重要的計算工具——模擬計算機。物理學家在總結自然規律時,常用數學方程描述某一過程;相反,解數學方程的過程,也有可能採用物理過程模擬方法,對數發明以後,1620年製成的計算尺,己把乘法、除法化為加法、減法進行計算。麥克斯韋巧妙地把積分(面積)的計算轉變為長度的測量,於1855年製成了積分儀。

19世紀數學物理的另一項重大成就——傅里葉分析,對模擬機的發展起到了直接的推動作用。19世紀後期和20世紀前期,相繼製成了多種計算傅里葉系數的分析機和解微分方程的微分分析機等。但是當試圖推廣微分分析機解偏微分方程和用模擬機解決一般科學計算問題時,人們逐漸認識到模擬機在通用性和精確度等方面的局限性,並將主要精力轉向了數字計算機。

電子數字計算機問世以後,模擬計算機仍然繼續有所發展,並且與數字計算機相結合而產生了混合式計算機。模擬機和混合機已發展成為現代計算機的特殊品種,即用在特定領域的高效信息處理工具或模擬工具。

20世紀中期以來,計算機一直處於高速度發展時期,計算機由僅包含硬體發展到包含硬體、軟體和固件三類子系統的計算機系統。計算機系統的性能—價格比,平均每10年提高兩個數量級。計算機種類也一再分化,發展成微型計算機、小型計算機、通用計算機(包括巨型、大型和中型計算機),以及各種專用機(如各種控制計算機、模擬—數字混合計算機)等。

計算機器件從電子管到晶體管,再從分立元件到集成電路以至微處理器,促使計算機的發展出現了三次飛躍。

在電子管計算機時期(1946~1959),計算機主要用於科學計算。主存儲器是決定計算機技術面貌的主要因素。當時,主存儲器有水銀延遲線存儲器、陰極射線示波管靜電存儲器、磁鼓和磁心存儲器等類型,通常按此對計算機進行分類。

到了晶體管計算機時期(1959~1964),主存儲器均採用磁心存儲器,磁鼓和磁碟開始用作主要的輔助存儲器。不僅科學計算用計算機繼續發展,而且中、小型計算機,特別是廉價的小型數據處理用計算機開始大量生產。

1964年,在集成電路計算機發展的同時,計算機也進入了產品系列化的發展時期。半導體存儲器逐步取代了磁心存儲器的主存儲器地位,磁碟成了不可缺少的輔助存儲器,並且開始普遍採用虛擬存儲技術。隨著各種半導體只讀存儲器和可改寫的只讀存儲器的迅速發展,以及微程序技術的發展和應用,計算機系統中開始出現固件子系統。

20世紀70年代以後,計算機用集成電路的集成度迅速從中小規模發展到大規模、超大規模的水平,微處理器和微型計算機應運而生,各類計算機的性能迅速提高。隨著字長4位、8位、16位、32位和64位的微型計算機相繼問世和廣泛應用,對小型計算機、通用計算機和專用計算機的需求量也相應增長了。

微型計算機在社會上大量應用後,一座辦公樓、一所學校、一個倉庫常常擁有數十台以至數百台計算機。實現它們互連的局部網隨即興起,進一步推動了計算機應用系統從集中式系統向分布式系統的發展。

在電子管計算機時期,一些計算機配置了匯編語言和子程序庫,科學計算用的高級語言FORTRAN初露頭角。在晶體管計算機階段,事務處理的COBOL語言、科學計算機用的ALGOL語言,和符號處理用的LISP等高級語言開始進入實用階段。操作系統初步成型,使計算機的使用方式由手工操作改變為自動作業管理。

進入集成電路計算機發展時期以後,在計算機中形成了相當規模的軟體子系統,高級語言種類進一步增加,操作系統日趨完善,具備批量處理、分時處理、實時處理等多種功能。資料庫管理系統、通信處理程序、網路軟體等也不斷增添到軟體子系統中。軟體子系統的功能不斷增強,明顯地改變了計算機的使用屬性,使用效率顯著提高。

在現代計算機中,外圍設備的價值一般已超過計算機硬體子系統的一半以上,其技術水平在很大程度上決定著計算機的技術面貌。外圍設備技術的綜合性很強,既依賴於電子學、機械學、光學、磁學等多門學科知識的綜合,又取決於精密機械工藝、電氣和電子加工工藝以及計量的技術和工藝水平等。

外圍設備包括輔助存儲器和輸入輸出設備兩大類。輔助存儲器包括磁碟、磁鼓、磁帶、激光存儲器、海量存儲器和縮微存儲器等;輸入輸出設備又分為輸入、輸出、轉換、、模式信息處理設備和終端設備。在這些品種繁多的設備中,對計算機技術面貌影響最大的是磁碟、終端設備、模式信息處理設備和轉換設備等。

新一代計算機是把信息採集存儲處理、通信和人工智慧結合在一起的智能計算機系統。它不僅能進行一般信息處理,而且能面向知識處理,具有形式化推理、聯想、學習和解釋的能力,將能幫助人類開拓未知的領域和獲得新的知識。

計算技術在中國的發展 在人類文明發展的歷史上中國曾經在早期計算工具的發明創造方面寫過光輝的一頁。遠在商代,中國就創造了十進制記數方法,領先於世界千餘年。到了周代,發明了當時最先進的計算工具——算籌。這是一種用竹、木或骨製成的顏色不同的小棍。計算每一個數學問題時,通常編出一套歌訣形式的演算法,一邊計算,一邊不斷地重新布棍。中國古代數學家祖沖之,就是用算籌計算出圓周率在3.1415926和3.1415927之間。這一結果比西方早一千年。

珠算盤是中國的又一獨創,也是計算工具發展史上的第一項重大發明。這種輕巧靈活、攜帶方便、與人民生活關系密切的計算工具,最初大約出現於漢朝,到元朝時漸趨成熟。珠算盤不僅對中國經濟的發展起過有益的作用,而且傳到日本、朝鮮、東南亞等地區,經受了歷史的考驗,至今仍在使用。

中國發明創造指南車、水運渾象儀、記里鼓車、提花機等,不僅對自動控制機械的發展有卓越的貢獻,而且對計算工具的演進產生了直接或間接的影響。例如,張衡製作的水運渾象儀,可以自動地與地球運轉同步,後經唐、宋兩代的改進,遂成為世界上最早的天文鍾。

記里鼓車則是世界上最早的自動計數裝置。提花機原理劉計算機程序控制的發展有過間接的影響。中國古代用陽、陰兩爻構成八卦,也對計算技術的發展有過直接的影響。萊布尼茲寫過研究八卦的論文,系統地提出了二進制算術運演算法則。他認為,世界上最早的二進製表示法就是中國的八卦。

經過漫長的沉寂,新中國成立後,中國計算技術邁入了新的發展時期,先後建立了研究機構,在高等院校建立了計算技術與裝置專業和計算數學專業,並且著手創建中國計算機製造業。

1958年和1959年,中國先後製成第一台小型和大型電子管計算機。60年代中期,中國研製成功一批晶體管計算機,並配製了ALGOL等語言的編譯程序和其他系統軟體。60年代後期,中國開始研究集成電路計算機。70年代,中國已批量生產小型集成電路計算機。80年代以後,中國開始重點研製微型計算機系統並推廣應用;在大型計算機、特別是巨型計算機技術方面也取得了重要進展;建立了計算機服務業,逐步健全了計算機產業結構。

在計算機科學與技術的研究方面,中國在有限元計算方法、數學定理的機器證明、漢字信息處理、計算機系統結構和軟體等方面都有所建樹。在計算機應用方面,中國在科學計算與工程設計領域取得了顯著成就。在有關經營管理和過程式控制制等方面,計算機應用研究和實踐也日益活躍。

計算機科學與技術

計算機科學與技術是一門實用性很強、發展極其迅速的面向廣大社會的技術學科,它建立在數學、電子學 (特別是微電子學)、磁學、光學、精密機械等多門學科的基礎之上。但是,它並不是簡單地應用某些學科的知識,而是經過高度綜合形成一整套有關信息表示、變換、存儲、處理、控制和利用的理論、方法和技術。

計算機科學是研究計算機及其周圍各種現象與規模的科學,主要包括理論計算機科學、計算機系統結構、軟體和人工智慧等。計算機技術則泛指計算機領域中所應用的技術方法和技術手段,包括計算機的系統技術、軟體技術、部件技術、器件技術和組裝技術等。計算機科學與技術包括五個分支學科,即理論計算機科學、計算機系統結構、計算機組織與實現、計算機軟體和計算機應用。

理論計算機學 是研究計算機基本理論的學科。在幾千年的數學發展中,人們研究了各式各樣的計算,創立了許多演算法。但是,以計算或演算法本身的性質為研究對象的數學理論,卻是在20世紀30年代才發展起來的。

當時,由幾位數理邏輯學者建立的演算法理論,即可計算性理論或稱遞歸函數論,對20世紀40年代現代計算機設計思想的形成產生過影響。此後,關於現實計算機及其程序的數學模型性質的研究,以及計算復雜性的研究等不斷有所發展。

理論計算機科學包括自動機論、形式語言理論、程序理論、演算法分析,以及計算復雜性理論等。自動機是現實自動計算機的數學模型,或者說是現實計算機程序的模型,自動機理論的任務就在於研究這種抽象機器的模型;程序設計語言是一種形式語言,形式語言理論根據語言表達能力的強弱分為O~3型語言,與圖靈機等四類自動機逐一對應;程序理論是研究程序邏輯、程序復雜性、程序正確性證明、程序驗證、程序綜合、形式語言學,以及程序設計方法的理論基礎;演算法分析研究各種特定演算法的性質。計算復雜性理論研究演算法復雜性的一般性質。

計算機系統結構 程序設計者所見的計算機屬性,著重於計算機的概念結構和功能特性,硬體、軟體和固件子系統的功能分配及其界面的確定。使用高級語言的程序設計者所見到的計算機屬性,主要是軟體子系統和固件子系統的屬性,包括程序語言以及操作系統、資料庫管理系統、網路軟體等的用戶界面。使用機器語言的程序設計者所見到的計算機屬性,則是硬體子系統的概念結構(硬體子系統結構)及其功能特性,包括指令系統(機器語言),以及寄存器定義、中斷機構、輸入輸出方式、機器工作狀態等。

硬體子系統的典型結構是馮·諾伊曼結構,它由運算器控制器、存儲器和輸入、輸出設備組成,採用「指令驅動」方式。當初,它是為解非線性、微分方程而設計的,並未預見到高級語言、操作系統等的出現,以及適應其他應用環境的特殊要求。在相當長的一段時間內,軟體子系統都是以這種馮·諾伊曼結構為基礎而發展的。但是,其間不相適應的情況逐漸暴露出來,從而推動了計算機系統結構的變革。

計算機組織與實現 是研究組成計算機的功能、部件間的相互連接和相互作用,以及有關計算機實現的技術,均屬於計算機組織與實現的任務。

在計算機系統結構確定分配給硬子系統的功能及其概念結構之後,計算機組織的任務就是研究各組成部分的內部構造和相互聯系,以實現機器指令級的各種功能和特性。這種相互聯系包括各功能部件的布置、相互連接和相互作用。

隨著計算機功能的擴展和性能的提高,計算機包含的功能部件也日益增多,其間的互連結構日趨復雜。現代已有三類互連方式,分別以中央處理器、存儲器或通信子系統為中心,與其他部件互連。以通信子系統為中心的組織方式,使計算機技術與通信技術緊密結合,形成了計算機網路、分布計算機系統等重要的計算機研究與應用領域。

與計算實現有關的技術范圍相當廣泛,包括計算機的元件、器件技術,數字電路技術,組裝技術以及有關的製造技術和工藝等。

軟體 軟體的研究領域主要包括程序設計、基礎軟體、軟體工程三個方面。程序設計指設計和編製程序的過程,是軟體研究和發展的基礎環節。程序設計研究的內容,包括有關的基本概念、規范、工具、方法以及方法學等。這個領域發展的特點是:從順序程序設計過渡到並發程序設計和分幣程序設計;從非結構程序設計方法過渡到結構程序設計方法;從低級語言工具過渡到高級語言工具;從具體方法過渡到方法學。

基礎軟體指計算機系統中起基礎作用的軟體。計算機的軟體子系統可以分為兩層:靠近硬體子系統的一層稱為系統軟體,使用頻繁,但與具體應用領域無關;另一層則與具體應用領域直接有關,稱為應用軟體;此外還有支援其他軟體的研究與維護的軟體,專門稱為支援軟體。

軟體工程是採用工程方法研究和維護軟體的過程,以及有關的技術。軟體研究和維護的全過程,包括概念形成、要求定義、設計、實現、調試、交付使用,以及有關校正性、適應性、完善性等三層意義的維護。軟體工程的研究內容涉及上述全過程有關的對象、結構、方法、工具和管理等方面。

軟體目動研究系統的任務是:在軟體工程中採用形式方法:使軟體研究與維護過程中的各種工作盡可能多地由計算機自動完成;創造一種適應軟體發展的軟體、固件與硬體高度綜合的高效能計算機。

計算機產業

計算機產業包括兩大部門,即計算機製造業和計算機服務業。後者又稱為信息處理產業或信息服務業。計算機產業是一種省能源、省資源、附加價值高、知識和技術密集的產業,對於國民經濟的發展、國防實力和社會進步均有巨大影響。因此,不少國家採取促進計算機產業興旺發達的政策。

計算機製造業包括生產各種計算機系統、外圍設備終端設備,以及有關裝置、元件、器件和材料的製造。計算機作為工業產品,要求產品有繼承性,有很高的性能-價格比和綜合性能。計算機的繼承性特別體現在軟體兼容性方面,這能使用戶和廠家把過去研製的軟體用在新產品上,使價格很高的軟體財富繼續發揮作用,減少用戶再次研製軟體的時間和費用。提高性能-價格比是計算機產品更新的目標和動力。

計算機製造業提供的計算機產品,一般僅包括硬體子系統和部分軟體子系統。通常,軟體子系統中缺少適應各種特定應用環境的應用軟體。為了使計算機在特定環境中發揮效能,還需要設計應用系統和研製應用軟體此外,計算機的運行和維護,需要有掌握專業知識的技術人員,這常常是一股用戶所作不到的。

針對這些社會需要,一些計算機製造廠家十分重視向用戶提供各種技術服務和銷售服務。一些獨立於計算機製造廠家的計算機服務機構,也在50年代開始出現。到60年代末期,計算機服務業在世界范圍內已形成為獨立的行業。

計算機的發展與應用

計算機科學與技術的各門學科相結合,改進了研究工具和研究方法,促進了各門學科的發展。過去,人們主要通過實驗和理論兩種途徑進行科學技術研究。現在,計算和模擬已成為研究工作的第三條途徑。

計算機與有關的實驗觀測儀器相結合,可對實驗數據進行現場記錄、整理、加工、分析和繪制圖表,顯著地提高實驗工作的質量和效率。計算機輔助設計已成為工程設計優質化、自動化的重要手段。在理論研究方面,計算機是人類大腦的延伸,可代替人腦的若干功能並加以強化。古老的數學靠紙和筆運算,現在計算機成了新的工具,數學定理證明之類的繁重腦力勞動,已可能由計算機來完成或部分完成。

計算和模擬作為一種新的研究手段,常使一些學科衍生出新的分支學科。例如,空氣動力學、氣象學、彈性結構力學和應用分析等所面臨的「計算障礙」,在有了高速計算機和有關的計算方法之後開始有所突破,並衍生出計算空氣動力學、氣象數值預報等邊緣分支學科。利用計算機進行定量研究,不僅在自然科學中發揮了重大的作用,在社會科學和人文學科中也是如此。例如,在人口普查、社會調查和自然語言研究方面,計算機就是一種很得力的工具。

計算機在各行各業中的廣泛應用,常常產生顯著的經濟效益和社會效益,從而引起產業結構、產品結構、經營管理和服務方式等方面的重大變革。在產業結構中已出觀了計算機製造業和計算機服務業,以及知識產業等新的行業。

微處理器和微計算機已嵌入機電設備、電子設備、通信設備、儀器儀表和家用電器中,使這些產品向智能化方向發展。計算機被引入各種生產過程系統中,使化工、石油、鋼鐵、電力、機械、造紙、水泥等生產過程的自動化水平大大提高,勞動生產率上升、質量提高、成本下降。計算機嵌入各種武器裝備和武器系統干,可顯著提高其作戰效果。

經營管理方面,計算機可用於完成統計、計劃、查詢、庫存管理、市場分析、輔助決策等,使經營管理工作科學化和高效化,從而加速資金周轉,降低庫存水準,改善服務質量,縮短新產品研製周期,提高勞動生產率。在辦公室自動化方面,計算機可用於文件的起草、檢索和管理等,顯著提高辦公效率。

計算機還是人們的學習工具和生活工具。藉助家用計算機、個人計算機、計算機網、資料庫系統和各種終端設備,人們可以學習各種課程,獲取各種情報和知識,處理各種生活事務(如訂票、購物、存取款等),甚至可以居家辦公。越來越多的人的工作、學習和生活中將與計算機發生直接的或間接的聯系。普及計算機教育已成為一個重要的問題。

總之,計算機的發展和應用已不僅是一種技術現象而且是一種政治、經濟、軍事和社會現象。世界各國都力圖主動地駕馭這種社會計算機化和信息化的進程,克服計算機化過程中可能出現的消極因素,更順利地向高智能化方向發展。

㈧ 存儲技術發展歷史

最早的外置存儲器可以追溯到19世紀末。為了解決人口普查的需要,霍列瑞斯首先把穿孔紙帶改造成穿孔卡片。

他把每個人所有的調查項目依次排列於一張卡片,然後根據調查結果在相應項目的位置上打孔。在以後的計算機系統里,用穿孔卡片輸入數據的方法一直沿用到20世紀70年代,數據處理也發展成為電腦的主要功能之一。

2、磁帶

UNIVAC-I第一次採用磁帶機作外存儲器,首先用奇偶校驗方法和雙重運算線路來提高系統的可靠性,並最先進行了自動編程的試驗。此時這個磁帶長達1200英寸、包含8個磁軌,每英寸可存儲128bits,每秒可記錄12800個字元,容量也達到史無前例的184KB。從 此之後,磁帶經歷了迅速發展,後來廣泛應用了錄音、影像領域。

3、軟盤(見過這玩意的一定是80後)

1967年 IBM公司推出世界上第一張「軟盤」,直徑32英寸。隨著技術的發展,軟盤的尺寸一直在減小,容量也在不斷提升,大小從8英寸,減到到5.25英寸軟盤,以及到後來的3.5英寸軟盤,容量卻從最早的81KB到後來的1.44MB。在80-90年代3.5英寸軟盤達到了巔峰。直到CD-ROM、USB存儲設備出現後,軟盤銷量才逐漸下滑。

4、CD

CD也就是我們常說的光碟、光碟,誕生於1982年,最早用於數字音頻存儲。1985年,飛利浦和索尼將其引入PC,當時稱之為CD-ROM(只 讀),後來又發展成CD-R(可讀)。因為聲頻CD的巨大成功,今天這種媒體的用途已經擴大到進行數據儲存,目的是數據存檔和傳遞。

5、磁碟

第一台磁碟驅動器是由IBM於1956年生產,可存儲5MB數據,總共使用了50個24英寸碟片。到1973年,IBM推出第一個現代「溫徹斯特」磁碟驅動器3340,使用了密封組件、潤滑主軸和小質量磁頭。此後磁碟的容量一度提升MB到GB再到TB。

6、DVD

數字多功能光碟,簡稱DVD,是一種光碟存儲器。起源於上世紀60年代,荷蘭飛利浦公司的研究人員開始使用激光光束進行記錄和重放信息的研究。1972年,他們的研究獲得了成功,1978年投放市場。最初的產品就是大家所熟知的激光視盤(LD,Laser Vision Disc)系統。它們的直徑多是120毫米左右。容量目前最大可到17.08GB。

7、快閃記憶體

淺談存儲器的進化歷程
快閃記憶體(Flash Memory)是一種長壽命的非易失性(在斷電情況下仍能保持所存儲的數據信+息)的存儲器。包含U盤、SD卡、CF卡、記憶棒等等種類。在1984年,東芝公司的發明人舛岡富士雄首先提出了快速快閃記憶體存儲器(此處簡稱快閃記憶體)的概念。與傳統電腦內存不同,快閃記憶體的特點是非易失性(也就是所存儲的數據在主機掉電後不會丟失),其記錄速度也非常快。Intel是世界上第一個生產快閃記憶體並將其投放市場的公司。到目前為止快閃記憶體形態多樣,存儲容量也不斷擴展到256GB甚至更高。

隨著存儲器的更新換代,存儲容量越來越大,讀寫速度也越來越快,企業級硬碟單盤容量已經達到10TB以上,目前使用的SSD固態硬碟,讀速度達:3000+MB/s,寫速度達:1700MB/s,用起來美滋滋啊。

㈨ 主存儲器的發展簡介

主存儲器一般採用半導體存儲器,與輔助存儲器相比有容量小、讀寫速度快、價格高等特點。計算機中的主存儲器主要由存儲體、控制線路、地址寄存器、數據寄存器和地址解碼電路五部分組成。
從70年代起,主存儲器已逐步採用大規模集成電路構成。用得最普遍的也是最經濟的動態隨機存儲器晶元(DRAM)。1995年集成度為64Mb(可存儲400萬個漢字)的DRAM晶元已經開始商業性生產,16MbDRAM晶元已成為市場主流產品。DRAM晶元的存取速度適中,一般為50~70ns。有一些改進型的DRAM,如EDO DRAM(即擴充數據輸出的DRAM),其性能可較普通DRAM提高10%以上,又如SDRAM(即同步DRAM),其性能又可較EDO DRAM提高10%左右。1998年SDRAM的後繼產品為SDRAMⅡ(或稱DDR,即雙倍數據速率)的品種已上市。在追求速度和可靠性的場合,通常採用價格較貴的靜態隨機存儲器晶元(SRAM),其存取速度可以達到了1~15ns。無論主存採用DRAM還是SRAM晶元構成,在斷電時存儲的信息都會「丟失」,因此計算機設計者應考慮發生這種情況時,設法維持若干毫秒的供電以保存主存中的重要信息,以便供電恢復時計算機能恢復正常運行。鑒於上述情況,在某些應用中主存中存儲重要而相對固定的程序和數據的部分採用「非易失性」存儲器晶元(如EPROM,快快閃記憶體儲晶元等)構成;對於完全固定的程序,數據區域甚至採用只讀存儲器(ROM)晶元構成;主存的這些部分就不怕暫時供電中斷,還可以防止病毒侵入。

㈩ 相變存儲器的發展歷史

二十世紀五十年代至六十年代,Dr. Stanford Ovshinsky開始研究無定形物質的性質。無定形物質是一類沒有表現出確定、有序的結晶結構的物質。1968年,他發現某些玻璃在變相時存在可逆的電阻系數變化。1969年,他又發現激光在光學存儲介質中的反射率會發生響應的變化。1970年,他與他的妻子Dr. Iris Ovshinsky共同建立的能量轉換裝置(ECD)公司,發布了他們與Intel的Gordon Moore合作的結果。1970年9月28日在Electronics發布的這一篇文章描述了世界上第一個256位半導體相變存儲器。
近30年後,能量轉換裝置(ECD)公司與MicronTechnology前副主席Tyler Lowery建立了新的子公司Ovonyx。在2000年2月,Intel與Ovonyx發表了合作與許可協議,此份協議是現代PCM研究與發展的開端。2000年12月,STMicroelectronics(ST)也與Ovonyx開始合作。至2003年,以上三家公司將力量集中,避免重復進行基礎的、競爭的研究與發展,避免重復進行延伸領域的研究,以加快此項技術的進展。2005年,ST與Intel發表了它們建立新的快閃記憶體公司的意圖,新公司名為Numonyx。
在1970年第一份產品問世以後的幾年中,半導體製作工藝有了很大的進展,這促進了半導體相變存儲器的發展。同時期,相變材料也愈加完善以滿足在可重復寫入的CD與DVD中的大量使用。Intel開發的相變存儲器使用了硫屬化物(Chalcogenides),這類材料包含元素周期表中的氧/硫族元素。Numonyx的相變存儲器使用一種含鍺、銻、碲的合成材料(Ge2Sb2Te5),多被稱為GST。現今大多數公司在研究和發展相變存儲器時都都使用GST或近似的相關合成材料。大部分DVD-RAM都是使用與Numonyx相變存儲器使用的相同的材料。
2011年8月31日,中國首次完成第一批基於相變存儲器的產品晶元。
2015年,《自然·光子學》雜志布了世界上第一個或可長期存儲數據且完全基於光的相變存儲器。