當前位置:首頁 » 服務存儲 » 用戶必須以為單位對外存儲器
擴展閱讀
webinf下怎麼引入js 2023-08-31 21:54:13
堡壘機怎麼打開web 2023-08-31 21:54:11

用戶必須以為單位對外存儲器

發布時間: 2023-01-01 17:00:15

存儲器存儲容量的基本單位是什麼

計算機存儲數據的最小單位是位,儲存容量的基本單位是位元組。計算機存儲數據的最小單位,英文名稱bit,又叫比特。

存儲器中所包含存儲單元的數量稱為存儲容量,其計量基本單位是位元組,英文Byte。簡稱B。
8個二進制位稱為1個位元組,此外還有KB、MB、GB、TB等,它們之間的換算關系是1Byte=8bit,1KB=1024B,1MB=1024KB,1GB=1024MB,1TB=1024GB。

存儲容量是指存儲器可以容納的二進制信息量,用存儲器中存儲地址寄存器MAR的編址數與存儲字位數的乘積表示。

存儲容量是指該便攜存儲產品最大所能存儲的數據量,是便攜存儲產品最為關鍵的參數。一般U盤的容量有1GB、2GB、4GB、8GB、16GB、32GB、64GB,還有部分更高容量的產品,但價格已超出了用戶可以接受的地步。其中1GB~2GB的便攜存儲,已基本被市場淘汰。

而4GB~16GB的產品是市場中的主流,價格在普通用戶可以接受的范圍內,也是廠家推出產品類型最多的容量類型;32GB以上的產品,因為價格昂貴,用戶群體較少,產品種類也較少。

② 計算機最基本的存儲單位是

在計算機內部,信息都是釆用二進制的形式進行存儲、運算、處理和傳輸的。信息存儲單位有位、位元組和字等幾種。各種存儲設備存儲容量單位有KB、MB、GB和TB等幾種。

1、基本儲存單元

位(bit):二進制數中的一個數位,可以是0或者1,是計算機中數據的最小單位。

宇節(Byte,B):計算機中數據的基本單位,每8位組成一個位元組。各種信息在計算機中存儲、處理至少需要一個位元組。例如,一個ASCII碼用一個位元組表示,一個漢字用兩個位元組表示。

字(Word):兩個位元組稱為一個字。漢字的存儲單位都是一個字。

2、擴展的存儲單位

在計算機各種存儲介質(例如內存、硬碟、光碟等)的存儲容量表示中,用戶所接觸到的存儲單位不是位、位元組和字,而是KB、MB、GB等,但這不是新的存儲單位,而是基於位元組換算的。

KB:1KB=1024B。早期用的軟盤有360KB和720KB的,不過軟盤已經很少使用。

MB:1MB=1024KB。早期微型機的內存有128MB、256MB、512MB,目前內存都是1GB、2GB甚至更大。

GB:1GB=1024MB。早期微型機的硬碟有60GB、80GB,目前都是500GB、1TB甚至更大。

TB:1TB=1024GB。目前個人用的微型機存儲容量也都能達到這個級別了,而作為伺服器或者專門的計算機,不可缺少這么大的存儲容量。

(2)用戶必須以為單位對外存儲器擴展閱讀

存儲單元的地址和內容

計算機存儲信息的基本單位稱存儲元件,每個存儲元件是一個二進制位,一位可存放一個二進制數0或1。每8位組成一個位元組。由於8086CPU是16位數據匯流排,則其字長是16位,由2個位元組組成。

在存儲器內是以位元組為單位來存儲信息的,因而對存儲器的編址是按位元組編址,從而使CPU根據地址編號找到存儲器中的操作數或者說CPU根據地址編號訪問該存儲單元的內容地址從0開始編號,

順序地每個地址加1,在計算機內地址也是用二進制數表示,地址是一個無符號整數,為了書寫方便和編程,在源程序中常用十六進制數或符號來表示一個存儲單元的地址。

資料庫 名詞解釋

資料庫的概念:

資料庫(Database)是按照數據結構來組織、存儲和管理數據的倉庫,它產生於距今六十多年前,隨著信息技術和市場的發展,特別是二十世紀九十年代以後,

數據管理不再僅僅是存儲和管理數據,而轉變成用戶所需要的各種數據管理的方式。資料庫有很多種類型,從最簡單的存儲有各種數據的表格到能夠進行海量數據存儲的大型資料庫系統都在各個方面得到了廣泛的應用。

在信息化社會,充分有效地管理和利用各類信息資源,是進行科學研究和決策管理的前提條件。資料庫技術是管理信息系統、辦公自動化系統、決策支持系統等各類信息系統的核心部分,是進行科學研究和決策管理的重要技術手段。

資料庫的定義:

定義1:資料庫(Database)是按照數據結構來組織、存儲和管理數據的建立在計算機存儲設備上的倉庫。

簡單來說是本身可視為電子化的文件櫃——存儲電子文件的處所,用戶可以對文件中的數據進行新增、截取、更新、刪除等操作。

在經濟管理的日常工作中,常常需要把某些相關的數據放進這樣的「倉庫」,並根據管理的需要進行相應的處理。

例如,企業或事業單位的人事部門常常要把本單位職工的基本情況(職工號、姓名、年齡、性別、籍貫、工資、簡歷等)存放在表中,這張表就可以看成是一個資料庫。有了這個"數據倉庫"我們就可以根據需要隨時查詢某職工的基本情況,也可以查詢工資在某個范圍內的職工人數等等。這些工作如果都能在計算機上自動進行,那我們的人事管理就可以達到極高的水平。此外,在財務管理、倉庫管理、生產管理中也需要建立眾多的這種"資料庫",使其可以利用計算機實現財務、倉庫、生產的自動化管理。

定義2:

嚴格來說,資料庫是長期儲存在計算機內、有組織的、可共享的數據集合。資料庫中的數據指的是以一定的數據模型組織、描述和儲存在一起、具有盡可能小的冗餘度、較高的數據獨立性和易擴展性的特點並可在一定范圍內為多個用戶共享。

這種數據集合具有如下特點:盡可能不重復,以最優方式為某個特定組織的多種應用服務,其數據結構獨立於使用它的應用程序,對數據的增、刪、改、查由統一軟體進行管理和控制。從發展的歷史看,資料庫是數據管理的高級階段,它是由文件管理系統發展起來的。[1] [2]

資料庫的處理系統:

資料庫是一個單位或是一個應用領域的通用數據處理系統,它存儲的是屬於企業和事業部門、團體和個人的有關數據的集合。資料庫中的數據是從全局觀點出發建立的,按一定的數據模型進行組織、描述和存儲。其結構基於數據間的自然聯系,從而可提供一切必要的存取路徑,且數據不再針對某一應用,而是面向全組織,具有整體的結構化特徵。

資料庫中的數據是為眾多用戶所共享其信息而建立的,已經擺脫了具體程序的限制和制約。不同的用戶可以按各自的用法使用資料庫中的數據;多個用戶可以同時共享資料庫中的數據資源,即不同的用戶可以同時存取資料庫中的同一個數據。數據共享性不僅滿足了各用戶對信息內容的要求,同時也滿足了各用戶之間信息通信的要求。

資料庫的基本結構:

資料庫的基本結構分三個層次,反映了觀察資料庫的三種不同角度。

以內模式為框架所組成的資料庫叫做物理資料庫;以概念模式為框架所組成的數據叫概念資料庫;以外模式為框架所組成的資料庫叫用戶資料庫。

⑴ 物理數據層。

它是資料庫的最內層,是物理存貯設備上實際存儲的數據的集合。這些數據是原始數據,是用戶加工的對象,由內部模式描述的指令操作處理的位串、字元和字組成。

⑵ 概念數據層。

它是資料庫的中間一層,是資料庫的整體邏輯表示。指出了每個數據的邏輯定義及數據間的邏輯聯系,是存貯記錄的集合。它所涉及的是資料庫所有對象的邏輯關系,而不是它們的物理情況,是資料庫管理員概念下的資料庫。

⑶ 用戶數據層。

它是用戶所看到和使用的資料庫,表示了一個或一些特定用戶使用的數據集合,即邏輯記錄的集合。

資料庫不同層次之間的聯系是通過映射進行轉換的。

資料庫的主要特點:

⑴ 實現數據共享

數據共享包含所有用戶可同時存取資料庫中的數據,也包括用戶可以用各種方式通過介面使用資料庫,並提供數據共享。

⑵ 減少數據的冗餘度

同文件系統相比,由於資料庫實現了數據共享,從而避免了用戶各自建立應用文件。減少了大量重復數據,減少了數據冗餘,維護了數據的一致性。

⑶ 數據的獨立性

數據的獨立性包括邏輯獨立性(資料庫中資料庫的邏輯結構和應用程序相互獨立)和物理獨立性(數據物理結構的變化不影響數據的邏輯結構)。

⑷ 數據實現集中控制

文件管理方式中,數據處於一種分散的狀態,不同的用戶或同一用戶在不同處理中其文件之間毫無關系。利用資料庫可對數據進行集中控制和管理,並通過數據模型表示各種數據的組織以及數據間的聯系。

⑸數據一致性和可維護性,以確保數據的安全性和可靠性

主要包括:①安全性控制:以防止數據丟失、錯誤更新和越權使用;②完整性控制:保證數據的正確性、有效性和相容性;③並發控制:使在同一時間周期內,允許對數據實現多路存取,又能防止用戶之間的不正常交互作用。

⑹ 故障恢復

由資料庫管理系統提供一套方法,可及時發現故障和修復故障,從而防止數據被破壞。資料庫系統能盡快恢復資料庫系統運行時出現的故障,可能是物理上或是邏輯上的錯誤。比如對系統的誤操作造成的數據錯誤等。

資料庫的數據種類:

資料庫通常分為層次式資料庫、網路式資料庫和關系式資料庫三種。而不同的資料庫是按不同的數據結構來聯系和組織的。

1.數據結構模型

⑴數據結構

所謂數據結構是指數據的組織形式或數據之間的聯系。

如果用D表示數據,用R表示數據對象之間存在的關系集合,則將DS=(D,R)稱為數據結構。

例如,設有一個電話號碼簿,它記錄了n個人的名字和相應的電話號碼。為了方便地查找某人的電話號碼,將人名和號碼按字典順序排列,並在名字的後面跟隨著對應的電話號碼。這樣,若要查找某人的電話號碼(假定他的名字的第一個字母是Y),那麼只須查找以Y開頭的那些名字就可以了。該例中,數據的集合D就是人名和電話號碼,它們之間的聯系R就是按字典順序的排列,其相應的數據結構就是DS=(D,R),即一個數組。

⑵數據結構類型

數據結構又分為數據的邏輯結構和數據的物理結構。

數據的邏輯結構是從邏輯的角度(即數據間的聯系和組織方式)來觀察數據,分析數據,與數據的存儲位置無關;數據的物理結構是指數據在計算機中存放的結構,即數據的邏輯結構在計算機中的實現形式,所以物理結構也被稱為存儲結構。

這里只研究數據的邏輯結構,並將反映和實現數據聯系的方法稱為數據模型。

比較流行的數據模型有三種,即按圖論理論建立的層次結構模型和網狀結構模型以及按關系理論建立的關系結構模型。

2.層次、網狀和關系資料庫系統

⑴層次結構模型

層次結構模型實質上是一種有根結點的定向有序樹(在數學中"樹"被定義為一個無回的連通圖)。下圖是一個高等學校的組織結構圖。這個組織結構圖像一棵樹,校部就是樹根(稱為根結點),各系、專業、教師、學生等為枝點(稱為結點),樹根與枝點之間的聯系稱為邊,樹根與邊之比為1:N,即樹根只有一個,樹枝有N個。

按照層次模型建立的資料庫系統稱為層次模型資料庫系統。IMS(Information Management System)是其典型代表。

⑵網狀結構模型

按照網狀數據結構建立的資料庫系統稱為網狀資料庫系統,其典型代表是DBTG(Database Task Group)。用數學方法可將網狀數據結構轉化為層次數據結構。

⑶ 關系結構模型

關系式數據結構把一些復雜的數據結構歸結為簡單的二元關系(即二維表格形式)。例如某單位的職工關系就是一個二元關系。

由關系數據結構組成的資料庫系統被稱為關系資料庫系統。

在關系資料庫中,對數據的操作幾乎全部建立在一個或多個關系表格上,通過對這些關系表格的分類、合並、連接或選取等運算來實現數據的管理。

dBASEⅡ就是這類資料庫管理系統的典型代表。對於一個實際的應用問題(如人事管理問題),有時需要多個關系才能實現。用dBASEⅡ建立起來的一個關系稱為一個資料庫(或稱資料庫文件),而把對應多個關系建立起來的多個資料庫稱為資料庫系統。dBASEⅡ的另一個重要功能是通過建立命令文件來實現對資料庫的使用和管理,對於一個資料庫系統相應的命令序列文件,稱為該資料庫的應用系統。

因此,可以概括地說,一個關系稱為一個資料庫,若干個資料庫可以構成一個資料庫系統。資料庫系統可以派生出各種不同類型的輔助文件和建立它的應用系統。

資料庫的發展簡史:

1 資料庫的技術發展

使用計算機後,隨著數據處理量的增長,產生了數據管理技術。數據管理技術的發展與計算機硬體(主要是外部存儲器)系統軟體及計算機應用的范圍有著密切的聯系。數據管理技術的發展經歷了以下四個階段:人工管理階段、文件系統階段、資料庫階段和高級資料庫技術階段 。

2 數據管理的誕生

資料庫的歷史可以追溯到五十年前,那時的數據管理非常簡單。通過大量的分類、比較和表格繪制的機器運行數百萬穿孔卡片來進行數據的處理,其運行結果在紙上列印出來或者製成新的穿孔卡片。而數據管理就是對所有這些穿孔卡片進行物理的儲存和處理。然而,1950 年雷明頓蘭德公司(Remington Rand Inc)的一種叫做Univac I 的計算機推出了一種一秒鍾可以輸入數百條記錄的磁帶驅動器,從而引發了數據管理的革命。1956 年IBM生產出第一個磁碟驅動器—— the Model 305 RAMAC。此驅動器有50 個碟片,每個碟片直徑是2 英尺,可以儲存5MB的數據。使用磁碟最大的好處是可以隨機存取數據,而穿孔卡片和磁帶只能順序存取數據。

1951: Univac系統使用磁帶和穿孔卡片作為數據存儲。

資料庫系統的萌芽出現於二十世紀60 年代。當時計算機開始廣泛地應用於數據管理,對數據的共享提出了越來越高的要求。傳統的文件系統已經不能滿足人們的需要,能夠統一管理和共享數據的資料庫管理系統(DBMS)應運而生。數據模型是資料庫系統的核心和基礎,各種DBMS軟體都是基於某種數據模型的。所以通常也按照數據模型的特點將傳統資料庫系統分成網狀資料庫、層次資料庫和關系資料庫三類。

最早出現的網狀DBMS,是美國通用電氣公司Bachman等人在1961年開發的IDS(Integrated Data Store)。1964年通用電氣公司(General ElectricCo.)的Charles Bachman 成功地開發出世界上第一個網狀DBMS也即第一個資料庫管理系統——集成數據存儲(Integrated Data Store IDS),奠定了網狀資料庫的基礎,並在當時得到了廣泛的發行和應用。IDS 具有數據模式和日誌的特徵,但它只能在GE主機上運行,並且資料庫只有一個文件,資料庫所有的表必須通過手工編碼生成。之後,通用電氣公司一個客戶——BF Goodrich Chemical 公司最終不得不重寫了整個系統,並將重寫後的系統命名為集成數據管理系統(IDMS)。

網狀資料庫模型對於層次和非層次結構的事物都能比較自然的模擬,在關系資料庫出現之前網狀DBMS要比層次DBMS用得普遍。在資料庫發展史上,網狀資料庫佔有重要地位。

層次型DBMS是緊隨網路型資料庫而出現的,最著名最典型的層次資料庫系統是IBM 公司在1968 年開發的IMS(Information Management System),一種適合其主機的層次資料庫。這是IBM公司研製的最早的大型資料庫系統程序產品。從60年代末產生起,如今已經發展到IMSV6,提供群集、N路數據共享、消息隊列共享等先進特性的支持。這個具有30年歷史的資料庫產品在如今的WWW應用連接、商務智能應用中扮演著新的角色。

1973年Cullinane公司(也就是後來的Cullinet軟體公司),開始出售Goodrich公司的IDMS改進版本,並且逐漸成為當時世界上最大的軟體公司。

資料庫的關系由來:

網狀資料庫和層次資料庫已經很好地解決了數據的集中和共享問題,但是在數據獨立性和抽象級別上仍有很大欠缺。用戶在對這兩種資料庫進行存取時,仍然需要明確數據的存儲結構,指出存取路徑。而後來出現的關系資料庫較好地解決了這些問題。

1970年,IBM的研究員E.F.Codd博士在刊物《Communication of the ACM》上發表了一篇名為「A Relational Model of Data for Large Shared Data Banks」的論文,提出了關系模型的概念,奠定了關系模型的理論基礎。盡管之前在1968年Childs已經提出了面向集合的模型,然而這篇論文被普遍認為是資料庫系統歷史上具有劃時代意義的里程碑。Codd的心願是為資料庫建立一個優美的數據模型。後來Codd又陸續發表多篇文章,論述了範式理論和衡量關系系統的12條標准,用數學理論奠定了關系資料庫的基礎。關系模型有嚴格的數學基礎,抽象級別比較高,而且簡單清晰,便於理解和使用。但是當時也有人認為關系模型是理想化的數據模型,用來實現DBMS是不現實的,尤其擔心關系資料庫的性能難以接受,更有人視其為當時正在進行中的網狀資料庫規范化工作的嚴重威脅。為了促進對問題的理解,1974年ACM牽頭組織了一次研討會,會上開展了一場分別以Codd和Bachman為首的支持和反對關系資料庫兩派之間的辯論。這次著名的辯論推動了關系資料庫的發展,使其最終成為現代資料庫產品的主流。

1969年Edgar F.「Ted」 Codd發明了關系資料庫。

1970年關系模型建立之後,IBM公司在San Jose實驗室增加了更多的研究人員研究這個項目,這個項目就是著名的System R。其目標是論證一個全功能關系DBMS的可行性。該項目結束於1979年,完成了第一個實現SQL的 DBMS。然而IBM對IMS的承諾阻止了System R的投產,一直到1980年System R才作為一個產品正式推向市場。IBM產品化步伐緩慢的三個原因:IBM重視信譽,重視質量,盡量減少故障;IBM是個大公司,官僚體系龐大,IBM內部已經有層次資料庫產品,相關人員不積極,甚至反對。

然而同時,1973年加州大學伯克利分校的Michael Stonebraker和Eugene Wong利用System R已發布的信息開始開發自己的關系資料庫系統Ingres。他們開發的Ingres項目最後由Oracle公司、Ingres公司以及矽谷的其他廠商所商品化。後來,System R和Ingres系統雙雙獲得ACM的1988年「軟體系統獎」。

1976年霍尼韋爾公司(Honeywell)開發了第一個商用關系資料庫系統——Multics Relational Data Store。關系型資料庫系統以關系代數為堅實的理論基礎,經過幾十年的發展和實際應用,技術越來越成熟和完善。其代表產品有Oracle、IBM公司的 DB2、微軟公司的MS SQL Server以及Informix、ADABAS D等等。

資料庫的發展階段:

資料庫發展階段大致劃分為如下的幾個階段:人工管理階段、文件系統階段、資料庫系統階段、高級資料庫階段。

人工管理階段

20世紀50年代中期之前,計算機的軟硬體均不完善。硬體存儲設備只有磁帶、卡片和紙帶,軟體方面還沒有操作系統,當時的計算機主要用於科學計算。這個階段由於還沒有軟體系統對數據進行管理,程序員在程序中不僅要規定數據的邏輯結構,還要設計其物理結構,包括存儲結構、存取方法、輸入輸出方式等。當數據的物理組織或存儲設備改變時,用戶程序就必須重新編制。由於數據的組織面向應用,不同的計算程序之間不能共享數據,使得不同的應用之間存在大量的重復數據,很難維護應用程序之間數據的一致性。

這一階段的主要特徵可歸納為如下幾點:

(1)計算機中沒有支持數據管理的軟體,計算機系統不提供對用戶數據的管理功能,應用程序只包含自己要用到的全部數據。用戶編製程序,必須全面考慮好相關的數據,包括數據的定義、存儲結構以即存取方法等。程序和數據是一個不可分割的整體。數據脫離了程序極具無任何存在的價值,數據無獨立性。

(2)數據不能共享。不同的程序均有各自的數據,這些數據對不同的程序通常是不相同的,不可共享;即使不同的程序使用了相同的一組數據,這些數據也不能共享,程序中仍然需要各自加入這組數據,哪個部分都不能省略。基於這種數據的不可共享性,必然導致程序與程序之間存在大量的重復數據,浪費存儲空間。

(3)不能單獨保存數據。在程序中要規定數據的邏輯結構和物理結構,數據與程序不獨立。基於數據與程序是一個整體,數據只為本程序所使用,數據只有與相應的程序一起保存才有價值,否則毫無用處。所以,所有程序的數據不單獨保存。數據處理的方式是批處理。

文件系統階段:

這一階段的主要標志是計算機中有了專門管理資料庫的軟體——操作系統(文件管理)。

上世紀50年代中期到60年代中期,由於計算機大容量直接存儲設備如硬碟、磁鼓的出現,

推動了軟體技術的發展,軟體的領域出現了操作系統和高級軟體,操作系統中的文件系統是專門管理外存的數據管理軟體,操作系統為用戶使用文件提供了友好界面。操作系統的出現標志著數據管理步入一個新的階段。在文件系統階段,數據以文件為單位存儲在外存,且由操作系統統一管理,文件是操作系統管理的重要資源。

文件系統階段的數據管理具有一下幾個特點:

優點

(1)數據以「文件」形式可長期保存在外部存儲器的磁碟上。由於計算機的應用轉向信息管理,因此對文件要進行大量的查詢、修改和插入等操作。

(2)數據的邏輯結構與物理結構有了區別,程序和數據分離,使數據與程序有了一定的獨立性,但比較簡單。數據的邏輯結構是指呈現在用戶面前的數據結構形式。數據的物理結構是指數據在計算機存儲設備上的實際存儲結構。程度與數據之間具有「設備獨立性」,即程序只需用文件名就可與數據打交道,不必關心數據的物理位置。由操作系統的文件系統提供存取方法(讀/寫)。

(3)文件組織已多樣化。有索引文件、鏈接文件和直接存取文件等。但文件之間相互獨立、缺乏聯系。數據之間的聯系需要通過程序去構造。

(4)數據不再屬於某個特定的程序,可以重復使用,即數據面向應用。但是文件結構的設計仍是基於特定的用途,程序基於特定的物理結構和存取方法,因此程度與數據結構之間的依賴關系並未根本改變。

(5)用戶的程序與數據可分別存放在外存儲器上,各個應用程序可以共享一組數據,實現了以文件為單位的數據共享文件系統。

(6)對數據的操作以記錄為單位。這是由於文件中只存儲數據,不存儲文件記錄的結構描述信息。文件的建立、存取、查詢、插入、刪除、修改等操作,都要用程序來實現。

(7)數據處理方式有批處理,也有聯機實時處理。

缺點

文件系統對計算機數據管理能力的提高雖然起了很大的作用,但隨著數據管理規模的擴大,數據量急劇增加,文價系統顯露出一些缺陷,問題表現在:

(1)數據文件是為了滿足特定業務領域某一部門的專門需要而設計,數據和程序相互依賴,數據缺乏足夠的獨立性。

(2)數據沒有集中管理的機制,其安全性和完整性無法保障,數據維護業務仍然由應用程序來承擔;

(3)數據的組織仍然是面向程序,數據與程序的依賴性強,數據的邏輯結構不能方便地修改和擴充,數據邏輯結構的每一點微小改變都會影響到應用程序;而且文件之間的缺乏聯系,因而它們不能反映現實世界中事物之間的聯系,加上操作系統不負責維護文件之間的聯系,信息造成每個應用程序都有相對應的文件。如果文件之間有內容上的聯系,那也只能由應用程序去處理,有可能同樣的數據在多個文件中重復儲存。這兩者造成了大量的數據冗餘。

(4)對現有數據文件不易擴充,不易移植,難以通過增、刪數據項來適應新的應用要求。

資料庫系統階段:

20世紀60年代後期,隨著計算機在數據管理領域的普遍應用,人們對數據管理技術提出了更高的要求:希望面向企業或部門,以數據為中心組織數據,減少數據的冗餘,提供更高的數據共享能力,同時要求程序和數據具有較高的獨立性,當數據的邏輯結構改變時,不涉及數據的物理結構,也不影響應用程序,以降低應用程序研製與維護的費用。資料庫技術正是在這樣一個應用需求的基礎上發展起來的。

概括起來,資料庫系統階段的數據管理具有以下幾個特點:

(1)採用數據模型表示復雜的數據結構。數據模型不僅描述數據本身的特徵,還要描述數據之間的聯系,這種聯系通過所有存取路徑。通過所有存儲路徑表示自然的數據聯系是資料庫與傳統文件的根本區別。這樣,數據不再面向特定的某個或多個應用,而是面對整個應用系統。如面向企業或部門,以數據為中心組織數據,形成綜合性的資料庫,為各應用共享。

(2)由於面對整個應用系統使得,數據冗餘小,易修改、易擴充,實現了數據貢獻。不同的應用程序根據處理要求,從資料庫中獲取需要的數據,這樣就減少了數據的重復存儲,也便於增加新的數據結構,便於維護數據的一致性。

(3)對數據進行統一管理和控制,提供了數據的安全性、完整性、以及並發控制。

(4)程序和數據有較高的獨立性。數據的邏輯結構與物理結構之間的差別可以很大,用戶以簡單的邏輯結構操作數據而無須考慮數據的物理結構。

(5)具有良好的用戶介面,用戶可方便地開發和使用資料庫。

從文件系統發展到資料庫系統,這在信息領域中具有里程碑的意義。在文件系統階段,人們在信息處理中關注的中心問題是系統功能的設計,因此程序設計佔主導地位;而在資料庫方式下,數據開始占據了中心位置,數據的結構設計成為信息系統首先關心的問題,而應用程序則以既定的數據結構為基礎進行設計。

資料庫發展趨勢:

隨著信息管理內容的不斷擴展,出現了豐富多樣的數據模型(層次模型,網狀模型,關系模型,面向對象模型,半結構化模型等),新技術也層出不窮(數據流,Web數據管理,數據挖掘等)。每隔幾年,國際上一些資深的資料庫專家就會聚集一堂,探討資料庫研究現狀,存在的問題和未來需要關注的新技術焦點。過去已有的幾個類似報告包括:1989年Future Directions inDBMS Research-The Laguna BeachParticipants ;1990年DatabaseSystems : Achievements and Opportunities ;1991年W.H. Inmon 發表的《構建數據倉庫》;1995年Database。

常見資料庫廠商:

1. SQL Server

只能在windows上運行,沒有絲毫的開放性,操作系統的系統的穩定對資料庫是十分重要的。Windows9X系列產品是偏重於桌面應用,NT server只適合中小型企業。而且windows平台的可靠性,安全性和伸縮性是非常有限的。它不象unix那樣久經考驗,尤其是在處理大資料庫。

2. Oracle

能在所有主流平台上運行(包括 windows)。完全支持所有的工業標准。採用完全開放策略。可以使客戶選擇最適合的解決方案。對開發商全力支持。

3. Sybase ASE

能在所有主流平台上運行(包括 windows)。 但由於早期Sybase與OS集成度不高,因此VERSION11.9.2以下版本需要較多OS和DB級補丁。在多平台的混合環境中,會有一定問題。

4. DB2

能在所有主流平台上運行(包括windows)。最適於海量數據。DB2在企業級的應用最為廣泛,在全球的500家最大的企業中,幾乎85%以上用DB2資料庫伺服器,而國內到97年約佔5%。

④ 計算機中用來表示存儲器容量大小的基本單位是什麼

位。

二進制數系統中,位簡記為b,也稱為比特,每個二進制數字0或1就是一個位(bit)。位是數據存儲的最小單位,其中8 bit 就稱為一個位元組(Byte)。

計算機中的CPU位數指的是CPU一次能處理的最大位數。例如32位計算機的CPU一個機器周期內可以處理32位二進制數據的計算。

(4)用戶必須以為單位對外存儲器擴展閱讀

數據存儲是以「位元組」(Byte)為單位,數據傳輸大多是以「位」(bit,又名「比特」)為單位,一個位就代表一個0或1(即二進制),每8個位(bit,簡寫為b)組成一個位元組(Byte,簡寫為B),是最小一級的信息單位。

B與iB:

1、1KiB(Kibibyte)=1024byte

2、1KB(Kilobyte)=1000byte

3、1MiB(Mebibyte)=1048576byte

4、1MB(Megabyte)=1000000byte

⑤ 存儲器的分類及其各自的特點

存儲器(Memory)是現代信息技術中用於保存信息的記憶設備。其概念很廣,有很多層次,在數字系統中,只要能保存二進制數據的都可以是存儲器;在集成電路中,一個沒有實物形式的具有存儲功能的電路也叫存儲器,如RAM、FIFO等;在系統中,具有實物形式的存儲設備也叫存儲器,如內存條、TF卡等。計算機中全部信息,包括輸入的原始數據、計算機程序、中間運行結果和最終運行結果都保存在存儲器中。它根據控制器指定的位置存入和取出信息。有了存儲器,計算機才有記憶功能,才能保證正常工作。計算機中的存儲器按用途存儲器可分為主存儲器(內存)和輔助存儲器(外存),也有分為外部存儲器和內部存儲器的分類方法。外存通常是磁性介質或光碟等,能長期保存信息。內存指主板上的存儲部件,用來存放當前正在執行的數據和程序,但僅用於暫時存放程序和數據,關閉電源或斷電,數據會丟失。
存儲器的分類特點及其應用
在嵌入式系統中最常用的存儲器類型分為三類:
1.隨機存取的RAM;
2.只讀的ROM;
3.介於兩者之間的混合存儲器
1.隨機存儲器(Random Access Memory,RAM)
RAM能夠隨時在任一地址讀出或寫入內容。 RAM的優點是讀/寫方便、使用靈活;
RAM的缺點是不能長期保存信息,一旦停電,所存信息就會丟失。 RAM用於二進制信息的臨時存儲或緩沖存儲
2.只讀存儲器(Read-Only Memory,ROM)
ROM中存儲的數據可以被任意讀取,斷電後,ROM中的數據仍保持不變,但不可以寫入數據。
ROM在嵌入式系統中非常有用,常常用來存放系統軟體(如ROM BIOS)、應用程序等不隨時間改變的代碼或數據。
ROM存儲器按發展順序可分為:掩膜ROM、可編程ROM(PROM)和可擦寫可編程ROM(EPROM)。
3. 混合存儲器
混合存儲器既可以隨意讀寫,又可以在斷電後保持設備中的數據不變。混合存儲設備可分為三種:
EEPROM NVRAM FLASH
(1)EEPROM
EEPROM是電可擦寫可編程存儲設備,與EPROM不同的是EEPROM是用電來實現數據的清除,而不是通過紫外線照射實現的。
EEPROM允許用戶以位元組為單位多次用電擦除和改寫內容,而且可以直接在機內進行,不需要專用設備,方便靈活,常用作對數據、參數等經常修改又有掉電保護要求的數據存儲器。
(2) NVRAM
NVRAM通常就是帶有後備電池的SRAM。當電源接通的時候,NVRAM就像任何其他SRAM一樣,但是當電源切斷的時候,NVRAM從電池中獲取足夠的電力以保持其中現存的內容。
NVRAM在嵌入式系統中使用十分普遍,它最大的缺點是價格昂貴,因此,它的應用被限制於存儲僅僅幾百位元組的系統關鍵信息。
(3)Flash
Flash(閃速存儲器,簡稱快閃記憶體)是不需要Vpp電壓信號的EEPROM,一個扇區的位元組可以在瞬間(與單時鍾周期比較是一個非常短的時間)擦除。
Flash比EEPROM優越的方面是,可以同時擦除許多位元組,節省了每次寫數據前擦除的時間,但一旦一個扇區被擦除,必須逐個位元組地寫進去,其寫入時間很長。
存儲器工作原理
這里只介紹動態存儲器(DRAM)的工作原理。

工作原理
動態存儲器每片只有一條輸入數據線,而地址引腳只有8條。為了形成64K地址,必須在系統地址匯流排和晶元地址引線之間專門設計一個地址形成電路。使系統地址匯流排信號能分時地加到8個地址的引腳上,藉助晶元內部的行鎖存器、列鎖存器和解碼電路選定晶元內的存儲單元,鎖存信號也靠著外部地址電路產生。
當要從DRAM晶元中讀出數據時,CPU首先將行地址加在A0-A7上,而後送出RAS鎖存信號,該信號的下降沿將地址鎖存在晶元內部。接著將列地址加到晶元的A0-A7上,再送CAS鎖存信號,也是在信號的下降沿將列地址鎖存在晶元內部。然後保持WE=1,則在CAS有效期間數據輸出並保持。
當需要把數據寫入晶元時,行列地址先後將RAS和CAS鎖存在晶元內部,然後,WE有效,加上要寫入的數據,則將該數據寫入選中的存貯單元。

存儲器晶元
由於電容不可能長期保持電荷不變,必須定時對動態存儲電路的各存儲單元執行重讀操作,以保持電荷穩定,這個過程稱為動態存儲器刷新。PC/XT機中DRAM的刷新是利用DMA實現的。首先應用可編程定時器8253的計數器1,每隔1⒌12μs產生一次DMA請求,該請求加在DMA控制器的0通道上。當DMA控制器0通道的請求得到響應時,DMA控制器送出到刷新地址信號,對動態存儲器執行讀操作,每讀一次刷新一行。

⑥ 只讀存儲器和隨機存儲器的主要特點

只讀存儲器的特點是用戶只能讀出不能隨意寫入信息,在主板上的ROM裡面固化了一個基本輸入/輸出系統,稱為BIOS(基本輸入輸出系統)。其主要作用是完成對系統的加電自檢、系統中各功能模塊的初始化、系統的基本輸入/輸出的驅動程序及引導操作系統。

隨機儲存器的特點是在儲存器的數據被讀取和斜入式,所需要的時間與這段信息所在的位置或所寫入的位置無關。但隨機儲存器具有易失性,當電源關閉時RAM不能保留數據。

而且隨機存儲器對環境的靜電荷極其的銘感,靜電會干擾儲存器內電容器的電荷,導致數據丟失,甚至是燒壞電路。隨機存儲器幾乎是所有訪問設備寫入和讀取速度最快的,並且現代的隨機存取存儲器以來電容器去存儲數據。

(6)用戶必須以為單位對外存儲器擴展閱讀:

只讀存儲器工作原理

地址解碼器根據輸入地址選擇某條輸出(稱字線),由它再去驅動該字線的各位線,以便讀出字線上各存儲單元所儲存的代碼。

隨機存儲器的組成

RAM電路由地址解碼器、存儲矩陣和讀寫控制電路三部分組成。

存儲矩陣由觸發器排列而成,每個觸發器能存儲一位數據(0或1)。通常將每一組存儲單元編為一個地址,存放一個「字」。

每個字的位數等於這一組單元的數目。存儲器的容量以「字數×位數」表示。地址解碼器將每個輸入的地址代碼譯成高(或低)電平信號,從存儲矩陣中選中一組單元,使之與讀寫控制電路接通。在讀寫控制信號的配合下,將數據讀出或寫入。

只讀存儲器種類

可編程只讀存儲器

可編程只讀存儲器(英文:Programmable ROM,簡稱:PROM)一般可編程一次。PROM存儲器出廠時各個存儲單元皆為1,或皆為0。

用戶使用時,再使用編程的方法使PROM存儲所需要的數據。 PROM需要用電和光照的方法來編寫與存放的程序和信息。但僅僅只能編寫一次,第一次寫入的信息就被永久性地保存起來。

ROM

只讀內存(Read-Only Memory)是一種只能讀取資料的內存。

在製造過程中,將資料以一特製光罩(mask)燒錄於線路中,其資料內容在寫入後就不能更改,所以有時又稱為「光罩式只讀內存」(mask ROM)。此內存的製造成本較低,常用於電腦中的開機啟動。

⑦ 存儲器可分為哪三類

存儲器不僅可以分為三類。因為按照不同的劃分方法,存儲器可分為不同種類。常見的分類方法如下。

一、按存儲介質劃分

1. 半導體存儲器:用半導體器件組成的存儲器。

2. 磁表面存儲器:用磁性材料做成的存儲器。

二、按存儲方式劃分

1. 隨機存儲器:任何存儲單元的內容都能被隨機存取,且存取時間和存儲單元的物理位置無關。

2. 順序存儲器:只能按某種順序來存取,存取時間和存儲單元的物理位置有關。

三、按讀寫功能劃分

1. 只讀存儲器(ROM):存儲的內容是固定不變的,只能讀出而不能寫入的半導體存儲器。

2. 隨機讀寫存儲器(RAM):既能讀出又能寫入的存儲器。

二、選用各種存儲器,一般遵循的選擇如下:

1、內部存儲器與外部存儲器

一般而言,內部存儲器的性價比最高但靈活性最低,因此用戶必須確定對存儲的需求將來是否會增長,以及是否有某種途徑可以升級到代碼空間更大的微控制器。基於成本考慮,用戶通常選擇能滿足應用要求的存儲器容量最小的微控制器。

2、引導存儲器

在較大的微控制器系統或基於處理器的系統中,用戶可以利用引導代碼進行初始化。應用本身通常決定了是否需要引導代碼,以及是否需要專門的引導存儲器。

3、配置存儲器

對於現場可編程門陣列(FPGA)或片上系統(SoC),可以使用存儲器來存儲配置信息。這種存儲器必須是非易失性EPROM、EEPROM或快閃記憶體。大多數情況下,FPGA採用SPI介面,但一些較老的器件仍採用FPGA串列介面。

4、程序存儲器

所有帶處理器的系統都採用程序存儲器,但是用戶必須決定這個存儲器是位於處理器內部還是外部。在做出了這個決策之後,用戶才能進一步確定存儲器的容量和類型。

5、數據存儲器

與程序存儲器類似,數據存儲器可以位於微控制器內部,或者是外部器件,但這兩種情況存在一些差別。有時微控制器內部包含SRAM(易失性)和EEPROM(非易失)兩種數據存儲器,但有時不包含內部EEPROM,在這種情況下,當需要存儲大量數據時,用戶可以選擇外部的串列EEPROM或串列快閃記憶體器件。

6、易失性和非易失性存儲器

存儲器可分成易失性存儲器或者非易失性存儲器,前者在斷電後將丟失數據,而後者在斷電後仍可保持數據。用戶有時將易失性存儲器與後備電池一起使用,使其表現猶如非易失性器件,但這可能比簡單地使用非易失性存儲器更加昂貴。

7、串列存儲器和並行存儲器

對於較大的應用系統,微控制器通常沒有足夠大的內部存儲器。這時必須使用外部存儲器,因為外部定址匯流排通常是並行的,外部的程序存儲器和數據存儲器也將是並行的。

8、EEPROM與快閃記憶體

存儲器技術的成熟使得RAM和ROM之間的界限變得很模糊,如今有一些類型的存儲器(比如EEPROM和快閃記憶體)組合了兩者的特性。這些器件像RAM一樣進行讀寫,並像ROM一樣在斷電時保持數據,它們都可電擦除且可編程,但各自有它們優缺點。

參考資料來源:網路——存儲器