㈠ 中國半導體產業現狀
全球半導體產業向亞太轉移,我國半導體產業融入全球產業鏈
全球半導體市場規模06年達到247.7億美元。主要應用領域包括計算機、消費電子、通信等。在電子製造業轉移和成本差異等因素的作用下,全球半導體產業向亞太地區轉移趨勢明顯。我國內地半導體產業發展滯後於先進國家,內地企業多位於全球產業鏈的中下游環節。我國半導體產業成為全球產業鏈的組成部分,產量和產值提高迅速,但是產品技術含量和附加值偏低。
2007年半導體產業大幅波動,長遠發展前景良好
半導體產業的硅周期難以消除。2007年上半年,在內存價格上升等因素作用下,全球半導體市場增速明顯下滑。至2007年下半年,由於多餘庫存的降低、資本支出的控制,半導體市場開始回升。預計2008年,半導體產業增速恢復到一個較高的水平。長遠來看,支撐半導體產業發展的下游應用領域仍然處在平穩發展階段,半導體產業的技術更新也不曾停滯。產品更新與需求形成互動,推動半導體產業持續增長。
我國半導體市場規模增速遠快於全球市場
我國半導體市場既受全球市場的影響,也具有自身的運行特點。
我國半導體應用產業中,PC等傳統領域仍保持平穩增長,消費電子、數字電視、汽車電子、醫療電子等領域處於快速成長期,3G通信等領域處於成長前期。我國集成電路市場規模增速遠快於全球市場,是全球市場增長的重要拉動元素。2006年,我國集成電路市場已經成為全球最大市場。
我國半導體產業規模迅速擴大,產業結構逐步優化
我國半導體產業規模同樣快速提高。在封裝測試業保持高速增長的同時,設計和製造業的比例逐步提高,產業結構得到優化。在相關管理部門、科研機構和企業的共同努力下,我國系統地開展了標准制定和專利申請工作,有效地保障本土企業從設計、製造等中上游產業鏈環節分享內地快速增長的電子設備市場。
分立器件、半導體材料行業是我國半導體產業的重要組成部分
集成電路是半導體產業的最大組成部分。分立器件、半導體材料和封裝材料也是半導體產業的重要組成部分。我國內地分立器件和半導體材料市場和產業也處於快速增長之中。
上市公司
我國內地半導體產業上市公司面對諸多挑戰。技術升級和產品更新是企業生存發展的前提。半導體材料生產企業有較強的定價能力,在保持產品換代的前提下,有較大的成長空間;封裝測試公司整體狀況較好;分立器件企業發展不均。
全球半導體產業簡況
根據WSTS統計,2006年全球半導體市場銷售額達2477億美元,比2005年增長8.9%;產量為5192億顆,比2005年增長14.0%;ASP為0.477美元,比2005年下降4.5%。
從全球范圍來看,包括計算機(Computer)、通信(Communication)、消費電子(ConsumerElectronics)在內的3C產業是半導體產品的最大應用領域,其後是汽車電子和工業控制等領域。
美、日、歐、韓以及中國台灣是目前半導體產業領先的國家和地區。2006年世界前25位的半導體公司全部位於美國、日本、歐洲、韓國。2005年,美國和日本分別佔有48%和23%的市場份額,合計達71%。韓國和台灣的半導體產業進步很快。韓國三星已經位列全球第二;台積電(TSMC)的收入在2007年上半年有了很大的提高,排名快速升至第6,成為2007年上半年進入前20名的唯一一家台灣公司,這從一個側面反映了台灣代工業非常發達。
中國市場簡況
中國已經成為全球第一大半導體市場,並且保持較高的增長速度。2006年,中國半導體市場規模突破5800億,其中集成電路市場達4863億美元,比2005年增長27.8%,遠高於全球市場8.9%的增速。我國市場已經達到全球市場份額的四分之一強。
在市場增長的同時,我國半導體產業成長迅速。以集成電路產業為例,2006年國內生產集成電路355.6億塊,同比增長36.2%。實現收入1006.3億元,同比增長43.3%。我國半導體產業規模佔世界比重還比較低,但遠高於全球總體水平的增長率讓我們看到了希望。
中國集成電路的應用領域與國際市場有類似之處。2006年,3C(計算機、通信、消費電子)佔了全部應用市場的88.5%,高於全球比例。而汽車電子1.3%的比例,比起2005年的1.1%有所提高,仍明顯低於全球市場的8.0%。與此相對應的是,我國汽車市場銷量呈增長態勢,汽車電子國產化比例逐步提高。這說明,在汽車電子等領域,我國集成電路應用仍有較大成長空間。
我國在國際半導體產業中所處地位
我國半導體市場進口率高,超過80%的半導體器件是進口的。國內半導體產業收入遠小於國內市場規模。
2006年國內IC市場規模達5800億,而同期國內IC產業收入是1006.3億。
我國有多個電子信息產品產量已經位居全球第一,包括台式機、筆記本電腦、手機、數碼相機、電視機、DVD、MP3等。中國已超過美國成為世界上最大的集成電路產品應用國。但目前國內企業只能滿足不到20%的集成電路產品需求,其他依賴進口。
中國大陸市場的半導體產品前十名的都是跨國公司。這十家公司平均21%的收入來自中國市場。這與中國市場佔全球市場規模的比例基本吻合。2006年這十家公司在中國的收入總和佔到中國大陸半導體市場規模的34.51%。上述兩組數字從另一個側面反映出跨國公司佔有國內較高市場份額。國內半導體市場對進口產品依賴性高。
雖然我國半導體進口量非常大,但出口比例也非常高。2005年國內半導體產品有64%出口。這種現象被稱為「大進大出」,主要是由我國產業鏈特點造成的。
總的來看,我國IC進口遠遠超過出口。據海關統計,2006年我國集成電路和微電子組件進口額為1035億美元,出口額為200億美元,逆差巨大。
由於我國具有勞動力競爭優勢,國際半導體企業把技術含量相對較低、勞動密集型的產業鏈環節向我國轉移。我國半導體產業逐漸成為國際產業鏈的一環。產業鏈調整和轉移的結果是,我國半導體產業在低技術、勞動密集型和低附加值的環節得到了優先發展。2006年,我國IC設計、製造和封裝測試業所佔的比重分別是18.5%、30.7%和50.8%。一般認為比較合理的比例是3:4:3。封裝測試在我國先行一步,發展最快,規模也最大,是全球半導體產業向中國轉移比較充分的環節。而處於上游的IC設計成為最薄弱的環節。晶元製造業介於前兩者之間,目前跨國公司已經開始把晶元製造逐步向我國轉移,中芯國際等國內企業發展也比較快。
這樣的產業結構特點說明,國內的半導體企業多數並未直接面對半導體產品的用戶—電子設備製造商和工業、軍事設備製造商,甚至多數也沒有直接分享國內市場。更多的是充當國際半導體產業鏈的一個中間環節,間接服務於國際國內電子設備市場。這種結構,利潤水平偏低,定價能力不強,客戶結構對於企業業績影響較大。究其原因,還是國內技術水平低,高端核心晶元、關鍵設備、材料、IP等基本依賴進口,相關標准和專利受制於人。國內企業發展也不夠成熟,規模偏小,設計、製造、應用三個環節脫節。
與產業鏈地位相對應,我國大陸的企業多為Foundry(代工)企業,這與台灣的產業特點相類似。國際上大的半導體跨國公司多為IDM形式。
2007全球半導體市場波動,未來增長前景良好
半導體產業長期具有行業波動性
硅周期性依然將長期存在。這是由半導體產業所處的位置決定的。半導體產業本身具有較長的產業鏈環節。
同時,半導體產業本身是電子設備大產業鏈的一個中間環節。下游需求和價格變動等外在擾動因素、產業技術升級等內在擾動因素必然在整個產業鏈產生傳導作用。傳導過程存在延時,從而導致半導體公司的反應滯後。半導體產業只有提高自身的下游需求預見性,及早對價格、需求和庫存等變動做出預測,從而盡量減小波動的幅度。但是,半導體產業的波動性將長期存在。
2006年全球手機銷售量增加21%
2006年全球手機銷售量為9.908億部,同比增長21%,其中,2006年四季度售出2.84億部,佔全年28.5%。
Gartner預測2007年手機銷量為12億部,比2006年增加2億部。手機市場增長平穩。手機作為個人移 動終端,除了通信和已經得到初步普及的音樂播放功能外,將集成越來越多的功能,包括GPS、手機電視等等。3G的逐漸部署也極大促進手機市場的增長。手機用晶元包括信號處理、內存和電源管理等。圖9反映了手機用內存需求的增加情況。
2006至2011年全球數字電視機市場將增長一倍
iSuppli預測,從2006年至2011年全球數字電視機半導體市場將增長一倍,從71億美元增至142億美元。
數字電視機的晶元應用包括輸入/輸出電路、驅動電路、電源管理等方面。帶動數字電視機增長的因素有多種,包括平板電視價格下降,新一代DVD播放機普及,高清電視推廣等。此外,許多國家的政府都宣布了從模擬電視切換到數字電視廣播系統的計劃。例如,2009年2月17日,全美模擬電視將停播,全部切換為數字電視廣播。
中國內地半導體產業的「生態」環境
中國大陸半導體產業作為國際產業鏈的一個環節,企業形態以代工型企業(foundry)為主,產業結構偏重封裝測試環節,半導體製造快速發展,未來我國半導體產業與國際產業大環境的聯系將愈發密切。
總的來看,國內企業規模和市場份額相對較小,產品單一,企業發展和技術水平還不夠成熟穩定,行業處於成長期。下游通信、消費電子、汽車電子等產業同樣是正在上升的市場,發展程度低於國際先進水平,發展速度快於國際平均水平。各種因素共同作用,使得我國半導體產業發展並非完全與國際同步,具備自身的產業「生態環境」,具有不同的發展特點。
2007年上半年,雖然全球市場增速只有2%,但我國內地依然保持了較高的增長速度。上半年中國集成電路總產量同比增長15.2%,達到192.74億塊。共實現銷售收入總額607.22億元,同比增長33.2%。收入增長與2006上半年的48%相比有所回落,部分是受國際市場的影響,但相當大的程度還是國內產業收入基數增大等因素及內在發展規律所致。
我國半導體市場和產業規模增長遠快於全球整體增速
受益於國際電子製造業向我國內地轉移,以及國內計算機、通信、電子消費等需求的拉動,我國內地半導體市場規模的增長遠快於全球市場的增長速度,已經成為全球半導體市場增長的重要推動區域。
作為半導體產業的重要組成部分,國內集成電路產業規模也是全球增長最快的。上世紀90年代初,我國IC產業規模僅有10億元,至2000年突破百億元,用了近10年時間;而從2000年的百億元增至2006年的千億元,只用了6年時間。今年年底,中國集成電路產業收入總額有望超過全球8%,提前實現我國「十一五」規劃提出的「到2010年國內集成電路產業規模佔全球8%份額」的目標。
我國半導體應用產業處在高速發展階段
PC、手機等傳統領域發展依然平穩,同時多媒體播放GPS和手機電視為手機等移 動終端帶來了新的增長點。
我國數字電視、3G、汽車電子、醫療電子等領域發展進程有別於國際水平,未來幾年內將進入高速發展階段,有力促進國內半導體需求。
搶占標准制高點,充分利用國內市場資源
其實,從目前的角度來看,我國市場規模的快速增長,國內企業在某種程度的程度還不是直接受益者。這是由國內半導體產業在國際產業鏈中所處的位置所決定的。這一情況在逐步改善,其中最重要的一點,就是我國在標准和專利方面取得突破。
國內的管理部門、專家團隊、科研機構和企業已經具有了產業發展的規劃能力和前瞻性。在國內相關發展規劃的指導下,產業管理部門、科研機構和企業的共同努力,促使3G通信標准TD-SCDMA、數字音視頻編解碼標准AVS標准、數字電視地面傳輸國家標准DTMB等系列國內標准出台;手機電視標准雖然尚未明確,但CMMB等國內標准已經打下了良好的基礎。這些國有標准雖然未必使國內公司獨享這些領域的半導體設計和製造市場,但是標準的制定主要是依靠國內科研機構和企業。在標准制定的過程之中,這些科研機構和企業已經系統地實現了相關技術,研發出了驗證產品,取得先入優勢。標准制定的同時,國內科研機構已經開展專利池的建設。這樣,國內半導體產業就具備了分享這些領域的國內市場的有利條件。我們有理由相信,國內數字電視、消費電子等產業進一步發展,已經對國內半導體產業等上游產業具有了昔日不可比擬的帶動能力,本土半導體公司可以更加直接的「觸摸」到國內半導體應用產業了。
產業鏈結構緩慢向上游遷移
自有標准體系的建立,使國內半導體產業的發展具備了一定的優勢。身處有利的「生態環境」內,我國半導體產業發展前景良好。目前,我國半導體產業結構已經在逐漸發生變化。2002年,中國IC設計、製造和封裝測試業所佔的比重分別為8.1%、17.6%、和74.3%,2006年,這一數字變為18.5%、30.7%和50.8%。設計、製造、封裝測試三業並舉,我國半導體產業才能產生更好的協同作用,國際公認的合理比例是3:4:3。我國半導體產業比例的改變,說明我國集成電路產業在向中上游延伸,但距離理想的比例還有差距。設計和製造業需要更快的提高。
晶元設計水平和收入逐步提高
從集成電路產業鏈的角度來看,只有掌握了設計,使產業鏈結構趨於合理,才能掌握我國IC產業的主動權,才能進入IC產業的高附加值領域。近年來,我國集成電路的設計水平不斷提高。20%的設計企業能夠進行0.18微米、100萬門的IC設計,最高設計水平已達90納米、5000萬門。
雖然我國半導體產業很多沒有直接分享國內3G、消費電子等領域的高成長。但是,這些領域確實對我國IC設計業的發展提供了良好的發展契機。例如,鼎芯承擔了中國3G「TD-SCDMA產業化」國家專項,並在2006年成為中國TD產業聯盟第一家射頻成員;展訊通信(上海)有限公司是一家致力於手機晶元研發的半導體企業,2006年的銷售額達3.32億元。內地排名第一的晶元設計企業是珠海炬力集成電路設計有限公司(晶門科技總部位於香港),MP3晶元產品做的比較成功,去年的銷售額達到了13.46億美元。中星微電子和展訊通信公司先後獲得國家科技最高獎—國家科技進步一等獎。
晶元生產線快速增長
我國新建IC晶元生產線增長很快。從2006年至今增加了10條線,平均每年增加6條。已經達到最高90納米、主流技術0.18微米的技術水平。12英寸和8英寸晶元生產線產能在國內晶圓總產能中所佔的比重則已經超過60%。跨國企業加快了把晶元製造環節向國內轉移的速度,Intel也將在大連投資25億興建一座晶元生產廠。
建成投產後形成月產12英寸、90納米集成電路晶元52000片的生產能力,主要產品為CPU晶元組。目前我國大尺寸線比例仍然偏小,生產線的總數佔全世界的比例也還小於10%。「十一五」期間我國IC生產線有望保持快速增加。
㈡ 第1、2、3、4代計算機的特點和主要應用領域
1、第一代計算機(1946~1958)
電子管為基本電子器件;使用機器語言和匯編語言;主要應用於國防和科學計算;運算速度每秒幾千次至幾萬次。
計算機主要用於科學計算。主存儲器是決定計算機技術面貌的主要因素。當時,主存儲器有水銀延遲線存儲器、陰極射線示波管靜電存儲器、磁鼓和磁心存儲器等類型,通常按此對計算機進行分類
2、第二代計算機(1958~1964)
晶體管為主要器件;軟體上出現了操作系統和演算法語言;運算速度每秒幾萬次至幾十萬次。
主存儲器均採用磁心存儲器,磁鼓和磁碟開始用作主要的輔助存儲器。不僅科學計算用計算機繼續發展,而且中、小型計算機,特別是廉價的小型數據處理用計算機開始大量生產。
3、第三代計算機(1964~1971)
普遍採用集成電路;體積縮小;運算速度每秒幾十萬次至幾百萬次。
在集成電路計算機發展的同時,計算機也進入了產品系列化的發展時期。半導體存儲器逐步取代了磁心存儲器的主存儲器地位,磁碟成了不可缺少的輔助存儲器,並且開始普遍採用虛擬存儲技術。隨著各種半導體只讀存儲器和可改寫的只讀存儲器的迅速發展,以及微程序技術的發展和應用,計算機系統中開始出現固件子系統
4、第四代計算機(1971~至今 )
新一代計算機是把信息採集存儲處理、通信和人工智慧結合在一起的智能計算機系統。它不僅能進行一般信息處理,而且能面向知識處理,具有形式化推理、聯想、學習和解釋的能力,將能幫助人類開拓未知的領域和獲得新的知識。
以大規模集成電路為主要器件;運算速度每秒幾百萬次至上億次。
(2)我國在半導體存儲器的地位擴展閱讀
第四代計算機出現與發展
將CPU濃縮在一塊晶元上的微型機的出現與發展,掀起了計算機大普及的浪潮。1969年,英特爾(Intel)公司受託設計一種計算器所用的整套電路,公司的一名年輕工程師費金(Federico Fagin)成功地在4.2×3.2的矽片上,集成了2250個晶體管。
這就是第一個微處理器——Intel 4004。它是4位的。在它之後,1972年初又誕生了8位微處理器Intel 8008。1973年出現了第二代微處理器(8位),如Intel 8080(1973)、M6800(1975,M代表摩托羅拉公司)、Z80(1976,Z代表齊洛格公司)等。
1978年出現了第三代微處理器(16位),如Intel 8086、Z8000、M68000等。1981年出現了第四代微處理器(32位),如iAPX432、i80386、MAC-32、NS-16032、Z80000、HP-32等。
它們的性能都與七十年代大中型計算機大致相匹敵。微處理器的兩三年就換一代的速度,是任何技術也不能比擬的。
㈢ 中國半導體產業的前景如何
2017年是全球半導體產業精彩紛呈的一年,全球半導體龍頭基於新產業方向均大幅上漲,不斷創新高!2017年,在市場分歧及爭議中,我們從「科技紅利」產業研究基本方法出發,20萬字《隨筆系列》闡述半導體行業深度產業邏輯,風雨之後終於見彩虹,A股也從下半年開始,在龍頭兆易創新等半導體產業龍頭引領下,行業板塊多個公司創新高,用漂亮的行業整體上漲完美收官!
中國半導體產業的2017是精彩紛呈的一年!中芯國際引入梁孟松,大師已來,更重要的是意味著我國對頂級人才的吸引力,其實不僅是一個梁大師,很多國際上專業領域有很大聲望的專家、中青年實干學子都在陸續歸國,為中華半導體崛起貢獻自己力量,從我自己的師兄、師姐來看,近幾年基於材料、設計的頂級專家都在陸續歸國,科技紅利基於人才流入的拐點體現的非常明顯!
國內龍頭企業的發展也是令人激動的,華為的主晶元、人工智慧晶元快速突破,達到國際一流水平,而華為應該有更大的戰略布局推進半導體;smic引入梁孟松之後,團隊陸續到位,加快推進14nm製程;兆易創新在存儲器領域這個半導體市場單一最大領域加快突破,nor flash進入國際一線陣營,而合肥項目亮劍DRAM更是展現了企業家的戰略雄心,也承載了中華半導體人多年的夢想!
㈣ 國產新星半導體巨頭崛起,實現彎道超車,長江存儲實力究竟有多牛
首先是長江存儲在全球擁有10,000多名員工,7000多項專利申請。是一家以3D NAND快閃記憶體為主,涵蓋計算機、移動通信等領域的電路企業,致力於成為存儲技術的領導者。如今,作為三星、東芝這樣的高科技企業,長江存儲曾經有著令人欽佩的R&D歷史。長江存儲的前身武漢新鑫,因經濟衰退而舉步維艱。危急之時,接受國家財政援助,在武漢新新的基礎上建立長江倉儲。
要知道的是中國存儲行業追趕速度更快,但中美關系持續惡化,層層制裁和人才短缺仍是制約中國發展的關鍵因素。評價一下長江存儲的NAND晶元,用於國內銷售的部分iPhone。美國商務部工業與安全局(BIS)宣布修改出口管理條例,旨在進一步阻止中國發展其存儲晶元能力和相關軍事能力。
㈤ 中國計算機的主要發展歷程(側重比較有里程碑的事件和設備出現事件)
計算機發展歷程
計算機是新技術革命的一支主力,也是推動社會向現代化邁進的活躍因素。計算機科學與技術是第二次世界大戰以來發展最快、影響最為深遠的新興學科之一。計算機產業已在世界范圍內發展成為一種極富生命力的戰略產業。
現代計算機是一種按程序自動進行信息處理的通用工具,它的處理對象是信息,處理結果也是信息。利用計算機解決科學計算、工程設計、經營管理、過程式控制制或人工智慧等各種問題的方法,都是按照一定的演算法進行的。這種演算法是定義精確的一系列規則,它指出怎樣以給定的輸入信息經過有限的步驟產生所需要的輸出信息。
信息處理的一般過程,是計算機使用者針對待解抉的問題,事先編製程序並存入計算機內,然後利用存儲程序指揮、控制計算機自動進行各種基本操作,直至獲得預期的處理結果。計算機自動工作的基礎在於這種存儲程序方式,其通用性的基礎則在於利用計算機進行信息處理的共性方法。
計算機的歷史
現代計算機的誕生和發展 現代計算機問世之前,計算機的發展經歷了機械式計算機、機電式計算機和萌芽期的電子計算機三個階段。
早在17世紀,歐洲一批數學家就已開始設計和製造以數字形式進行基本運算的數字計算機。1642年,法國數學家帕斯卡採用與鍾表類似的齒輪傳動裝置,製成了最早的十進制加法器。1678年,德國數學家萊布尼茲製成的計算機,進一步解決了十進制數的乘、除運算。
英國數學家巴貝奇在1822年製作差分機模型時提出一個設想,每次完成一次算術運算將發展為自動完成某個特定的完整運算過程。1884年,巴貝奇設計了一種程序控制的通用分析機。這台分析機雖然已經描繪出有關程序控制方式計算機的雛型,但限於當時的技術條件而未能實現。
巴貝奇的設想提出以後的一百多年期間,電磁學、電工學、電子學不斷取得重大進展,在元件、器件方面接連發明了真空二極體和真空三極體;在系統技術方面,相繼發明了無線電報、電視和雷達……。所有這些成就為現代計算機的發展准備了技術和物質條件。
與此同時,數學、物理也相應地蓬勃發展。到了20世紀30年代,物理學的各個領域經歷著定量化的階段,描述各種物理過程的數學方程,其中有的用經典的分析方法已根難解決。於是,數值分析受到了重視,研究出各種數值積分,數值微分,以及微分方程數值解法,把計算過程歸結為巨量的基本運算,從而奠定了現代計算機的數值演算法基礎。
社會上對先進計算工具多方面迫切的需要,是促使現代計算機誕生的根本動力。20世紀以後,各個科學領域和技術部門的計算困難堆積如山,已經阻礙了學科的繼續發展。特別是第二次世界大戰爆發前後,軍事科學技術對高速計算工具的需要尤為迫切。在此期間,德國、美國、英國部在進行計算機的開拓工作,幾乎同時開始了機電式計算機和電子計算機的研究。
德國的朱賽最先採用電氣元件製造計算機。他在1941年製成的全自動繼電器計算機Z-3,已具備浮點記數、二進制運算、數字存儲地址的指令形式等現代計算機的特徵。在美國,1940~1947年期間也相繼製成了繼電器計算機MARK-1、MARK-2、Model-1、Model-5等。不過,繼電器的開關速度大約為百分之一秒,使計算機的運算速度受到很大限制。
電子計算機的開拓過程,經歷了從製作部件到整機從專用機到通用機、從「外加式程序」到「存儲程序」的演變。1938年,美籍保加利亞學者阿塔納索夫首先製成了電子計算機的運算部件。1943年,英國外交部通信處製成了「巨人」電子計算機。這是一種專用的密碼分析機,在第二次世界大戰中得到了應用。
1946年2月美國賓夕法尼亞大學莫爾學院製成的大型電子數字積分計算機(ENIAC),最初也專門用於火炮彈道計算,後經多次改進而成為能進行各種科學計算的通用計算機。這台完全採用電子線路執行算術運算、邏輯運算和信息存儲的計算機,運算速度比繼電器計算機快1000倍。這就是人們常常提到的世界上第一台電子計算機。但是,這種計算機的程序仍然是外加式的,存儲容量也太小,尚未完全具備現代計算機的主要特徵。
新的重大突破是由數學家馮·諾伊曼領導的設計小組完成的。1945年3月他們發表了一個全新的存儲程序式通用電子計算機方案—電子離散變數自動計算機(EDVAC)。隨後於1946年6月,馮·諾伊曼等人提出了更為完善的設計報告《電子計算機裝置邏輯結構初探》。同年7~8月間,他們又在莫爾學院為美國和英國二十多個機構的專家講授了專門課程《電子計算機設計的理論和技術》,推動了存儲程序式計算機的設計與製造。
1949年,英國劍橋大學數學實驗室率先製成電子離散時序自動計算機(EDSAC);美國則於1950年製成了東部標准自動計算機(SFAC)等。至此,電子計算機發展的萌芽時期遂告結束,開始了現代計算機的發展時期。
在創制數字計算機的同時,還研製了另一類重要的計算工具——模擬計算機。物理學家在總結自然規律時,常用數學方程描述某一過程;相反,解數學方程的過程,也有可能採用物理過程模擬方法,對數發明以後,1620年製成的計算尺,己把乘法、除法化為加法、減法進行計算。麥克斯韋巧妙地把積分(面積)的計算轉變為長度的測量,於1855年製成了積分儀。
19世紀數學物理的另一項重大成就——傅里葉分析,對模擬機的發展起到了直接的推動作用。19世紀後期和20世紀前期,相繼製成了多種計算傅里葉系數的分析機和解微分方程的微分分析機等。但是當試圖推廣微分分析機解偏微分方程和用模擬機解決一般科學計算問題時,人們逐漸認識到模擬機在通用性和精確度等方面的局限性,並將主要精力轉向了數字計算機。
電子數字計算機問世以後,模擬計算機仍然繼續有所發展,並且與數字計算機相結合而產生了混合式計算機。模擬機和混合機已發展成為現代計算機的特殊品種,即用在特定領域的高效信息處理工具或模擬工具。
20世紀中期以來,計算機一直處於高速度發展時期,計算機由僅包含硬體發展到包含硬體、軟體和固件三類子系統的計算機系統。計算機系統的性能—價格比,平均每10年提高兩個數量級。計算機種類也一再分化,發展成微型計算機、小型計算機、通用計算機(包括巨型、大型和中型計算機),以及各種專用機(如各種控制計算機、模擬—數字混合計算機)等。
計算機器件從電子管到晶體管,再從分立元件到集成電路以至微處理器,促使計算機的發展出現了三次飛躍。
在電子管計算機時期(1946~1959),計算機主要用於科學計算。主存儲器是決定計算機技術面貌的主要因素。當時,主存儲器有水銀延遲線存儲器、陰極射線示波管靜電存儲器、磁鼓和磁心存儲器等類型,通常按此對計算機進行分類。
到了晶體管計算機時期(1959~1964),主存儲器均採用磁心存儲器,磁鼓和磁碟開始用作主要的輔助存儲器。不僅科學計算用計算機繼續發展,而且中、小型計算機,特別是廉價的小型數據處理用計算機開始大量生產。
1964年,在集成電路計算機發展的同時,計算機也進入了產品系列化的發展時期。半導體存儲器逐步取代了磁心存儲器的主存儲器地位,磁碟成了不可缺少的輔助存儲器,並且開始普遍採用虛擬存儲技術。隨著各種半導體只讀存儲器和可改寫的只讀存儲器的迅速發展,以及微程序技術的發展和應用,計算機系統中開始出現固件子系統。
20世紀70年代以後,計算機用集成電路的集成度迅速從中小規模發展到大規模、超大規模的水平,微處理器和微型計算機應運而生,各類計算機的性能迅速提高。隨著字長4位、8位、16位、32位和64位的微型計算機相繼問世和廣泛應用,對小型計算機、通用計算機和專用計算機的需求量也相應增長了。
微型計算機在社會上大量應用後,一座辦公樓、一所學校、一個倉庫常常擁有數十台以至數百台計算機。實現它們互連的局部網隨即興起,進一步推動了計算機應用系統從集中式系統向分布式系統的發展。
在電子管計算機時期,一些計算機配置了匯編語言和子程序庫,科學計算用的高級語言FORTRAN初露頭角。在晶體管計算機階段,事務處理的COBOL語言、科學計算機用的ALGOL語言,和符號處理用的LISP等高級語言開始進入實用階段。操作系統初步成型,使計算機的使用方式由手工操作改變為自動作業管理。
進入集成電路計算機發展時期以後,在計算機中形成了相當規模的軟體子系統,高級語言種類進一步增加,操作系統日趨完善,具備批量處理、分時處理、實時處理等多種功能。資料庫管理系統、通信處理程序、網路軟體等也不斷增添到軟體子系統中。軟體子系統的功能不斷增強,明顯地改變了計算機的使用屬性,使用效率顯著提高。
在現代計算機中,外圍設備的價值一般已超過計算機硬體子系統的一半以上,其技術水平在很大程度上決定著計算機的技術面貌。外圍設備技術的綜合性很強,既依賴於電子學、機械學、光學、磁學等多門學科知識的綜合,又取決於精密機械工藝、電氣和電子加工工藝以及計量的技術和工藝水平等。
外圍設備包括輔助存儲器和輸入輸出設備兩大類。輔助存儲器包括磁碟、磁鼓、磁帶、激光存儲器、海量存儲器和縮微存儲器等;輸入輸出設備又分為輸入、輸出、轉換、、模式信息處理設備和終端設備。在這些品種繁多的設備中,對計算機技術面貌影響最大的是磁碟、終端設備、模式信息處理設備和轉換設備等。
新一代計算機是把信息採集存儲處理、通信和人工智慧結合在一起的智能計算機系統。它不僅能進行一般信息處理,而且能面向知識處理,具有形式化推理、聯想、學習和解釋的能力,將能幫助人類開拓未知的領域和獲得新的知識。
計算技術在中國的發展 在人類文明發展的歷史上中國曾經在早期計算工具的發明創造方面寫過光輝的一頁。遠在商代,中國就創造了十進制記數方法,領先於世界千餘年。到了周代,發明了當時最先進的計算工具——算籌。這是一種用竹、木或骨製成的顏色不同的小棍。計算每一個數學問題時,通常編出一套歌訣形式的演算法,一邊計算,一邊不斷地重新布棍。中國古代數學家祖沖之,就是用算籌計算出圓周率在3.1415926和3.1415927之間。這一結果比西方早一千年。
珠算盤是中國的又一獨創,也是計算工具發展史上的第一項重大發明。這種輕巧靈活、攜帶方便、與人民生活關系密切的計算工具,最初大約出現於漢朝,到元朝時漸趨成熟。珠算盤不僅對中國經濟的發展起過有益的作用,而且傳到日本、朝鮮、東南亞等地區,經受了歷史的考驗,至今仍在使用。
中國發明創造指南車、水運渾象儀、記里鼓車、提花機等,不僅對自動控制機械的發展有卓越的貢獻,而且對計算工具的演進產生了直接或間接的影響。例如,張衡製作的水運渾象儀,可以自動地與地球運轉同步,後經唐、宋兩代的改進,遂成為世界上最早的天文鍾。
記里鼓車則是世界上最早的自動計數裝置。提花機原理劉計算機程序控制的發展有過間接的影響。中國古代用陽、陰兩爻構成八卦,也對計算技術的發展有過直接的影響。萊布尼茲寫過研究八卦的論文,系統地提出了二進制算術運演算法則。他認為,世界上最早的二進製表示法就是中國的八卦。
經過漫長的沉寂,新中國成立後,中國計算技術邁入了新的發展時期,先後建立了研究機構,在高等院校建立了計算技術與裝置專業和計算數學專業,並且著手創建中國計算機製造業。
1958年和1959年,中國先後製成第一台小型和大型電子管計算機。60年代中期,中國研製成功一批晶體管計算機,並配製了ALGOL等語言的編譯程序和其他系統軟體。60年代後期,中國開始研究集成電路計算機。70年代,中國已批量生產小型集成電路計算機。80年代以後,中國開始重點研製微型計算機系統並推廣應用;在大型計算機、特別是巨型計算機技術方面也取得了重要進展;建立了計算機服務業,逐步健全了計算機產業結構。
在計算機科學與技術的研究方面,中國在有限元計算方法、數學定理的機器證明、漢字信息處理、計算機系統結構和軟體等方面都有所建樹。在計算機應用方面,中國在科學計算與工程設計領域取得了顯著成就。在有關經營管理和過程式控制制等方面,計算機應用研究和實踐也日益活躍。
計算機科學與技術
計算機科學與技術是一門實用性很強、發展極其迅速的面向廣大社會的技術學科,它建立在數學、電子學 (特別是微電子學)、磁學、光學、精密機械等多門學科的基礎之上。但是,它並不是簡單地應用某些學科的知識,而是經過高度綜合形成一整套有關信息表示、變換、存儲、處理、控制和利用的理論、方法和技術。
計算機科學是研究計算機及其周圍各種現象與規模的科學,主要包括理論計算機科學、計算機系統結構、軟體和人工智慧等。計算機技術則泛指計算機領域中所應用的技術方法和技術手段,包括計算機的系統技術、軟體技術、部件技術、器件技術和組裝技術等。計算機科學與技術包括五個分支學科,即理論計算機科學、計算機系統結構、計算機組織與實現、計算機軟體和計算機應用。
理論計算機學 是研究計算機基本理論的學科。在幾千年的數學發展中,人們研究了各式各樣的計算,創立了許多演算法。但是,以計算或演算法本身的性質為研究對象的數學理論,卻是在20世紀30年代才發展起來的。
當時,由幾位數理邏輯學者建立的演算法理論,即可計算性理論或稱遞歸函數論,對20世紀40年代現代計算機設計思想的形成產生過影響。此後,關於現實計算機及其程序的數學模型性質的研究,以及計算復雜性的研究等不斷有所發展。
理論計算機科學包括自動機論、形式語言理論、程序理論、演算法分析,以及計算復雜性理論等。自動機是現實自動計算機的數學模型,或者說是現實計算機程序的模型,自動機理論的任務就在於研究這種抽象機器的模型;程序設計語言是一種形式語言,形式語言理論根據語言表達能力的強弱分為O~3型語言,與圖靈機等四類自動機逐一對應;程序理論是研究程序邏輯、程序復雜性、程序正確性證明、程序驗證、程序綜合、形式語言學,以及程序設計方法的理論基礎;演算法分析研究各種特定演算法的性質。計算復雜性理論研究演算法復雜性的一般性質。
計算機系統結構 程序設計者所見的計算機屬性,著重於計算機的概念結構和功能特性,硬體、軟體和固件子系統的功能分配及其界面的確定。使用高級語言的程序設計者所見到的計算機屬性,主要是軟體子系統和固件子系統的屬性,包括程序語言以及操作系統、資料庫管理系統、網路軟體等的用戶界面。使用機器語言的程序設計者所見到的計算機屬性,則是硬體子系統的概念結構(硬體子系統結構)及其功能特性,包括指令系統(機器語言),以及寄存器定義、中斷機構、輸入輸出方式、機器工作狀態等。
硬體子系統的典型結構是馮·諾伊曼結構,它由運算器控制器、存儲器和輸入、輸出設備組成,採用「指令驅動」方式。當初,它是為解非線性、微分方程而設計的,並未預見到高級語言、操作系統等的出現,以及適應其他應用環境的特殊要求。在相當長的一段時間內,軟體子系統都是以這種馮·諾伊曼結構為基礎而發展的。但是,其間不相適應的情況逐漸暴露出來,從而推動了計算機系統結構的變革。
計算機組織與實現 是研究組成計算機的功能、部件間的相互連接和相互作用,以及有關計算機實現的技術,均屬於計算機組織與實現的任務。
在計算機系統結構確定分配給硬子系統的功能及其概念結構之後,計算機組織的任務就是研究各組成部分的內部構造和相互聯系,以實現機器指令級的各種功能和特性。這種相互聯系包括各功能部件的布置、相互連接和相互作用。
隨著計算機功能的擴展和性能的提高,計算機包含的功能部件也日益增多,其間的互連結構日趨復雜。現代已有三類互連方式,分別以中央處理器、存儲器或通信子系統為中心,與其他部件互連。以通信子系統為中心的組織方式,使計算機技術與通信技術緊密結合,形成了計算機網路、分布計算機系統等重要的計算機研究與應用領域。
與計算實現有關的技術范圍相當廣泛,包括計算機的元件、器件技術,數字電路技術,組裝技術以及有關的製造技術和工藝等。
軟體 軟體的研究領域主要包括程序設計、基礎軟體、軟體工程三個方面。程序設計指設計和編製程序的過程,是軟體研究和發展的基礎環節。程序設計研究的內容,包括有關的基本概念、規范、工具、方法以及方法學等。這個領域發展的特點是:從順序程序設計過渡到並發程序設計和分幣程序設計;從非結構程序設計方法過渡到結構程序設計方法;從低級語言工具過渡到高級語言工具;從具體方法過渡到方法學。
基礎軟體指計算機系統中起基礎作用的軟體。計算機的軟體子系統可以分為兩層:靠近硬體子系統的一層稱為系統軟體,使用頻繁,但與具體應用領域無關;另一層則與具體應用領域直接有關,稱為應用軟體;此外還有支援其他軟體的研究與維護的軟體,專門稱為支援軟體。
軟體工程是採用工程方法研究和維護軟體的過程,以及有關的技術。軟體研究和維護的全過程,包括概念形成、要求定義、設計、實現、調試、交付使用,以及有關校正性、適應性、完善性等三層意義的維護。軟體工程的研究內容涉及上述全過程有關的對象、結構、方法、工具和管理等方面。
軟體目動研究系統的任務是:在軟體工程中採用形式方法:使軟體研究與維護過程中的各種工作盡可能多地由計算機自動完成;創造一種適應軟體發展的軟體、固件與硬體高度綜合的高效能計算機。
計算機產業
計算機產業包括兩大部門,即計算機製造業和計算機服務業。後者又稱為信息處理產業或信息服務業。計算機產業是一種省能源、省資源、附加價值高、知識和技術密集的產業,對於國民經濟的發展、國防實力和社會進步均有巨大影響。因此,不少國家採取促進計算機產業興旺發達的政策。
計算機製造業包括生產各種計算機系統、外圍設備終端設備,以及有關裝置、元件、器件和材料的製造。計算機作為工業產品,要求產品有繼承性,有很高的性能-價格比和綜合性能。計算機的繼承性特別體現在軟體兼容性方面,這能使用戶和廠家把過去研製的軟體用在新產品上,使價格很高的軟體財富繼續發揮作用,減少用戶再次研製軟體的時間和費用。提高性能-價格比是計算機產品更新的目標和動力。
計算機製造業提供的計算機產品,一般僅包括硬體子系統和部分軟體子系統。通常,軟體子系統中缺少適應各種特定應用環境的應用軟體。為了使計算機在特定環境中發揮效能,還需要設計應用系統和研製應用軟體此外,計算機的運行和維護,需要有掌握專業知識的技術人員,這常常是一股用戶所作不到的。
針對這些社會需要,一些計算機製造廠家十分重視向用戶提供各種技術服務和銷售服務。一些獨立於計算機製造廠家的計算機服務機構,也在50年代開始出現。到60年代末期,計算機服務業在世界范圍內已形成為獨立的行業。
計算機的發展與應用
計算機科學與技術的各門學科相結合,改進了研究工具和研究方法,促進了各門學科的發展。過去,人們主要通過實驗和理論兩種途徑進行科學技術研究。現在,計算和模擬已成為研究工作的第三條途徑。
計算機與有關的實驗觀測儀器相結合,可對實驗數據進行現場記錄、整理、加工、分析和繪制圖表,顯著地提高實驗工作的質量和效率。計算機輔助設計已成為工程設計優質化、自動化的重要手段。在理論研究方面,計算機是人類大腦的延伸,可代替人腦的若干功能並加以強化。古老的數學靠紙和筆運算,現在計算機成了新的工具,數學定理證明之類的繁重腦力勞動,已可能由計算機來完成或部分完成。
計算和模擬作為一種新的研究手段,常使一些學科衍生出新的分支學科。例如,空氣動力學、氣象學、彈性結構力學和應用分析等所面臨的「計算障礙」,在有了高速計算機和有關的計算方法之後開始有所突破,並衍生出計算空氣動力學、氣象數值預報等邊緣分支學科。利用計算機進行定量研究,不僅在自然科學中發揮了重大的作用,在社會科學和人文學科中也是如此。例如,在人口普查、社會調查和自然語言研究方面,計算機就是一種很得力的工具。
計算機在各行各業中的廣泛應用,常常產生顯著的經濟效益和社會效益,從而引起產業結構、產品結構、經營管理和服務方式等方面的重大變革。在產業結構中已出觀了計算機製造業和計算機服務業,以及知識產業等新的行業。
微處理器和微計算機已嵌入機電設備、電子設備、通信設備、儀器儀表和家用電器中,使這些產品向智能化方向發展。計算機被引入各種生產過程系統中,使化工、石油、鋼鐵、電力、機械、造紙、水泥等生產過程的自動化水平大大提高,勞動生產率上升、質量提高、成本下降。計算機嵌入各種武器裝備和武器系統干,可顯著提高其作戰效果。
經營管理方面,計算機可用於完成統計、計劃、查詢、庫存管理、市場分析、輔助決策等,使經營管理工作科學化和高效化,從而加速資金周轉,降低庫存水準,改善服務質量,縮短新產品研製周期,提高勞動生產率。在辦公室自動化方面,計算機可用於文件的起草、檢索和管理等,顯著提高辦公效率。
計算機還是人們的學習工具和生活工具。藉助家用計算機、個人計算機、計算機網、資料庫系統和各種終端設備,人們可以學習各種課程,獲取各種情報和知識,處理各種生活事務(如訂票、購物、存取款等),甚至可以居家辦公。越來越多的人的工作、學習和生活中將與計算機發生直接的或間接的聯系。普及計算機教育已成為一個重要的問題。
總之,計算機的發展和應用已不僅是一種技術現象而且是一種政治、經濟、軍事和社會現象。世界各國都力圖主動地駕馭這種社會計算機化和信息化的進程,克服計算機化過程中可能出現的消極因素,更順利地向高智能化方向發展。
㈥ 半導體的現狀及其發展趨勢
中國計算50年
——中國數字電子計算機的創業歷程及領路人
(2006-09-11 16:18:31)
■ 中國科學院院士、北京科技大學教授 高慶獅
編者按: 一轉眼,中國的計算機事業已經走過了50個春秋。在《計算機世界》紀念中國計算機事業發展50年的過程中,我們看到,在這50年裡,有太多激動人心的創舉出現,也有太多令人黯然的無奈穿過。
幾代大師為了中國計算機事業的發展鞠躬盡瘁,更多人為了中國計算機產業的前行奮發圖強。為此,我們特邀中國科學院院士、北京科技大學教授、中國科學院計算技術研究所終身研究員高慶獅撰寫此文,以紀念過往、慶祝成就,同時也警醒現狀、激勵未來。
50年風雨之後,為了尋求ICT的融合和計算領域的更大發展,中國正在積極醞釀更好的政策環境。2006年8月29日,全國信息產業科技創新會議在京召開。
自從1946年,世界上第一台數字電子計算機在美國誕生,與計算機最鄰近領域的數學和物理界的共和國泰斗、世界數學大師華羅庚教授和中國原子能事業的奠基人錢三強教授,十分關注這一新技術如何在國內發展。
中國誕生計算機
從1951年起,國內外和計算機領域相近的其他領域人才,尤其是從國外回來的教授、工程師和博士,不斷轉入到該行業中。他們當中的很多人,都在華羅庚領導的中科院數學所和錢三強領導的中科院物理所里,其中包括國際電路網路權威閔乃大教授、在美國公司有多年實踐經驗的范新弼博士、在丹麥公司有多年實踐經驗的吳幾康工程師,以及從英國留學回來的夏培肅博士和從美國留學回來的蔣士飛博士。
他們積極推動,把發展計算機列入12年發展規劃。
1956年3月,由閔乃大教授、胡世華教授、徐獻瑜教授、張效祥教授、吳幾康副研究員和北大的黨政人員組成代表團,參加了在莫斯科主辦的「計算技術發展道路」國際會議,到前蘇聯「取經」,為我國制定12年規劃的計算機部分做技術准備。當時的代表團主要成員後來都參加了12年規劃。此外,范新弼、夏培肅和蔣士飛也加入規劃制定中。在隨後制定的12年規劃中,確定了中國要研製計算機,並批准中國科學院成立計算技術、半導體、電子學及自動化等四個研究所。
計算技術研究所籌備處由科學院、總參三部、國防五院(七機部)、二機部十局(四機部)四個單位聯合成立,北京大學、清華大學也相應成立了計算數學專業和計算機專業。為了迅速培養計算機專業人才,這三個單位聯合舉辦了第一屆計算機和第一屆計算數學訓練班。計算數學訓練班的學生有幸聽到了剛剛歸國的錢學森教授和董鐵寶教授講課。錢學森教授在當時已經是國際控制論的權威專家,而董鐵寶教授在美國已經有過3~4年的編程經驗,也是當時國內惟一真正接觸過計算機的學者。當時我也是學生之一。
錢學森的數學功底的深度和廣度幾乎涵蓋了我們所學的數學的所有課程,而且運用自如,我們作為北大數學系學生,對此感到十分欽佩。同時,錢學森教授也幫助我們具體了解到,數學如何應用到實際物理世界中。
在前蘇聯專家的幫助下,由七機部張梓昌高級工程師領導研發的中國第一台數字電子計算機103機(定點32二進制位,每秒2500次)在中國科學院計算技術研究所誕生,並於1958年交付使用。參與研發的骨幹有董占球、王行剛等年輕人。隨後,由總參張效祥教授領導的中國第一台大型數字電子計算機104機(浮點40二進制位、每秒1萬次)在1959年也交付使用,骨幹有金怡濂,蘇東庄,劉錫剛,姚錫珊,周錫令等人。其中,磁心存儲器是計算所副研究員范新弼和七機部黃玉珩高級工程師領導完成的。在104機上建立的、由仲萃豪和董韞美領導的中國第一個自行設計的編譯系統,則在1961年試驗成功(Fortran型)。
國防是首要服務對象
在任何先進國家,計算機的發展首先都是為國防服務,應用於國家戰略部署上,中國也不例外。1958年,北京大學張世龍領導包括當時作為學生的王選在內的北大師生,與中國人民解放軍空軍合作,自行設計研製了數字電子計算機「北京一號」,並交付空軍使用。當時中國人民解放軍朱德總司令還親自到北京大學北閣「北京一號」機房參觀了該機器。隨後,張世龍帶領北大師生(包括王選和許卓群在內),立即投入北大自行設計的「紅旗」計算機研製工作,當時設定的目標比前蘇聯專家幫助研製的104機還高,並於1962年試算成功。但是由於搬遷和文革的干擾,搬遷後「紅旗」一直沒有能夠恢復和繼續工作。
與此同時,1958年,在哈爾濱軍事工程學院(國防科技大學前身)海軍系柳克俊的領導下,哈爾濱軍事工程學院和中國人民解放軍海軍合作,自行設計了「901」海軍計算機,並交付海軍使用。在海軍系康繼昌的領導下,哈爾濱軍事工程學院和中國人民解放軍空軍合作,自行設計的「東風113」空軍機載計算機也交付空軍使用。隨後,柳克俊領導的國產晶體管軍用的計算機,也在1961年交付海軍使用。
1958年~1962年期間,中國人民解放軍總參謀部也前後獨立研製成功了一些自行設計、全部國產化的計算機。
1964年,中科院計算技術研究所吳幾康、范新弼領導的自行設計119機(通用浮點44二進制位、每秒 5萬次)也交付使用,這是中國第一台自行設計的電子管大型通用計算機,也是當時世界上最快的電子管計算機。當時美國等發達國家已經轉入晶體管計算機領域,119機雖不能說明中國具有極高水平,但是仍然能表明,中國有能力實現「外國有的,中國要有;外國沒有的,中國也要有」這個偉大目標。
在119機上建立的,是董韞美領導的自行設計的編譯系統,該系統在1965年交付使用(Algol型),後來移植到109丙機上繼續起作用。
哈爾濱軍事工程學院計算機系慈雲桂教授領導的自行設計的晶體管計算機441B(浮點40二進制位、每秒8千次)在1964年研製成功,骨幹人員包括康鵬等人。1965年,441B機改進為計算速度每秒兩萬次。
與此同時,中科院計算技術研究所蔣士飛領導的自行設計的晶體管計算機109乙機(浮點32二進制位、每秒6萬次),也在1965年交付使用。為了發展「兩彈一星」工程,1967年,由中科院計算機所蔣士飛領導,自行設計專為兩彈一星服務的計算機109丙機,並交付使用,骨幹有沈亞城、梁吟藻等人。兩台109丙機分別安裝在二機部供核彈研究用和七機部供火箭研究用。109丙機的使用時間長達15年,被譽為「功勛計算機」,是中國第一台具有分時、中斷系統和管理程序的計算機,而且,中國第一個自行設計的管理程序就是在它上面建立的。
這些由中國科研人員自力更生、努力拚搏研製出的第一批計算機,代表了中國人掌握計算機的技術水平和成果,證明了中國有能力發展自己的全部國產化的計算機事業。
突破百萬到超越億計算
雖然我國自行設計研製了多種型號的計算機,但運算速度一直未能突破百萬次大關。1973年,北京大學(由張世龍培養的、包括許卓群和張興華等骨幹人員)與「738廠」(包括孫強南、陳華林等骨幹人員)聯合研製的集成電路計算機150(通用浮點48二進制位、每秒1百萬次)問世。這是我國擁有的第一台自行設計的百萬次集成電路計算機,也是中國第一台配有多道程序和自行設計操作系統的計算機。該操作系統由北京大學楊芙清教授領導研製,是國內第一個自行設計的操作系統。
1973年3月,在全國實際研製目標200~500萬次不能滿足中國飛行體設計的計算流體力學需要的情形下,時任國防科委副主任的錢學森,根據飛行體設計需要,要求中科院計算所在20世紀70年代研製一億次高性能巨型機,80年代完成十億次和百億次高性能巨型機,並且指出必須考慮並行計算道路。中科院計算所根據國防情報所和計算所情報室提供的國際上的公開資料,分析了1970年前後美國研製的高性能巨型機的優缺點之後,於1973年5月提出「全部器件國產化一億次高性能巨型機(20M低功耗ECL、電路-四條流水線)及其模型機(757向量計算機、10M ECL、電路-單條流水線)」的可行方案。由於文革中受到嚴重干擾,以及文革後「走馬燈」式良莠不齊的領導亂指揮,盡管在1979年,由亞城負責的20M低功耗ECL電路的集成電路晶元投片已經研發成功,但是最終「全部器件國產化一億次高性能巨型機」的研發,因為任務變化,最終擱淺。
表1和表2給出了代表中國掌握電子管、晶體管、集成電路計算機技術的發展時間表,水平主要是根據創新的「三性」中的先進性。需要說明的是,表中所列只是代表中國已掌握的計算機技術水平的計算機,其中,帶*的103、104、119、150、757,及銀河-1號巨型機和銀河-2模擬計算機等7台計算機,都被載入「記述對中華文明發展起促進作用的重要歷史事件」的中華世紀壇青銅甬道銘文中。
除了研製水平之外,產業、市場和應用的發展也同樣重要。在批量生產計算機上,電子工業部及其相關研究所(例如著名的15所)和工廠(例如著名的738廠)功不可沒。不僅上述中國早期計算機的研製和批量生產要依靠它們,而且它們也獨立設計和研製過一些成批生產的計算機(例如108系列、與清華大學合作的DJS-130等),尤其在人造衛星地面系統(例如320計算機及艦上718計算機)及其他軍工任務上,這些研究所和工廠都有過突出貢獻。研究所和工廠研究工作的重點,主要是在技術和工藝方面。他們的領軍人包括莫根生、陳立偉、曹啟章及一批骨幹人員,例如江學國等。現任中國工程院院士羅沛霖領導的仿IBM系列也起過歷史性作用,沈緒榜和李三立負責的有關衛星天上和地上計算機及其他任務用的計算機也做出了重要的貢獻。此外,七機部、清華大學及中科院各分院在發展計算技術方面還做出了許多貢獻,這里就不枚舉了。
中國自力更生全部國產化的半導體、集成電路計算機事業,和20世紀50~70年代林蘭英、王守武、王守覺和徐元森等教授領導的中科院半導體所、上海冶金所和109廠的研究及開發工作是分不開的。中科院半導體所和109廠都是從中國科學院物理所獨立出來的,中科院物理所對中國計算機事業的歷史貢獻功不可沒。
人才培養至關重要
發展計算機事業離不開人才培養,20世紀50~70年代,中科院計算技術研究所(及之後的中國科技大學)的夏培肅副研究員、北京大學和哈爾濱軍事工程學院,在組織教師和學生動手研製計算機、進行實踐、培養人才等方面,都取得了很好的成績。夏培肅領導組織教師和學生動手研製了107(定點32二進制位、每秒 250次)計算機,該計算機於1960年交付使用,並且還復制了兩台。盡管107計算機比103(1958年交付使用)、104計算機(1959年交付使用)速度低了10倍到40倍,但是對培養人才起了重要作用。
一個計算機系統是由多方面研究成果構成的。范新弼領導的磁心存儲器長期處於領先地位,其中主要的骨幹有伍福寧、王振山、徐正春、張傑、甘鴻,等等。王克本領導了中國第一個八層印刷電路版研究與設計小組。方光旦在磁頭、磁膠,張品賢在磁帶,顧爾旺在磁鼓等方面,都做出了出色的貢獻。實際上,大多計算機的研發都是集體成果,例如全國參加757計算機研發工作的人員,就有上千人。
我國第一個「計算機系統結構設計」小組於1957年在中科院計算所成立。20世紀50~70年代,它承擔了中科院計算所代表性的計算機(119、109乙、109丙、757、717等計算機)的系統結構設計任務。參與成員則根據當時前蘇聯計算機領軍人物、前蘇聯科學院列貝捷夫院士的建議,由年輕的數學專業畢業生組成。第一任小組負責人是國際網路權威人士閔乃大教授,第一個正式設計任務則是1958年5月國防部門的「導彈防禦系統計算機」系統結構設計。設計工作由北京大學張世龍和第二任小組負責人虞承宣,加上6名數學專業畢業的大學生組成,其中周巢塵、沈緒榜等3人後來分別由不同領域(軟體、航天、系統結構)、不同單位被選為中科院院士。
中國20世紀60年代編譯系統的帶頭人在當時都是年輕人,如中國人民解放軍總參謀部楊奇、中科院計算所董韞美和仲萃豪、南京大學徐家福、國防科技大學陳火旺等。中國20世紀60年代操作系統的帶頭人有北京大學楊芙清、南京大學大孫仲秀等,當時也都是年輕人。軟體正確性設計(容易推廣到硬體的正確性設計)是近20多年國際上關注的具有巨大經濟效益、社會效益和理論價值的重大問題。我國領軍人物何積豐院士、周巢塵院士如今已經是國際上知名的佼佼者。20世紀70年代,逐漸形成容錯和檢測理論和實踐的帶頭人是魏道政,而知識處理的帶頭人是陸汝鈐。
依賴進口弊端過大
20世紀70年代後期以後,中國研製的計算機,幾乎全部使用進口元器件、進口部件。
由於超大規模集成電路迅速發展,數千萬甚至上億個晶體管逐漸能夠集成在一個晶元上,20世紀80年代及其之後得到迅速發展的計算機,是普通個人使用的「微機」(PC機)及超強「微機」(後者可以組成伺服器或者並行處理的高性能計算機),而其他各式各樣的計算機(包括超級中小型計算機在內)由於性價比問題,無法和微機競爭,就自然逐步退出舞台了。國際上沒有及時調整戰略的計算機公司,例如CDC公司、王安公司等,紛紛倒閉。雖然如此,國內那一段過渡時期為了滿足用戶需求而研製的各種機型也曾有過較大貢獻,例如張修領導的KJ8920,在為用戶提供優質服務軟體方面就很突出。
中國最早意識到個人計算機發展趨勢而率先轉向研究「微機」,並且做出突出貢獻的帶頭人有倪光南、韓承德等。
國內高性能計算機,有慈雲桂、盧錫城、周興銘、楊學軍領導的銀河系列;張效祥、金怡濂、陳左寧領導的神州系列;李國傑、孫凝暉領導的曙光系列;祝明發領導的聯想深騰系列;以及周興銘領導的銀河-2數字模擬巨型機等。PC機有聯想系列、長城系列、方正系列、同方系列等,其學術代表性帶頭人是倪光南,產業代表性的領軍人是柳傳志。
計算機產業作為一個產業鏈,軟體發展依賴於整機和應用需求的發展;整機的發展依賴於晶元、部件及需求的發展;晶元的發展則依賴於「集成電路生產線大三角形」的發展。這里集成電路生產線大三角形是指集成電路生產線的三大部分,即大底座、中間層和頂層。大底座(價值十多億美元的集成電路製造工藝生產線)是從拉單晶硅到光刻-擴散-參雜,到最後封裝,相當於過去林蘭英、王守武、王守覺和徐元森等領導中科院半導體所、上海冶金所的研究工作。中間層是各種高速低功耗電路設計,相當於過去中科院計算所電路設計組蔣士飛、沈亞城等人的研究工作。20世紀70年代,沈亞城所進行的高速低功耗ECL電路設計,直到做成晶元,才可以算做完成。頂層則是硅編譯等等軟體工作,這部分工作過去是計算所使用小規模集成電路時把邏輯設計圖變成為工程布線圖的手工工作,加上半導體所製造小規模集成電路各種掩模版所需的手工工作。在超大規模集成電路的情況下,從復雜性、可靠性角度,手工是絕對不可能完成的,需要依靠硅編譯來自動完成。
在允許部分進口的環境下,一個產業鏈如果要求全部國產化,會造成一環落後引發產業鏈後續部分全部落後的情況;使用進口元器件、進口部件,使得各種類型整機可以在國際先進基礎上得到發展,進而軟體和應用都能在國際先進基礎上得到發展,從市場經濟角度看,這無疑是正確的。
但是,當國內所研製的計算機全部轉向使用進口元器件、進口部件時,一方面中國的高性能計算和PC機的發展依賴於進口元器件和進口部件的水平;另一方面中國的集成電路研製力量,由於缺少巨大的經濟支持,都轉向非計算機用的其他難度小的方向。
「元器件全部進口化」導致的結果是,不僅全部國產化的億次高性能巨型機研製中止,而且真正完全自主的國產的計算機集成電路研製工作也中斷,至今也沒有恢復,甚至沒有任何恢復的跡象,這兩方面對國家安全都很不利。實際上,「集成電路生產線大三角形」依靠進口的集成電路生產線,就等於依賴外國集成電路生產線水平和外國政府批准向中國出口的集成電路生產線的水平。引進無法達到最先進,而且在特殊情況下,引進很可能中斷,引進的生產線的備份件也不能得到更新。
「中國芯」何時真正崛起
進入21世紀以後,李德磊負責的「方舟」、胡偉武負責的「龍芯」、以及王沁參加負責的「多思」、方信我負責的「國安」等等「中國芯」項目不斷涌現,計算機產業鏈國產化又前進了一大步。但當前或者未來將出現的眾多的「中國芯」的共同點,都是「集成電路生產線大三角形」的一個應用。也就是說,其水平仍然是依賴於外國集成電路生產線水平和外國政府批准向中國出口的集成電路生產線的水平,仍然受制於人。
眾多「中國芯」的主要的差別只是在系統結構設計上,或者在高速低功耗電路等設計上,有沒有重大創新、重大突破。設計明顯創新的,有國外學者稱之為相當於「大學生課程設計」水平,雖然難聽卻也有幾分道理。盡管能設計「中國芯」的人或公司越來越多,但是能設計「中國集成電路生產線大三角形」的人,如果不採取措施,不僅目前沒有,恐怕不遠的將來仍然是空白。如果中國不能製造中國的「集成電路生產線大三角形」,那麼無論有多少種「中國芯」,中國的高性能計算機和中國PC機的發展水平就必然還是取決於美國「集成電路生產線大三角形」的發展水平及美國政府允許向中國出口的水平。
現實的道路是,我們可以通過引進、消化、吸收與獨立研究相結合的方式發展晶元產業,而建立完全自主的「集成電路生產線大三角」,則應該是國家急需解決的重中之重。
早在1965年,中科院半導體所王守覺就開始研製從邏輯圖到掩模版的自動形成系統「圖形發生器」,這項研究比美國還早。由於文革破壞而中斷了3年,1971年初研製成功時,反而比美國晚了一年多。以上歷史說明,中國人的獨立研究能力也不容忽視,研究環境也不容被忽視。
如何做到既能使產業鏈的各個環節的發展都能建立在國際最高水平之上,又能確保國家安全?這不僅僅是一個計算機產業鏈的問題,應該是許多產業鏈所存在的共同問題,更是決策者急需處理的政策問題。
中國半個世紀電子數字計算機事業的領路人,是在兩位共和國功勛科學家華羅庚和錢三強關注下的一個群體,這個群體在50年前,是10多名從相鄰領域轉過來的30~40多歲的中青年帶頭人,和五、六十名受過專業教育的20多歲的青年骨幹,還有數十名當時尚未出世的後起之秀,本文列舉的,只是這個百人群體中的一小部分。
鏈接:文中部分科學家簡歷
華羅庚:江蘇金壇人。中國解析數論、典型群、矩陣幾何學、自守函數論與多復變函數論等很多方面研究的創始人與開拓者,國際知名數學家,先後當選美國科學院外籍院士,第三世界科學院院士,法國南錫大學、美國伊利諾大學、香港中文大學榮譽博士,聯邦德國巴伐利亞科學院院士等。
錢三強:浙江湖州人,出生於浙江紹興。核物理專家、中國核原子科學之父,曾師從居里的女兒、諾貝爾獎獲得者伊萊娜?居里及其丈夫約里奧?居里。在中國研發原子彈期間,擔任技術總負責人、總設計師,被追授「兩彈一星功勛獎章」。
范新弼:電子計算機專家,湖南長沙人。1951年獲美國斯坦福大學電子學博士學位,在電子器件研究與應用領域獲8項美國專利。歸國後,領導我國第一台大型計算機及其後多台大型計算機的磁芯存儲器研製工作,領導中國半導體存儲元件研究,建立了國內第一批測試設備。
張效祥:計算機專家、中國科學院院士(學部委員)、中國解放軍總參謀部計算技術研究所研究員。領導中國第一台大型通用電子計算機的仿製並在此後的35年中主持中國自行設計的電子管、晶體管到大規模集成電路各代大型計算機的研製,為中國計算機事業的創建、開拓和發展,起了重要作用。1985年,領導完成中國第一台億次巨型並行計算機系統。
錢學森:中國現代物理學家、世界著名火箭專家、全國政協副主席,浙江杭州市人,生於上海。錢學森曾在美國任講師、副教授、教授以及超音速實驗室主任和古根罕噴氣推進研究中心主任。1950年開始,歷經5年努力,於1955年才回到祖國,1958年起長期擔任火箭導彈和航天器研製的技術領導職務。
董鐵寶:力學家、計算數學家,江蘇武進人,「中國第一個程序員」(王選),長期致力於結構力學、斷裂力學、材料力學性能、計算數學的研究和教學,我國計算機研製和斷裂力學研究的先驅者之一。1945年赴美學習,1956年歸國教學,1968年在文革中因受迫害自殺。
金怡濂:中國工程院院士、著名高性能計算機專家、國家最高科學技術獎獲得者,原籍江蘇常州。中國第一台大型計算機研製者之一,先後提出多種類型、各個時期居國內領先或國際先進水平的大型、巨型計算機系統的設計思想和技術方案,為我國高性能計算機技術的跨越式發展和趕超世界計算機先進水平有著重要貢獻。
王選:江蘇無錫人。著名的計算機應用專家,主要致力於文字、圖形、圖象的計算機處理研究。中國科學院院士、中國工程院院士、第三世界科學院院士、國家最高科學技術獎獲得者。曾任北大方正集團董事、方正控股有限公司首席科技顧問,九三學社副主席、中國科協副主席、九三學社副主席、中國科協副主席。2003年當選十屆全國政協副主席。
周巢塵:計算機軟體專家,原籍江蘇南匯,中國科學院院士(學部委員)、第三世界科學院院士、中國科學院軟體研究所研究員,曾任聯合國大學國際軟體技術研究所所長。
楊芙清:北京大學計算機學科第一位教授、博士生導師,中國科學院院士(學部委員)、計算機科學技術及軟體專家,無錫人。歷任軟體工程國家工程研究中心主任、北京大學信息與工程科學學部主任、北京大學軟體工程研究所所長、北京大學計算機科技系教授。
孫仲秀:計算機科學家、中國科學院院士,原籍浙江餘杭,生於江蘇省南京市,歷任南京大學助教、講師、副教授、教授、博士生導師、副校長等職。1974年後主持研製了中國國產系列計算機DJS200系列的DJS200/XT1和 DJS200/XT1P等操作系統。從1979年起開始對分布式計算機系統軟體和應用進行了研究,1982年在國內首次研製成功ZCZ分布式微型計算機系統,研究和開發了多個實用的分布式計算機系統。
何積豐:中國科學院院士、計算機軟體專家,生於上海,祖籍浙江寧波。現任華東師范大學終身教授、軟體學院院長,上海嵌入式系統研究所所長、聯合國大學國際軟體技術研究所高級研究員。早年進行管理信息系統和辦公自動化系統的研發。
吳幾康:安徽歙縣人。計算機專家、中國計算機事業的開拓者之一。曾於1951年至1953年在丹麥任無線電廠開發工程師,歸國後調至中國科學院近代物理研究所,後參與籌建計算技術研究所。1965年負責研製成功兩台大型通用計算機,後參與籌建771微電子學研究所,任副所長和研究員。
張梓昌:電子計算機專家。江蘇崇明(今屬上海市)人。歷任航天工業部第二研究院所長、測控公司總工程師,中國計算機學會第一屆副理事長,中國宇航學會第一、二屆理事。長期從事電子設備和計算機的研製,曾負責我國第一台計算機的技術工作,是我國計算機技術的學科帶頭人之一。
張世龍:北京大學計算機科學與技術系主任、教授,曾參加我國第一台自行設計製造的大型計算機119機和北大紅旗計算機的系統設計。
慈雲桂:著名計算機科學家、教授,中國科學院技術科學部學部委員,安徽桐城人。歷任國防科技大學副校長兼電子計算機系主任和計算機研究所所長等職,先後主持了我國多種型號計算機的研製,從領導研製我國第一台電子管數字計算專用機,到擔任「銀河」億次計算機研製的技術總指揮和總設計師,為國家經濟建設、國防建設及科學研究事業做出了突出貢獻。
馮康:應用數學和計算數學家、中國科學院院士、世界數學史上具有重要地位的科學家。生於江蘇南京,原籍浙江紹興。其獨立創造了有限元方法、自然歸化和自然邊界元方法,開辟了辛幾何和辛格式研究新領域。中國現代計算數學研究的開拓者。1997年底國家自然科學一等獎授予馮康的另一項工作「哈密爾頓系統辛幾何演算法」。歷任中國科學院計算技術研究所任副研究員、研究員,中國科學院計算中心主任、名譽主任。(排名不分先後)
(計算機世界報)
參考資料:http://www.cnii.com.cn/20060808/ca371826.htm