① 示波器波形存儲器是什麼
有存儲功能的示波器存儲到存儲器中的是數據,也就是根據時間變化而變化的幅值,是一個一個的點。
舉例說明:
記錄長度(或者叫做存儲深度、存儲長度):10K(就是10000個點),那麼,在存儲器中的數據就是10000個點。無論采樣率和時基是多大,存儲器中只能存儲10000個點。
② 示波器的存儲深度大有什麼好處
存儲深度等於采樣率*采樣時間
1.在存儲深度一定的情況下,存儲速度越快,存儲時間就越短,他們之間是一個反比關系。
2.提高示波器的存儲深度可以間接提高示波器的采樣率:當要測量較長時間的波形時,由於存儲深度是固定的,所以只能降低采樣率來達到,但這樣勢必造成波形質量的下降;如果增大存儲深度,則可以以更高的采樣率來測量,以獲取不失真的波形。
③ 數字存儲示波器的工作原理是怎樣的
數字存儲示波器的工作原理:輸入的電壓信號經耦合電路後送至前端放大器,前端放大器將信號放大,以提高示波器的靈敏度和動態范圍。放大器輸出的信號由取樣/保持電路進行取樣,並由A/D轉換器數字化,經過A/D轉換後,信號變成了數字形式存入存儲器中,微處理器對存儲器中的數字化信號波形進行相應的處理,並顯示在顯示屏上。
數字示波器是數據採集,A/D轉換,軟體編程等一系列的技術製造出來的高性能示波器。數字示波器一般支持多級菜單,能提供給用戶多種選擇,多種分析功能。還有一些示波器可以提供存儲,實現對波形的保存和處理。 目前高端數字示波器主要依靠美國技術,對於300MHz帶寬之內的示波器,目前國內品牌的示波器在性能上已經可以和國外品牌抗衡,且具有明顯的性價比優勢。
④ 數字存儲示波器只能實時顯示波
數字存儲示波器不能實時顯示波形。數字示波器的處理時間比較長,每秒只捕捉幾十個波形,不能實時顯示所有數字波形。數字示波器有獨特的優勢可以進行波形觸發、存儲、測量等。
⑤ 示波器原理與使用
示波器是一種用途十分廣泛的電子測量儀器,它能把肉眼看不見的電信號變換成看得見的圖像。 示波器利用狹窄的、由高速電子組成的電子束,打在塗有熒光物質的屏面上,就可產生細小的光點。在被測信號的作用下,電子束在屏面上描繪出被測信號的瞬時值的變化曲線。
基本作用
用來測量交流電或脈沖電流波的形狀的儀器,由電子管放大器、掃描振盪器、陰極射線管等組成。除觀測電流的波形外,還可以測定頻率、電壓強度等。凡可以變為電效應的周期性物理過程都可以用示波器進行觀測
基本原理
波形顯示
由示波管的原理可知,一個直流電壓加到一對偏轉板上時,將使光點在熒光屏上產生一個固定位移,該位移的大小與所加直流電壓成正比。如果分別將兩個直流電壓同時加到垂直和水平兩對偏轉板上,則熒光屏上的光點位置就由兩個方向的位移所共同決定。
如果將一個正弦交流電壓加到一對偏轉板上時,光點在熒光屏上將隨電壓的變化而移動。當垂直偏轉板上加一個正弦交流電壓時,在時間t=0的瞬間,電壓為Vo(零值),熒光屏上的光點位置在坐標原點0上,在時間t=1的瞬間,電壓為V1(正值),熒光屏上光點在坐標原點0點上方的1上,位移的大小正比於電壓V1;在時間t=2的瞬間,電壓為V2(最大正值),熒光屏上的光點在坐標原點0點上方的2點上,位移的距離正比於電壓V2;以此類推,在時間t=3,t=4,…,t=8的各個瞬間,熒光屏上光點位置分別為3、4、…、8點。在交流電壓的第二個周期、第三個周期……都將重復第一個周期的情況。如果此時加在垂直偏轉板上的正弦交流電壓之頻率很低,僅為lHz~2Hz,那麼,在熒光屏上便會看見一個上下移動著的光點。這光點距離坐標原點的瞬時偏轉值將與加在垂直偏轉板上的電壓瞬時值成正比。如果加在垂直偏轉板上的交流電壓頻率在10Hz~20Hz以上,則由於熒光屏的余輝現象和人眼的視覺暫留現象,在熒光屏上看到的就不是一個上下移動的點,而是一根垂直的亮線了。該亮線的長短在示波器的垂直放大增益一定的情況下決定於正弦交流電壓峰一峰值的大小。如果在水平偏轉板上加一個正弦交流電壓,則會產生相類似的情況,只是光點在水平軸上移動罷了。
如果將一隨時間線性變化的電壓(如鋸齒波電壓)加到一對偏轉板上,則光點在熒光屏上又會怎樣移動呢?當水平偏轉板上有鋸齒波電壓時,在時間t=0瞬間,電壓為Vo(最大負值),熒光屏上光點在坐標原點左側的起始位置(零點上),位移的距離正比於電壓Vo;在時間t=1的瞬間,電壓為V1(負值),熒光屏上光點在坐標原點左方的1點上,位移的距離正比於電壓V1;以此類推,在時間t=2,t=3,...,t=8的各個瞬間,熒光屏上光點的對應位置是2、3、…、8各點。在t=8這個瞬間,鋸齒波電壓由最大正值V8躍變到最大負值Vo,則熒光屏上光點從8點極其迅速地向左移到起始位置零點。如果鋸齒波電壓是周期性的,則在鋸齒波電壓的第二個周期、第三個周期、……都將重復第一個周期的情形。如果此時加在水平偏轉板上的鋸齒波電壓頻率很低,僅為1Hz ~2Hz,在熒光屏上便會看見光點自左邊起始位置零點向右邊8點處勻速地移動,隨後光點又從右邊8點處極其迅速地移動到左邊起始位置零點。上述這個過程稱為掃描。在水平軸加有周期性鋸齒波電壓時,掃描將周而復始地進行下去。光點距離起始位置零點的瞬時值,將與加在偏轉板上的電壓瞬時值成正比。如果加在偏轉板上的鋸齒波電壓頻率在10Hz~20Hz以上,則由於熒光屏的余輝現象和人眼的視覺暫留現象,就看到一根水平亮線,該水平亮線的長度,在示波器水平放大增益一定的情況下決定於鋸齒波電壓值,鋸齒波電壓值是與時間變化成正比的,而熒光屏上光點的位移又是與電壓值成正比的,因此熒光屏上的水平亮線可以代表時間軸。在此亮線上的任何相等的線段都代表相等的一段時間。
如果將被測信號電壓加到垂直偏轉板上,鋸齒波掃描電壓加到水平偏轉板上,而且被測信號電壓的頻率等於鋸齒波掃描電壓的頻率,則熒光屏上將顯示出一個周期的被測信號電壓隨時間變化的波形曲線(如圖5-6所示)。由圖5-6所示可見,在時間t=0的瞬間,信號電壓為Vo(零值),鋸齒波電壓為V0′(負值),熒光屏上光點在坐標原點左面,位移的距離正比於電壓V0′;在時間t=1的瞬間,交流電壓為V1(正值),鋸齒波電壓為V1′(負值),熒光屏上光點在坐標的第Ⅱ象限中。同理,在時間t=2,t=3,…,t=8的瞬間,熒光屏上光點分別位於2,3,…,8點。在t=8瞬間,鋸齒波電壓由最大正值V8′跳變到最大負V0′,因而熒光屏上的光點也從8點極其迅速地向左移到起始位置0點。以後,在被測周期信號的第二個周期、第三個周期……都重復第一個周期的情形,光點在熒光屏上描出的軌跡也都重疊在第一次描出的軌跡上。所以,熒光屏上顯示出來的被測信號電壓是隨時間變化的穩定波形曲線。
由上述可見,為使熒光屏上的圖形穩定,被測信號電壓的頻率應與鋸齒波電壓的頻率保持整數比的關
SHS1000
系,即同步關系。為了實現這一點,就要求鋸齒波電壓的頻率連續可調,以便適應觀察各種不同頻率的周期信號。其次,由於被測信號頻率和鋸齒波振盪信號頻率的相對不穩定性,即使把鋸齒波電壓的頻率臨時調到與被測信號頻率成整倍數關系,也不能使圖形一直保持穩定。因此,示波器中都設有同步裝置。也就是在鋸齒波電路的某部分加上一個同步信號來促使掃描的同步,對於只能產生連續掃描(即產生周而復始連續不斷的鋸齒波)一種狀態的簡易示波器(如國產SB-10型示波器等)而言,需要在其掃描電路上輸入一個與被觀察信號頻率相關的同步信號,當所加同步信號的頻率接近鋸齒波頻率的自主振盪頻率(或接近其整數倍)時,就可以把鋸齒波頻率「拖入同步」或「鎖住」。對於具有等待掃描(即平時不產生鋸齒波,當被測信號來到時才產生一個鋸齒波進行一次掃描)功能的示波器(如國產ST-16型示波器、SBT-5型同步示波器、SR-8型雙蹤示波器等等)而言,需要在其掃描電路上輸入一個與被測信號相關的觸發信號,使掃描過程與被測信號密切配合。這樣,只要按照需要來選擇適當的同步信號或觸發信號,便可使任何欲研究的過程與鋸齒波掃描頻率保持同步。
雙線示波
在電子實踐技術過程中,常常需要同時觀察兩種(或兩種以上)信號隨時間變化的過程。並對這些不同信號進行電量的測試和比較。為了達到這個目的,人們在應用普通示波器原理的基礎上,採用了以下兩種同時顯示多個波形的方法:一種是雙線(或多線)示波法;另一種是雙蹤(或多蹤)示波法。應用這兩種方法製造出來的示波器分別稱為雙線(或多線)示波器和雙蹤(或多蹤)示波器。
雙線(或多線)示波器是採用雙槍(或多槍)示波管來實現的。下面以雙槍示波管為例加以簡單說明。雙槍示波管有兩個互相獨立的電子槍產生兩束電子。另有兩組互相獨立的偏轉系統,它們各自控制一束電子作上下、左右的運動。熒光屏是共用的,因而屏上可以同時顯示出兩種不同的電信號波形,雙線示波也可以採用單槍雙線示波管來實現。這種示波管只有一個電子槍,在工作時是依靠特殊的電極把電子分成兩束。然後,由管內的兩組互相獨立的偏轉系統,分別控制兩束電子上下、左右運動。熒光屏是共用的,能同時顯示出兩種不同的電信號波形。由於雙線示波管的製造工藝要求高,成本也高,所以應用並不十分普遍。
雙蹤示波
雙蹤(或多蹤)示波是在單線示波器的基礎上,增設一個專用電子開關,用它來實現兩種(或多種)波形的分別顯示。由於實現雙蹤(或多蹤)示波比實現雙線(或多線)示波來得簡單,不需要使用結構復雜、價格昂貴的「雙腔」或「多腔」示波管,所以雙蹤(或多蹤)示波獲得了普遍的應用。
⑥ 示波器 如何自動存儲數據
示波器的分段存儲功能可以解決你的問題:
分段存儲其實就是讓示波器只記錄我們想要的片段,從而可以更高效地利用示波器的存儲深度且保證波形細節。在足夠的采樣率下捕獲多個波形事件,以便進行有效的分析。分段存儲還可以幫助測試者捕獲偶發信號和更優化地保存和顯示所需的數據。
我們來看看如何設置分段存儲以記錄上圖中I2C匯流排信號的有用片段,以及如何用分段存儲來捕獲偶發信號和更優化地保存所需的數據。
首先,我們調整示波器的時基,設置好觸發方式,使得有用信息部分佔滿整個示波器屏幕,如下圖所示,可見此時的采樣率為1GSa/s
⑦ 數字存儲示波器 如何使用
1定義編輯
數字存儲示波器(Digital Storage oscilloscopes-DSO),所謂數字存儲就是在示波器中以數字編碼的形式來儲存信號。一般具有以下特點:
1.可以顯示大量的預觸發信息
2.可以通過使用游標和不使用游標的方法進行全自動測量
3.可以長期存儲波形
4.可以將波形傳送到計算機進行儲存或供進一步的分析之用
5.可以在列印機或繪圖儀上製作硬考貝以供編制文件之用
6.可以把新採集的波形和操作人員手工或示波器全自動採集的參考波形進行比較
7.可以按通過/不通過的原則進行判斷
8.波形信息可以用數學方法進行處理
2原理編輯
數字存儲示波器有別於一般的模擬示波器,它是將採集到的模擬電壓信號轉換為數字信號,由內部微機進行分析、處理、存儲、顯示或列印等操作。這類示波器通常具有程式控制和遙控能力,通過GPIB介面還可將數據傳輸到計算機等外部設備進行分析處理。
其工作過程一般分為存儲和顯示兩個階段。在存儲階段,首先對被測模擬信號進行采樣和量化,經A/D轉換器轉換成數字信號後,依次存入RAM中,當采樣頻率足夠高時,就可以實現信號的不失真存儲。當需要觀察這些信息時,只要以合適的頻率把這些信息從存儲器RAM中按原順序取出,經D/A轉換和LPE濾波後送至示波器就可以觀察的還原後的波形。
普通模擬示波器 CRT 上的 P31 熒光物質的余輝時間小於 1ms。在有些情況下,使用 P7 熒光物質的 CRT 能給出大約 300ms 的余輝時間。只要有信號照射熒光物質,CRT 就將不斷顯示信號波形。而當信號去掉以後使用 P31 材料的 CRT 上的掃跡迅速變暗,而使用 P7 材料的 CRT 上的掃跡停留時間稍長一些。
那麼,如果信號在一秒鍾內只有幾次,或者信號的周期僅為數秒,甚至信號只猝發一次,那又將會怎麼樣呢?在這種情況下,使用我們上面介紹過的模擬示波器幾乎乃至於完全不能觀察到這些信號。
所謂數字存儲就是在示波器中以數字編碼的形式來貯存信號。當信號進入數字存儲示波器,或稱 DSO 以後,在信號到達CRT 的偏轉電路之前(圖1),示波器將按一定的時間間隔對信號電壓進行采樣。然後用一個模/數變換器(ADC)對這些采樣值進行變換從而生成代表每一個采樣電壓的二進制字。這個過程稱為數字化。
獲得的二進制數值貯存在存儲器中。對輸入信號進行采樣的速率稱為采樣速率。采樣速率由采樣時鍾控制。對於一般使用情況來說,采樣速率的范圍從每秒 20 兆次(20MS/s)到 200MS/s。存儲器中貯存的數據用來在示波器的屏幕上重建信號波形。所以,在DSO中的輸入信號接頭和示波器 CRT 之間的電路不只是僅有模擬電路。輸入信號的波形在 CRT 上獲得顯示之前先要存貯到存儲器中,我們在示波器屏幕上看到的波形總是由所採集到數據重建的波形,而不是輸入連接端上所加信號的直接波形顯示。
3產品簡介編輯
TDS1000C-SC數字存儲示波器是2010年泰克公司針對中國市場推出的具備更多功能和更多性能的入門機型,截止2012年6月,TDS數字存儲示波器系列憑借其在數字實時采樣方面的優秀性能表現,加上所具備的多樣的分析功能和簡潔直觀的操作獲得「全球最受歡迎的示波器」稱號,更累積銷量達到15萬台。[1]
參考資料
1. TDS1000c數字存儲示波器 .泰克科技官網 [引用日期2013-02-4] .
⑧ 示波器原理與使用
示波器是一種用途十分廣泛的電子測量儀器。它能把肉眼看不見的電信號變換成看得見的圖像,便於人們研究各種電現象的變化過程。示波器利用狹窄的、由高速電子組成的電子束,打在塗有熒光物質的屏面上,就可產生細小的光點(這是傳統的模擬示波器的工作原理)。在被測信號的作用下,電子束就好像一支筆的筆尖,可以在屏面上描繪出被測信號的瞬時值的變化曲線。利用示波器能觀察各種不同信號幅度隨時間變化的波形曲線,還可以用它測試各種不同的電量,如電壓、電流、頻率、相位差、調幅度等等
示波器應用范圍
示波器在進行頻率測量時測量精度較低,誤差較大。頻譜儀可以准確的測量頻率並顯示被測信號的頻譜,但測量速度較慢,無法實時快速的跟蹤捕捉到被測信號頻率的變化。照度儀正是由於頻率計能夠快速准確的捕捉到被測信號頻率的變化,因此,頻率計擁有非常廣泛的應用范圍。
示波器的應用范圍和使用原理
1、在傳統的生產製造企業中,頻率計被廣泛的應用在產線的生產測試中。頻率計能夠快速的捕捉到晶體振盪器輸出頻率的變化,用戶通過使用頻率計能夠迅速的發現有故障的晶振產品,確保產品質量。
2、在計量實驗室中,頻率計被用來對各種電子測量設備的本地振盪器進行校準。
3、在無線通訊測試中,接地電阻測試儀頻率計既可以被用來對無線通訊基站的主時鍾進行校準,還可以被用來對無線電台的跳頻信號和頻率調制信號進行分析。