當前位置:首頁 » 服務存儲 » ibm存儲控制卡損壞
擴展閱讀
webinf下怎麼引入js 2023-08-31 21:54:13
堡壘機怎麼打開web 2023-08-31 21:54:11

ibm存儲控制卡損壞

發布時間: 2023-02-11 21:53:49

『壹』 ibm刀箱中能集成存儲

只有BladeCenter S機箱可以集成存儲,在這個機箱的左右兩側分別有一個磁碟籠(43W3581),每個磁碟籠可安裝6塊3.5英寸硬碟,其控制器為SAS控制器(43W3584),需要在刀片伺服器上安裝SAS 控制卡(46C7167)。

建議直接購買8886EVC這個型號的BCS刀片機箱,已經集成了2個磁碟籠和2個SAS控制器(含電池),電源也是滿配,只需要加交換模塊和刀片伺服器就能使用了。

『貳』 存儲器是怎麼存儲東西的 到現在都不明白存儲器是怎麼存儲的 現在都不知道為什麼

硬碟是現在計算機上最常用的存儲器之一。我們都知道,計算機之所以神奇,是因為它具有高速分析處理數據的能力。而這些數據都以文件的形式存儲在硬碟里。不過,計算機可不像人那麼聰明。在讀取相應的文件時,你必須要給出相應的規則。這就是分區概念。分區從實質上說就是對硬碟的一種格式化。當我們創建分區時,就已經設置好了硬碟的各項物理參數,指定了硬碟主引導記錄(即Master Boot Record,一般簡稱為MBR)和引導記錄備份的存放位置。而對於文件系統以及其他操作系統管理硬碟所需要的信息則是通過以後的高級格式化,即Format命令來實現。

面、磁軌和扇區

硬碟分區後,將會被劃分為面(Side)、磁軌(Track)和扇區(Sector)。需要注意的是,這些只是個虛擬的概念,並不是真正在硬碟上劃軌道。先從面說起,硬碟一般是由一片或幾片圓形薄膜疊加而成。我們所說,每個圓形薄膜都有兩個「面」,這兩個面都是用來存儲數據的。按照面的多少,依次稱為0面、1面、2面……由於每個面都專有一個讀寫磁頭,也常用0頭(head)、1頭……稱之。按照硬碟容量和規格的不同,硬碟面數(或頭數)也不一定相同,少的只有2面,多的可達數十面。各面上磁軌號相同的磁軌合起來,稱為一個柱面(Cylinder)(如圖1)。(圖)

上面我們提到了磁軌的概念。那麼究竟何為磁軌呢?由於磁碟是旋轉的,則連續寫入的數據是排列在一個圓周上的。我們稱這樣的圓周為一個磁軌。(如圖2)如果讀寫磁頭沿著圓形薄膜的半徑方向移動一段距離,以後寫入的數據又排列在另外一個磁軌上。根據硬碟規格的不同,磁軌數可以從幾百到數千不等;一個磁軌上可以容納數KB的數據,而主機讀寫時往往並不需要一次讀寫那麼多,於是,磁軌又被劃分成若干段,每段稱為一個扇區。一個扇區一般存放512位元組的數據。扇區也需要編號,同一磁軌中的扇區,分別稱為1扇區,2扇區……

計算機對硬碟的讀寫,處於效率的考慮,是以扇區為基本單位的。即使計算機只需要硬碟上存儲的某個位元組,也必須一次把這個位元組所在的扇區中的512位元組全部讀入內存,再使用所需的那個位元組。不過,在上文中我們也提到,硬碟上面、磁軌、扇區的劃分表面上是看不到任何痕跡的,雖然磁頭可以根據某個磁軌的應有半徑來對准這個磁軌,但怎樣才能在首尾相連的一圈扇區中找出所需要的某一扇區呢?原來,每個扇區並不僅僅由512個位元組組成的,在這些由計算機存取的數據的前、後兩端,都另有一些特定的數據,這些數據構成了扇區的界限標志,標志中含有扇區的編號和其他信息。計算機就憑借著這些標志來識別扇區

硬碟的數據結構

在上文中,我們談了數據在硬碟中的存儲的一般原理。為了能更深入地了解硬碟,我們還必須對硬碟的數據結構有個簡單的了解。硬碟上的數據按照其不同的特點和作用大致可分為5部分:MBR區、DBR區、FAT區、DIR區和DATA區。我們來分別介紹一下:

1.MBR區

MBR(Main Boot Record 主引導記錄區)�位於整個硬碟的0磁軌0柱面1扇區。不過,在總共512位元組的主引導扇區中,MBR只佔用了其中的446個位元組,另外的64個位元組交給了DPT(Disk Partition Table硬碟分區表)(見表),最後兩個位元組「55,AA」是分區的結束標志。這個整體構成了硬碟的主引導扇區。(圖)

主引導記錄中包含了硬碟的一系列參數和一段引導程序。其中的硬碟引導程序的主要作用是檢查分區表是否正確並且在系統硬體完成自檢以後引導具有激活標志的分區上的操作系統,並將控制權交給啟動程序。MBR是由分區程序(如Fdisk.exe)所產生的,它不依賴任何操作系統,而且硬碟引導程序也是可以改變的,從而實現多系統共存。

下面,我們以一個實例讓大家更直觀地來了解主引導記錄:

例:80 01 01 00 0B FE BF FC 3F 00 00 00 7E 86 BB 00

在這里我們可以看到,最前面的「80」是一個分區的激活標志,表示系統可引導;「01 01 00」表示分區開始的磁頭號為01,開始的扇區號為01,開始的柱面號為00;「0B」表示分區的系統類型是FAT32,其他比較常用的有04(FAT16)、07(NTFS);「FE BF FC」表示分區結束的磁頭號為254,分區結束的扇區號為63、分區結束的柱面號為764;「3F 00 00 00」表示首扇區的相對扇區號為63;「7E 86 BB 00」表示總扇區數為12289622。

2.DBR區

DBR(Dos Boot Record)是操作系統引導記錄區的意思。它通常位於硬碟的0磁軌1柱面1扇區,是操作系統可以直接訪問的第一個扇區,它包括一個引導程序和一個被稱為BPB(Bios Parameter Block)的本分區參數記錄表。引導程序的主要任務是當MBR將系統控制權交給它時,判斷本分區跟目錄前兩個文件是不是操作系統的引導文件(以DOS為例,即是Io.sys和Msdos.sys)。如果確定存在,就把它讀入內存,並把控制權 交給該文件。BPB參數塊記錄著本分區的起始扇區、結束扇區、文件存儲格式、硬碟介質描述符、根目錄大小、FAT個數,分配單元的大小等重要參數。DBR是由高級格式化程序(即Format.com等程序)所產生的。

3.FAT區

在DBR之後的是我們比較熟悉的FAT(File Allocation Table文件分配表)區。在解釋文件分配表的概念之前,我們先來談談簇(Cluster)的概念。文件佔用磁碟空間時,基本單位不是位元組而是簇。一般情況下,軟盤每簇是1個扇區,硬碟每簇的扇區數與硬碟的總容量大小有關,可能是4、8、16、32、64……

同一個文件的數據並不一定完整地存放在磁碟的一個連續的區域內,而往往會分成若干段,像一條鏈子一樣存放。這種存儲方式稱為文件的鏈式存儲。由於硬碟上保存著段與段之間的連接信息(即FAT),操作系統在讀取文件時,總是能夠准確地找到各段的位置並正確讀出。

為了實現文件的鏈式存儲,硬碟上必須准確地記錄哪些簇已經被文件佔用,還必須為每個已經佔用的簇指明存儲後繼內容的下一個簇的簇號。對一個文件的最後一簇,則要指明本簇無後繼簇。這些都是由FAT表來保存的,表中有很多表項,每項記錄一個簇的信息。由於FAT對於文件管理的重要性,所以FAT有一個備份,即在原FAT的後面再建一個同樣的FAT。初形成的FAT中所有項都標明為「未佔用」,但如果磁碟有局部損壞,那麼格式化程序會檢測出損壞的簇,在相應的項中標為「壞簇」,以後存文件時就不會再使用這個簇了。FAT的項數與硬碟上的總簇數相當,每一項佔用的位元組數也要與總簇數相適應,因為其中需要存放簇號。FAT的格式有多種,最為常見的是FAT16和FAT32。

4.DIR區

DIR(Directory)是根目錄區,緊接著第二FAT表(即備份的FAT表)之後,記錄著根目錄下每個文件(目錄)的起始單元,文件的屬性等。定位文件位置時,操作系統根據DIR中的起始單元,結合FAT表就可以知道文件在硬碟中的具體位置和大小了。

5.數據(DATA)區

數據區是真正意義上的數據存儲的地方,位於DIR區之後,占據硬碟上的大部分數據空間。

磁碟的文件系統
經常聽高手們說到FAT16、FAT32、NTFS等名詞,朋友們可能隱約知道這是文件系統的意思。可是,究竟這么多文件系統分別代表什麼含義呢?今天,我們就一起來學習學習:

1.什麼是文件系統?
所謂文件系統,它是操作系統中藉以組織、存儲和命名文件的結構。磁碟或分區和它所包括的文件系統的不同是很重要的,大部分應用程序都基於文件系統進行操作,在不同種文件系統上是不能工作的。

2.文件系統大家族
常用的文件系統有很多,MS-DOS和Windows 3.x使用FAT16文件系統,默認情況下Windows 98也使用FAT16,Windows 98和Me可以同時支持FAT16、FAT32兩種文件系統,Windows NT則支持FAT16、NTFS兩種文件系統,Windows 2000可以支持FAT16、FAT32、NTFS三種文件系統,Linux則可以支持多種文件系統,如FAT16、FAT32、NTFS、Minix、ext、ext2、xiafs、HPFS、VFAT等,不過Linux一般都使用ext2文件系統。下面,筆者就簡要介紹這些文件系統的有關情況:

(1)FAT16
FAT的全稱是「File Allocation Table(文件分配表系統)」,最早於1982年開始應用於MS-DOS中。FAT文件系統主要的優點就是它可以允許多種操作系統訪問,如MS-DOS、Windows 3.x、Windows 9x、Windows NT和OS/2等。這一文件系統在使用時遵循8.3命名規則(即文件名最多為8個字元,擴展名為3個字元)。

(2)VFAT
VFAT是「擴展文件分配表系統」的意思,主要應用於在Windows 95中。它對FAT16文件系統進行擴展,並提供支持長文件名,文件名可長達255個字元,VFAT仍保留有擴展名,而且支持文件日期和時間屬性,為每個文件保留了文件創建日期/時間、文件最近被修改的日期/時間和文件最近被打開的日期/時間這三個日期/時間。

(3)FAT32
FAT32主要應用於Windows 98系統,它可以增強磁碟性能並增加可用磁碟空間。因為與FAT16相比,它的一個簇的大小要比FAT16小很多,所以可以節省磁碟空間。而且它支持2G以上的分區大小。朋友們從附表中可以看出FAT16與FAT32的一不同。

(4)HPFS
高性能文件系統。OS/2的高性能文件系統(HPFS)主要克服了FAT文件系統不適合於高檔操作系統這一缺點,HPFS支持長文件名,比FAT文件系統有更強的糾錯能力。Windows NT也支持HPFS,使得從OS/2到Windows NT的過渡更為容易。HPFS和NTFS有包括長文件名在內的許多相同特性,但使用可靠性較差。

(5)NTFS
NTFS是專用於Windows NT/2000操作系統的高級文件系統,它支持文件系統故障恢復,尤其是大存儲媒體、長文件名。NTFS的主要弱點是它只能被Windows NT/2000所識別,雖然它可以讀取FAT文件系統和HPFS文件系統的文件,但其文件卻不能被FAT文件系統和HPFS文件系統所存取,因此兼容性方面比較成問題。

ext2
這是Linux中使用最多的一種文件系統,因為它是專門為Linux設計,擁有最快的速度和最小的CPU佔用率。ext2既可以用於標準的塊設備(如硬碟),也被應用在軟盤等移動存儲設備上。現在已經有新一代的Linux文件系統如SGI公司的XFS、ReiserFS、ext3文件系統等出現。

小結:雖然上面筆者介紹了6種文件系統,但占統治地位的卻是FAT16/32、NTFS等少數幾種,使用最多的當然就是FAT32啦。只要在「我的電腦」中右擊某個驅動器的屬性,就可以在「常規」選項中(圖)看到所使用的文件系統。

明明白白識別硬碟編號
目前,電子市場上硬碟品牌最讓大家熟悉的無非是IBM、昆騰(Quantum)、希捷(Seagate),邁拓(Maxtor)等「老字型大小」。而這些硬碟型號的編號則各不相同,令人眼花繚亂。其實,這些編號均有一定的規律,表示一些特定?的含義。一般來說,我們可以從其編號來了解硬碟的性能指標,包括介面?類型、轉速、容量等。作為DIY朋友來說,只有自己真正掌握正確識別硬碟編號,在選購硬碟時,就方便得多(以致不被「黑」),至少不會被賣的人說啥是啥。以下舉例說明,供朋友們參考。

一、IBM
IBM是硬碟業的巨頭,其產品幾乎涵蓋了所有硬碟領域。而且IBM還是去年硬碟容量、價格戰的始作蛹者。我們今天能夠用得上經濟上既便宜,而且容量又大的硬碟可都得感謝IBM。
IBM的每一個產品又分為多個系列,它的命名方式為:產品名+系列代號+介面類型+碟片尺寸+轉速+容量。以Deskstar 22GXP的13.5GB硬碟為例,該硬碟的型號為:DJNA-371350,字母D代表Deskstar產品,JN代表Deskstar25GP與22GP系列,A代表ATA介面,3代表3寸碟片,7是7200轉產品,最後四位數字為硬碟容量13.5GB。IBM系列代號(IDE)含義如下:
TT=Deskstar 16GP或14GXP JN=Deskstar 25GP或22GXP RV=Ultrastar 18LZX或36ZX
介面類型含義如下:A=ATA
S與U=Ultra SCSI、Ultra SCSI Wide、Ultra SCSI SCA、增強型SCSI、
增強擴展型SCSI(SCA)
C=Serial Storage Architecture連續存儲體系SCSI L=光纖通道SCSI

二、MAXTOR(邁拓)
MAXTOR是韓國現代電子美國公司的一個獨立子公司,以前該公司的產品也覆蓋了IDE與SCSI兩個方面,但由於SCSI方面的產品缺乏竟爭力而最終放棄了這個高端市場從而主攻IDE硬碟,所以MAXTOR公司應該是如今硬碟廠商中最專一的了。
MAXTOR硬碟編號規則如下:首位+容量+介面類型+磁頭數,MAXTOR?從鑽石四代開始,其首位數字就為9,一直延續到現在,所以大家如今能在電子市場上見到的MAXTOR硬碟首位基本上都為9。另外比較特殊的是MAXTOR編號中有磁頭數這一概念,因為MAXTOR硬碟是大打單碟容量的發起人,所以其硬碟的型號中要將單碟容量從磁頭數中體現出來。單碟容量=2*硬碟總容量/磁頭數。
現以金鑽三代(DiamondMax Plus6800)10.2GB的硬碟為例說明:該硬碟?型號為91024U3,9是首位,1024是容量,U是介面類型UDMA66,3代表該硬碟有3個磁頭,也就是說其中的一個碟片是單面有數據。這個單碟容量就為2*10.2/3=6.8GB。MAXTOR硬碟介面類型字母含義如:
A=PIO模式 D=UDMA33模式 U=UDMA66模式

三、SEAGATE(希捷)
希捷科技公司(Seagate Technology)是世界上最大的磁碟驅動器、磁?盤和讀寫磁頭生產廠家,該公司是一直是IBM、COMPAQ、SONY等業界大戶的硬碟供應商。希捷還保持著業界第一款10000轉硬碟的記錄(捷豹Cheetah系列SCSI)與最大容量(捷豹三代73GB)的記錄,公司的實力由此可見一斑。但?由於希捷一直是以高端應用為主(例如SCSI硬碟),而並不是特別重視低端家用產品的開發,從而導致在DIY一族心目中的地位不如昆騰等硬碟供應商?。好在希捷公司及時注意到了這個問題,不久前投入市場的酷魚(Barracuda)系列就一掃希捷硬碟以往在單碟容量、轉速、噪音、非正常外頻下工作穩?定性、綜合性能上的劣勢。
希捷的硬碟系列從低端到高端的產品名稱分別為:U4系列、Medalist(金牌)系列、U8系列、Medalist Pro(金牌Pro)系列、Barracuda(酷魚)系列。其中Medalist Pro與Barracuda系列是7200轉的產品,其他的是5400轉的產品。硬碟的型號均以ST開頭,現以酷魚10.2GB硬碟為例來說明。該硬碟的型號是:ST310220A,在ST後第一位數字是代表硬碟的尺寸,3就是該硬碟採用3寸碟片,如今其他規格的硬碟已基本上沒有了,所以大家能夠見到?的絕大多數硬碟該位數字均不3,3後面的1022代表的是該硬碟的格式化容量是10.22GB,最後一位數字0是代表7200轉產品。這一點不要混淆與希捷以前的入門級產品Medalist ST38420A混淆。多數希捷的Medalist Pro系列開始,以結尾的產品均代表7200轉硬碟,其它數字結尾(包括1、2)代表5400轉的產品。位於型號最後的字母是硬碟的介面類型。希捷硬碟的介面類型字母含義如下:
A=ATA UDMA33或UDMA66 IDE介面 AG為筆記本電腦專用的ATA介面硬碟。
W為ULTRA Wide SCSI,
其數據傳輸率為40MB每秒 N為ULTRA Narrow SCSI,其數據傳輸率為20MB每秒。
而ST34501W/FC和ST19101N/FC中的FC(Fibre Channel)表示光纖通道,可提供高達每秒100MB的數據傳輸率,並且支持熱插拔。

硬碟及介面標準的發展歷史
一、硬碟的歷史
說起硬碟的歷史,我們不能不首先提到藍色巨人IBM所發揮的重要作用,正是IBM發明了硬碟,並且為硬碟的發展做出了一系列重大貢獻。在發明磁碟系統之前,計算機使用穿孔紙帶、磁帶等來存儲程序與數據,這些存儲方式不僅容量低、速度慢,而且有個大缺陷:它們都是順序存儲,為了讀取後面的數據,必須從頭開始讀,無法實現隨機存取數據。
在1956年9月,IBM向世界展示了第一台商用硬碟IBM 350 RAMAC(Random Access Method of Accounting and Control),這套系統的總容量只有5MB,卻是使用了50個直徑為24英寸的磁碟組成的龐然大物。而在1968年IBM公司又首次提出了「溫徹斯特」Winchester技術。「溫徹斯特」技術的精髓是:「使用密封、固定並高速旋轉的鍍磁碟片,磁頭沿碟片徑向移動,磁頭磁頭懸浮在高速轉動的碟片上方,而不與碟片直接接觸」,這便是現代硬碟的原型。在1973年IBM公司製造出第一台採用「溫徹期特」技術製造的硬碟,從此硬碟技術的發展有了正確的結構基礎。1979年,IBM再次發明了薄膜磁頭,為進一步減小硬碟體積、增大容量、提高讀寫速度提供了可能。70年代末與80年代初是微型計算機的萌芽時期,包括希捷、昆騰、邁拓在內的許多著名硬碟廠商都誕生於這一段時間。1979年,IBM的兩位員工Alan Shugart和Finis Conner決定要開發像5.25英寸軟碟機那樣大小的硬碟驅動器,他們離開IBM後組建了希捷公司,次年,希捷發布了第一款適合於微型計算機使用的硬碟,容量為5MB,體積與軟碟機相仿。
PC時代之前的硬碟系統都具有體積大、容量小、速度慢和價格昂貴的特點,這是因為當時計算機的應用范圍還太小,技術與市場之間是一種相互制約的關系,使得包括存儲業在內的整個計算機產業的發展都受到了限制。 80年代末期IBM對硬碟發展的又一項重大貢獻,即發明了MR(Magneto Resistive)磁頭,這種磁頭在讀取數據時對信號變化相當敏感,使得碟片的存儲密度能夠比以往20MB每英寸提高了數十倍。1991年IBM生產的3.5英寸的硬碟使用了MR磁頭,使硬碟的容量首次達到了1GB,從此硬碟容量開始進入了GB數量級的時代 。1999年9月7日,邁拓公司(Maxtor)_宣布了首塊單碟容量高達10.2GB的ATA硬碟,從而把硬碟的容量引入了一個新里程碑。

二、介面標準的發展
(1)IDE和EIDE的由來
最早的IBM PC並不帶有硬碟,它的BIOS及DOS 1.0操作系統也不支持任何硬碟,因為系統的內存只有16KB,就連軟碟機和DOS都是可選件。後來DOS 2引入了子目錄系統,並添加了對「大容量」存儲設備的支持,於是一些公司開始出售供IBM PC使用的硬碟系統,這些硬碟與一塊控制卡、一個獨立的電源被一起裝在一個外置的盒子里,並通過一條電纜與插在擴展槽中的一塊適配器相連,為了使用這樣的硬碟,必須從軟碟機啟動,並載入一個專用設備驅動程序。
1983年IBM公司推出了PC/XT,雖然XT仍然使用8088 CPU,但配置卻要高得多,加上了一個10MB的內置硬碟,IBM把控制卡的功能集成到一塊介面控制卡上,構成了我們常說的硬碟控制器。其介面控制卡上有一塊ROM晶元,其中存有硬碟讀寫程序,直到基於80286處理器的PC/AT的推出,硬碟介面控製程序才被加入到了主板的BIOS中。
PC/XT和PC/AT機器使用的硬碟被稱為MFM硬碟或ST-506/412硬碟,MFM(Modified Frequency Molation)是指一種編碼方案,而ST-506/412則是希捷開發的一種硬碟介面,ST-506介面不需要任何特殊的電纜及接頭,但是它支持的傳輸速度很低,因此到了1987年左右這種介面就基本上被淘汰了。
邁拓於1983年開發了ESDI(Enhanced Small Drive Interface)介面。這種介面把編解碼器放在了硬碟本身之中,它的理論傳輸速度是ST-506的2~4倍。但由於成本比較高,九十年代後就逐步被淘汰掉了。
IDE(Integrated Drive Electronics)實際上是指把控制器與盤體集成在一起的硬碟驅動器,這樣減少了硬碟介面的電纜數目與長度,數據傳輸的可靠性得到了增強,硬碟製造起來變得更容易,對用戶而言,硬碟安裝起來也更為方便。IDE介面也叫ATA(Advanced Technology Attachment)介面。
ATA介面最初是在1986年由CDC、康柏和西部數據共同開發的,他們決定使用40芯的電纜,最早的IDE硬碟大小為5英寸,容量為40MB。ATA介面從80年代末期開始逐漸取代了其它老式介面。
80年代末期IBM發明了MR(Magneto Resistive)磁阻磁頭,這種磁頭在讀取數據時對信號變化相當敏感,使得碟片的存儲密度能夠比以往的20MB/in2提高數十上百倍。1991年,IBM生產的3.5英寸硬碟0663-E12使用了MR磁頭,容量首次達到了1GB,從此硬碟容量開始進入了GB數量級,直到今天,大多數硬碟仍然採用MR磁頭。
人們在談論硬碟時經常講到PIO模式和DMA模式,它們是什麼呢?目前硬碟與主機進行數據交換的方式有兩種,一種是通過CPU執行I/O埠指令來進行數據的讀寫;另外,一種是不經過CPU的DMA方式。
PIO模式即Programming Input/Output Model。這種模式使用PC I/O埠指令來傳送所有的命令、狀態和數據。由於驅動器中有多個緩沖區,對硬碟的讀寫一般採用I/O串操作指令,這種指令只需一次取指令就可以重復多次地完成I/O操作,因此,達到高的數據傳輸率是可能的。
DMA即Direct Memory Access。它表示數據不經過CPU,而直接在硬碟和內存之間傳送。在多任務操作系統內,如OS/2、Linux、Windows NT等,當磁碟傳輸數據時,CPU可騰出時間來做其它事情,而在DOS/Windows3.X環境里,CPU不得不等待數據傳輸完畢,所以在這種情況下,DMA方式的意義並不大。
DMA方式有兩種類型:第三方DMA(third-party DMA)和第一方DMA(first-party DMA)(或稱匯流排主控DMA,Busmastering DMA)。第三方DMA通過系統主板上的DMA控制器的仲裁來獲得匯流排和傳輸數據。而第一方DMA,則完全由介面卡上的邏輯電路來完成,當然這樣就增加了匯流排主控介面的復雜性和成本。現在,所有較新的晶元組均支持匯流排主控DMA。
(2)SCSI介面
(Small Computer System Interface小型計算機系統介面)是一種與ATA完全不同的介面,它不是專門為硬碟設計的,而是一種匯流排型的系統介面,每個SCSI匯流排上可以連接包括SCSI控制卡在內的8個SCSI設備。SCSI的優勢在於它支持多種設備,傳輸速率比ATA介面快得多但價格也很高,獨立的匯流排使得它對CPU的佔用率很低。 最早的SCSI是於1979年由美國的Shugart公司(Seagate希捷公司的前身)制訂的,90年代初,SCSI發展到了SCSI-2,1995年推出了SCSI-3,其俗稱Ultra SCSI, 1997年推出了Ultra 2 SCSI(Fast-40),其採用了LVD(Low Voltage Differential,低電平微分)傳輸模式,16位的Ultra2SCSI(LVD)介面的最高傳輸速率可達80MB/S,允許介面電纜的最長為12米,大大增加了設備的靈活性。1998年,更高數據傳輸率的Ultra160/m SCSI(Wide下的Fast-80)規格正式公布,其最高數據傳輸率為160MB/s,昆騰推出的Atlas10K和Atlas四代等產品支持Ultra3 SCSI的Ultra160/m傳輸模式。
SCSI硬碟具備有非常優秀的傳輸性能。但由於大多數的主板並不內置SCSI介面,這就使得連接SCSI硬碟必須安裝相應的SCSI卡,目前關於SCSI卡有三個正式標准,SCSI-1,SCSI-2和SCSI-3,以及一些中間版本,要使SCSI硬碟獲得最佳性能就必須保證SCSI卡與SCSI硬碟版本一致(目前較新生產的SCSI硬碟和SCSI卡都是向前兼容的,不一定必須版本一致)。
(3)IEEE1394:IEEE1394又稱為Firewire(火線)或P1394,它是一種高速串列匯流排,現有的IEEE1394標准支持100Mbps、200Mbps和400Mbps的傳輸速率,將來會達到800Mbps、1600Mbps、3200Mbps甚至更高,如此高的速率使得它可以作為硬碟、DVD、CD-ROM等大容量存儲設備的介面。IEEE1394將來有望取代現有的SCSI匯流排和IDE介面,但是由於成本較高和技術上還不夠成熟等原因,目前仍然只有少量使用IEEE1394介面的產品,硬碟就更少了。

『叄』 求助,IBM X3650 M2 遠程式控制制卡無法登陸

用網線連接筆記本和m2的imm口,先ping下192.168.70.125,看能ping通不,如果不能,可能是修改過imm的地址,需要開蓋子,根據手冊上的指示跳線恢復默認地址。

『肆』 求助,IBM X3650 M2 遠程式控制制卡無法登陸

查看網路連接 最好能到機器旁邊直接登錄一下看可以嗎?可以就只能看網路架構了

『伍』 關於存儲設備

硬碟分區多少,和計算機運行速度關系不大,系統盤的大小會對系統運行速度有影響,所以C盤如果條件允許還是盡可能大一些.在存儲數據的時候,並不是連續排列的,在硬碟中,頻繁地建立、刪除文件會產生許多碎片,碎片積累多了,日後在訪問某個文件時,硬碟可能會花費很長的時間,不但訪問效率下降,而且還有可能損壞磁軌。為此,我們應該經常使用Windows 9x系統中的磁碟碎片整理程序對硬碟進行整理,整理完後最好再使用硬碟修復程序來修補那些有問題的磁軌。

附:
硬碟知識大集合

你新買來的硬碟是不能直接使用的,必須對它進行分區並進行格式化的才能儲存數據。

硬碟分區是操作系統安裝過程中經常談到的話題。對於一些簡單的應用,硬碟分區並不成為一種障礙,但對於一些復雜的應用,就不能不深入理解硬碟分區機制的某些細節。

硬碟的崩潰經常會遇見,特別是病毒肆虐的時代,關於引導分區的恢復與備份的技巧,你一定要掌握。

在使用電腦時,你往往會使用幾個操作系統。如何在硬碟中安裝多個操作系統?

如果你需要了解這方面的知識或是要解決上述問題,這期的「硬碟分區」專題會告訴你答案!

硬碟是現在計算機上最常用的存儲器之一。我們都知道,計算機之所以神奇,是因為它具有高速分析處理數據的能力。而這些數據都以文件的形式存儲在硬碟里。不過,計算機可不像人那麼聰明。在讀取相應的文件時,你必須要給出相應的規則。這就是分區概念。分區從實質上說就是對硬碟的一種格式化。當我們創建分區時,就已經設置好了硬碟的各項物理參數,指定了硬碟主引導記錄(即Master Boot Record,一般簡稱為MBR)和引導記錄備份的存放位置。而對於文件系統以及其他操作系統管理硬碟所需要的信息則是通過以後的高級格式化,即Format命令來實現。

面、磁軌和扇區

硬碟分區後,將會被劃分為面(Side)、磁軌(Track)和扇區(Sector)。需要注意的是,這些只是個虛擬的概念,並不是真正在硬碟上劃軌道。先從面說起,硬碟一般是由一片或幾片圓形薄膜疊加而成。我們所說,每個圓形薄膜都有兩個「面」,這兩個面都是用來存儲數據的。按照面的多少,依次稱為0面、1面、2面……由於每個面都專有一個讀寫磁頭,也常用0頭(head)、1頭……稱之。按照硬碟容量和規格的不同,硬碟面數(或頭數)也不一定相同,少的只有2面,多的可達數十面。各面上磁軌號相同的磁軌合起來,稱為一個柱面(Cylinder)(如圖1)。(圖)

上面我們提到了磁軌的概念。那麼究竟何為磁軌呢?由於磁碟是旋轉的,則連續寫入的數據是排列在一個圓周上的。我們稱這樣的圓周為一個磁軌。(如圖2)如果讀寫磁頭沿著圓形薄膜的半徑方向移動一段距離,以後寫入的數據又排列在另外一個磁軌上。根據硬碟規格的不同,磁軌數可以從幾百到數千不等;一個磁軌上可以容納數KB的數據,而主機讀寫時往往並不需要一次讀寫那麼多,於是,磁軌又被劃分成若干段,每段稱為一個扇區。一個扇區一般存放512位元組的數據。扇區也需要編號,同一磁軌中的扇區,分別稱為1扇區,2扇區……

計算機對硬碟的讀寫,處於效率的考慮,是以扇區為基本單位的。即使計算機只需要硬碟上存儲的某個位元組,也必須一次把這個位元組所在的扇區中的512位元組全部讀入內存,再使用所需的那個位元組。不過,在上文中我們也提到,硬碟上面、磁軌、扇區的劃分表面上是看不到任何痕跡的,雖然磁頭可以根據某個磁軌的應有半徑來對准這個磁軌,但怎樣才能在首尾相連的一圈扇區中找出所需要的某一扇區呢?原來,每個扇區並不僅僅由512個位元組組成的,在這些由計算機存取的數據的前、後兩端,都另有一些特定的數據,這些數據構成了扇區的界限標志,標志中含有扇區的編號和其他信息。計算機就憑借著這些標志來識別扇區

硬碟的數據結構

在上文中,我們談了數據在硬碟中的存儲的一般原理。為了能更深入地了解硬碟,我們還必須對硬碟的數據結構有個簡單的了解。硬碟上的數據按照其不同的特點和作用大致可分為5部分:MBR區、DBR區、FAT區、DIR區和DATA區。我們來分別介紹一下:

1.MBR區

MBR(Main Boot Record 主引導記錄區)�位於整個硬碟的0磁軌0柱面1扇區。不過,在總共512位元組的主引導扇區中,MBR只佔用了其中的446個位元組,另外的64個位元組交給了DPT(Disk Partition Table硬碟分區表)(見表),最後兩個位元組「55,AA」是分區的結束標志。這個整體構成了硬碟的主引導扇區。(圖)

主引導記錄中包含了硬碟的一系列參數和一段引導程序。其中的硬碟引導程序的主要作用是檢查分區表是否正確並且在系統硬體完成自檢以後引導具有激活標志的分區上的操作系統,並將控制權交給啟動程序。MBR是由分區程序(如Fdisk.exe)所產生的,它不依賴任何操作系統,而且硬碟引導程序也是可以改變的,從而實現多系統共存。

下面,我們以一個實例讓大家更直觀地來了解主引導記錄:

例:80 01 01 00 0B FE BF FC 3F 00 00 00 7E 86 BB 00

在這里我們可以看到,最前面的「80」是一個分區的激活標志,表示系統可引導;「01 01 00」表示分區開始的磁頭號為01,開始的扇區號為01,開始的柱面號為00;「0B」表示分區的系統類型是FAT32,其他比較常用的有04(FAT16)、07(NTFS);「FE BF FC」表示分區結束的磁頭號為254,分區結束的扇區號為63、分區結束的柱面號為764;「3F 00 00 00」表示首扇區的相對扇區號為63;「7E 86 BB 00」表示總扇區數為12289622。

2.DBR區

DBR(Dos Boot Record)是操作系統引導記錄區的意思。它通常位於硬碟的0磁軌1柱面1扇區,是操作系統可以直接訪問的第一個扇區,它包括一個引導程序和一個被稱為BPB(Bios Parameter Block)的本分區參數記錄表。引導程序的主要任務是當MBR將系統控制權交給它時,判斷本分區跟目錄前兩個文件是不是操作系統的引導文件(以DOS為例,即是Io.sys和Msdos.sys)。如果確定存在,就把它讀入內存,並把控制權 交給該文件。BPB參數塊記錄著本分區的起始扇區、結束扇區、文件存儲格式、硬碟介質描述符、根目錄大小、FAT個數,分配單元的大小等重要參數。DBR是由高級格式化程序(即Format.com等程序)所產生的。

3.FAT區

在DBR之後的是我們比較熟悉的FAT(File Allocation Table文件分配表)區。在解釋文件分配表的概念之前,我們先來談談簇(Cluster)的概念。文件佔用磁碟空間時,基本單位不是位元組而是簇。一般情況下,軟盤每簇是1個扇區,硬碟每簇的扇區數與硬碟的總容量大小有關,可能是4、8、16、32、64……

同一個文件的數據並不一定完整地存放在磁碟的一個連續的區域內,而往往會分成若干段,像一條鏈子一樣存放。這種存儲方式稱為文件的鏈式存儲。由於硬碟上保存著段與段之間的連接信息(即FAT),操作系統在讀取文件時,總是能夠准確地找到各段的位置並正確讀出。

為了實現文件的鏈式存儲,硬碟上必須准確地記錄哪些簇已經被文件佔用,還必須為每個已經佔用的簇指明存儲後繼內容的下一個簇的簇號。對一個文件的最後一簇,則要指明本簇無後繼簇。這些都是由FAT表來保存的,表中有很多表項,每項記錄一個簇的信息。由於FAT對於文件管理的重要性,所以FAT有一個備份,即在原FAT的後面再建一個同樣的FAT。初形成的FAT中所有項都標明為「未佔用」,但如果磁碟有局部損壞,那麼格式化程序會檢測出損壞的簇,在相應的項中標為「壞簇」,以後存文件時就不會再使用這個簇了。FAT的項數與硬碟上的總簇數相當,每一項佔用的位元組數也要與總簇數相適應,因為其中需要存放簇號。FAT的格式有多種,最為常見的是FAT16和FAT32。

4.DIR區

DIR(Directory)是根目錄區,緊接著第二FAT表(即備份的FAT表)之後,記錄著根目錄下每個文件(目錄)的起始單元,文件的屬性等。定位文件位置時,操作系統根據DIR中的起始單元,結合FAT表就可以知道文件在硬碟中的具體位置和大小了。

5.數據(DATA)區

數據區是真正意義上的數據存儲的地方,位於DIR區之後,占據硬碟上的大部分數據空間。

磁碟的文件系統
經常聽高手們說到FAT16、FAT32、NTFS等名詞,朋友們可能隱約知道這是文件系統的意思。可是,究竟這么多文件系統分別代表什麼含義呢?今天,我們就一起來學習學習:

1.什麼是文件系統?
所謂文件系統,它是操作系統中藉以組織、存儲和命名文件的結構。磁碟或分區和它所包括的文件系統的不同是很重要的,大部分應用程序都基於文件系統進行操作,在不同種文件系統上是不能工作的。

2.文件系統大家族
常用的文件系統有很多,MS-DOS和Windows 3.x使用FAT16文件系統,默認情況下Windows 98也使用FAT16,Windows 98和Me可以同時支持FAT16、FAT32兩種文件系統,Windows NT則支持FAT16、NTFS兩種文件系統,Windows 2000可以支持FAT16、FAT32、NTFS三種文件系統,Linux則可以支持多種文件系統,如FAT16、FAT32、NTFS、Minix、ext、ext2、xiafs、HPFS、VFAT等,不過Linux一般都使用ext2文件系統。下面,筆者就簡要介紹這些文件系統的有關情況:

(1)FAT16
FAT的全稱是「File Allocation Table(文件分配表系統)」,最早於1982年開始應用於MS-DOS中。FAT文件系統主要的優點就是它可以允許多種操作系統訪問,如MS-DOS、Windows 3.x、Windows 9x、Windows NT和OS/2等。這一文件系統在使用時遵循8.3命名規則(即文件名最多為8個字元,擴展名為3個字元)。

(2)VFAT
VFAT是「擴展文件分配表系統」的意思,主要應用於在Windows 95中。它對FAT16文件系統進行擴展,並提供支持長文件名,文件名可長達255個字元,VFAT仍保留有擴展名,而且支持文件日期和時間屬性,為每個文件保留了文件創建日期/時間、文件最近被修改的日期/時間和文件最近被打開的日期/時間這三個日期/時間。

(3)FAT32
FAT32主要應用於Windows 98系統,它可以增強磁碟性能並增加可用磁碟空間。因為與FAT16相比,它的一個簇的大小要比FAT16小很多,所以可以節省磁碟空間。而且它支持2G以上的分區大小。朋友們從附表中可以看出FAT16與FAT32的一不同。

(4)HPFS
高性能文件系統。OS/2的高性能文件系統(HPFS)主要克服了FAT文件系統不適合於高檔操作系統這一缺點,HPFS支持長文件名,比FAT文件系統有更強的糾錯能力。Windows NT也支持HPFS,使得從OS/2到Windows NT的過渡更為容易。HPFS和NTFS有包括長文件名在內的許多相同特性,但使用可靠性較差。

(5)NTFS
NTFS是專用於Windows NT/2000操作系統的高級文件系統,它支持文件系統故障恢復,尤其是大存儲媒體、長文件名。NTFS的主要弱點是它只能被Windows NT/2000所識別,雖然它可以讀取FAT文件系統和HPFS文件系統的文件,但其文件卻不能被FAT文件系統和HPFS文件系統所存取,因此兼容性方面比較成問題。

ext2
這是Linux中使用最多的一種文件系統,因為它是專門為Linux設計,擁有最快的速度和最小的CPU佔用率。ext2既可以用於標準的塊設備(如硬碟),也被應用在軟盤等移動存儲設備上。現在已經有新一代的Linux文件系統如SGI公司的XFS、ReiserFS、ext3文件系統等出現。

小結:雖然上面筆者介紹了6種文件系統,但占統治地位的卻是FAT16/32、NTFS等少數幾種,使用最多的當然就是FAT32啦。只要在「我的電腦」中右擊某個驅動器的屬性,就可以在「常規」選項中(圖)看到所使用的文件系統。

明明白白識別硬碟編號
目前,電子市場上硬碟品牌最讓大家熟悉的無非是IBM、昆騰(Quantum)、希捷(Seagate),邁拓(Maxtor)等「老字型大小」。而這些硬碟型號的編號則各不相同,令人眼花繚亂。其實,這些編號均有一定的規律,表示一些特定?的含義。一般來說,我們可以從其編號來了解硬碟的性能指標,包括介面?類型、轉速、容量等。作為DIY朋友來說,只有自己真正掌握正確識別硬碟編號,在選購硬碟時,就方便得多(以致不被「黑」),至少不會被賣的人說啥是啥。以下舉例說明,供朋友們參考。

一、IBM
IBM是硬碟業的巨頭,其產品幾乎涵蓋了所有硬碟領域。而且IBM還是去年硬碟容量、價格戰的始作蛹者。我們今天能夠用得上經濟上既便宜,而且容量又大的硬碟可都得感謝IBM。
IBM的每一個產品又分為多個系列,它的命名方式為:產品名+系列代號+介面類型+碟片尺寸+轉速+容量。以Deskstar 22GXP的13.5GB硬碟為例,該硬碟的型號為:DJNA-371350,字母D代表Deskstar產品,JN代表Deskstar25GP與22GP系列,A代表ATA介面,3代表3寸碟片,7是7200轉產品,最後四位數字為硬碟容量13.5GB。IBM系列代號(IDE)含義如下:
TT=Deskstar 16GP或14GXP JN=Deskstar 25GP或22GXP RV=Ultrastar 18LZX或36ZX
介面類型含義如下:A=ATA
S與U=Ultra SCSI、Ultra SCSI Wide、Ultra SCSI SCA、增強型SCSI、
增強擴展型SCSI(SCA)
C=Serial Storage Architecture連續存儲體系SCSI L=光纖通道SCSI

二、MAXTOR(邁拓)
MAXTOR是韓國現代電子美國公司的一個獨立子公司,以前該公司的產品也覆蓋了IDE與SCSI兩個方面,但由於SCSI方面的產品缺乏竟爭力而最終放棄了這個高端市場從而主攻IDE硬碟,所以MAXTOR公司應該是如今硬碟廠商中最專一的了。
MAXTOR硬碟編號規則如下:首位+容量+介面類型+磁頭數,MAXTOR?從鑽石四代開始,其首位數字就為9,一直延續到現在,所以大家如今能在電子市場上見到的MAXTOR硬碟首位基本上都為9。另外比較特殊的是MAXTOR編號中有磁頭數這一概念,因為MAXTOR硬碟是大打單碟容量的發起人,所以其硬碟的型號中要將單碟容量從磁頭數中體現出來。單碟容量=2*硬碟總容量/磁頭數。
現以金鑽三代(DiamondMax Plus6800)10.2GB的硬碟為例說明:該硬碟?型號為91024U3,9是首位,1024是容量,U是介面類型UDMA66,3代表該硬碟有3個磁頭,也就是說其中的一個碟片是單面有數據。這個單碟容量就為2*10.2/3=6.8GB。MAXTOR硬碟介面類型字母含義如:
A=PIO模式 D=UDMA33模式 U=UDMA66模式

三、SEAGATE(希捷)
希捷科技公司(Seagate Technology)是世界上最大的磁碟驅動器、磁?盤和讀寫磁頭生產廠家,該公司是一直是IBM、COMPAQ、SONY等業界大戶的硬碟供應商。希捷還保持著業界第一款10000轉硬碟的記錄(捷豹Cheetah系列SCSI)與最大容量(捷豹三代73GB)的記錄,公司的實力由此可見一斑。但?由於希捷一直是以高端應用為主(例如SCSI硬碟),而並不是特別重視低端家用產品的開發,從而導致在DIY一族心目中的地位不如昆騰等硬碟供應商?。好在希捷公司及時注意到了這個問題,不久前投入市場的酷魚(Barracuda)系列就一掃希捷硬碟以往在單碟容量、轉速、噪音、非正常外頻下工作穩?定性、綜合性能上的劣勢。
希捷的硬碟系列從低端到高端的產品名稱分別為:U4系列、Medalist(金牌)系列、U8系列、Medalist Pro(金牌Pro)系列、Barracuda(酷魚)系列。其中Medalist Pro與Barracuda系列是7200轉的產品,其他的是5400轉的產品。硬碟的型號均以ST開頭,現以酷魚10.2GB硬碟為例來說明。該硬碟的型號是:ST310220A,在ST後第一位數字是代表硬碟的尺寸,3就是該硬碟採用3寸碟片,如今其他規格的硬碟已基本上沒有了,所以大家能夠見到?的絕大多數硬碟該位數字均不3,3後面的1022代表的是該硬碟的格式化容量是10.22GB,最後一位數字0是代表7200轉產品。這一點不要混淆與希捷以前的入門級產品Medalist ST38420A混淆。多數希捷的Medalist Pro系列開始,以結尾的產品均代表7200轉硬碟,其它數字結尾(包括1、2)代表5400轉的產品。位於型號最後的字母是硬碟的介面類型。希捷硬碟的介面類型字母含義如下:
A=ATA UDMA33或UDMA66 IDE介面 AG為筆記本電腦專用的ATA介面硬碟。
W為ULTRA Wide SCSI,
其數據傳輸率為40MB每秒 N為ULTRA Narrow SCSI,其數據傳輸率為20MB每秒。
而ST34501W/FC和ST19101N/FC中的FC(Fibre Channel)表示光纖通道,可提供高達每秒100MB的數據傳輸率,並且支持熱插拔。

硬碟及介面標準的發展歷史
一、硬碟的歷史
說起硬碟的歷史,我們不能不首先提到藍色巨人IBM所發揮的重要作用,正是IBM發明了硬碟,並且為硬碟的發展做出了一系列重大貢獻。在發明磁碟系統之前,計算機使用穿孔紙帶、磁帶等來存儲程序與數據,這些存儲方式不僅容量低、速度慢,而且有個大缺陷:它們都是順序存儲,為了讀取後面的數據,必須從頭開始讀,無法實現隨機存取數據。
在1956年9月,IBM向世界展示了第一台商用硬碟IBM 350 RAMAC(Random Access Method of Accounting and Control),這套系統的總容量只有5MB,卻是使用了50個直徑為24英寸的磁碟組成的龐然大物。而在1968年IBM公司又首次提出了「溫徹斯特」Winchester技術。「溫徹斯特」技術的精髓是:「使用密封、固定並高速旋轉的鍍磁碟片,磁頭沿碟片徑向移動,磁頭磁頭懸浮在高速轉動的碟片上方,而不與碟片直接接觸」,這便是現代硬碟的原型。在1973年IBM公司製造出第一台採用「溫徹期特」技術製造的硬碟,從此硬碟技術的發展有了正確的結構基礎。1979年,IBM再次發明了薄膜磁頭,為進一步減小硬碟體積、增大容量、提高讀寫速度提供了可能。70年代末與80年代初是微型計算機的萌芽時期,包括希捷、昆騰、邁拓在內的許多著名硬碟廠商都誕生於這一段時間。1979年,IBM的兩位員工Alan Shugart和Finis Conner決定要開發像5.25英寸軟碟機那樣大小的硬碟驅動器,他們離開IBM後組建了希捷公司,次年,希捷發布了第一款適合於微型計算機使用的硬碟,容量為5MB,體積與軟碟機相仿。
PC時代之前的硬碟系統都具有體積大、容量小、速度慢和價格昂貴的特點,這是因為當時計算機的應用范圍還太小,技術與市場之間是一種相互制約的關系,使得包括存儲業在內的整個計算機產業的發展都受到了限制。 80年代末期IBM對硬碟發展的又一項重大貢獻,即發明了MR(Magneto Resistive)磁頭,這種磁頭在讀取數據時對信號變化相當敏感,使得碟片的存儲密度能夠比以往20MB每英寸提高了數十倍。1991年IBM生產的3.5英寸的硬碟使用了MR磁頭,使硬碟的容量首次達到了1GB,從此硬碟容量開始進入了GB數量級的時代 。1999年9月7日,邁拓公司(Maxtor)_宣布了首塊單碟容量高達10.2GB的ATA硬碟,從而把硬碟的容量引入了一個新里程碑。

二、介面標準的發展
(1)IDE和EIDE的由來
最早的IBM PC並不帶有硬碟,它的BIOS及DOS 1.0操作系統也不支持任何硬碟,因為系統的內存只有16KB,就連軟碟機和DOS都是可選件。後來DOS 2引入了子目錄系統,並添加了對「大容量」存儲設備的支持,於是一些公司開始出售供IBM PC使用的硬碟系統,這些硬碟與一塊控制卡、一個獨立的電源被一起裝在一個外置的盒子里,並通過一條電纜與插在擴展槽中的一塊適配器相連,為了使用這樣的硬碟,必須從軟碟機啟動,並載入一個專用設備驅動程序。
1983年IBM公司推出了PC/XT,雖然XT仍然使用8088 CPU,但配置卻要高得多,加上了一個10MB的內置硬碟,IBM把控制卡的功能集成到一塊介面控制卡上,構成了我們常說的硬碟控制器。其介面控制卡上有一塊ROM晶元,其中存有硬碟讀寫程序,直到基於80286處理器的PC/AT的推出,硬碟介面控製程序才被加入到了主板的BIOS中。
PC/XT和PC/AT機器使用的硬碟被稱為MFM硬碟或ST-506/412硬碟,MFM(Modified Frequency Molation)是指一種編碼方案,而ST-506/412則是希捷開發的一種硬碟介面,ST-506介面不需要任何特殊的電纜及接頭,但是它支持的傳輸速度很低,因此到了1987年左右這種介面就基本上被淘汰了。
邁拓於1983年開發了ESDI(Enhanced Small Drive Interface)介面。這種介面把編解碼器放在了硬碟本身之中,它的理論傳輸速度是ST-506的2~4倍。但由於成本比較高,九十年代後就逐步被淘汰掉了。
IDE(Integrated Drive Electronics)實際上是指把控制器與盤體集成在一起的硬碟驅動器,這樣減少了硬碟介面的電纜數目與長度,數據傳輸的可靠性得到了增強,硬碟製造起來變得更容易,對用戶而言,硬碟安裝起來也更為方便。IDE介面也叫ATA(Advanced Technology Attachment)介面。
ATA介面最初是在1986年由CDC、康柏和西部數據共同開發的,他們決定使用40芯的電纜,最早的IDE硬碟大小為5英寸,容量為40MB。ATA介面從80年代末期開始逐漸取代了其它老式介面。
80年代末期IBM發明了MR(Magneto Resistive)磁阻磁頭,這種磁頭在讀取數據時對信號變化相當敏感,使得碟片的存儲密度能夠比以往的20MB/in2提高數十上百倍。1991年,IBM生產的3.5英寸硬碟0663-E12使用了MR磁頭,容量首次達到了1GB,從此硬碟容量開始進入了GB數量級,直到今天,大多數硬碟仍然採用MR磁頭。
人們在談論硬碟時經常講到PIO模式和DMA模式,它們是什麼呢?目前硬碟與主機進行數據交換的方式有兩種,一種是通過CPU執行I/O埠指令來進行數據的讀寫;另外,一種是不經過CPU的DMA方式。
PIO模式即Programming Input/Output Model。這種模式使用PC I/O埠指令來傳送所有的命令、狀態和數據。由於驅動器中有多個緩沖區,對硬碟的讀寫一般採用I/O串操作指令,這種指令只需一次取指令就可以重復多次地完成I/O操作,因此,達到高的數據傳輸率是可能的。
DMA即Direct Memory Access。它表示數據不經過CPU,而直接在硬碟和內存之間傳送。在多任務操作系統內,如OS/2、Linux、Windows NT等,當磁碟傳輸數據時,CPU可騰出時間來做其它事情,而在DOS/Windows3.X環境里,CPU不得不等待數據傳輸完畢,所以在這種情況下,DMA方式的意義並不大。
DMA方式有兩種類型:第三方DMA(third-party DMA)和第一方DMA(first-party DMA)(或稱匯流排主控DMA,Busmastering DMA)。第三方DMA通過系統主板上的DMA控制器的仲裁來獲得匯流排和傳輸數據。而第一方DMA,則完全由介面卡上的邏輯電路來完成,當然這樣就增加了匯流排主控介面的復雜性和成本。現在,所有較新的晶元組均支持匯流排主控DMA。
(2)SCSI介面
(Small Computer System Interface小型計算機系統介面)是一種與ATA完全不同的介面,它不是專門為硬碟設計的,而是一種匯流排型的系統介面,每個SCSI匯流排上可以連接包括SCSI控制卡在內的8個SCSI設備。SCSI的優勢在於它支持多種設備,傳輸速率比ATA介面快得多但價格也很高,獨立的匯流排使得它對CPU的佔用率很低。 最早的SCSI是於1979年由美國的Shugart公司(Seagate希捷公司的前身)制訂的,90年代初,SCSI發展到了SCSI-2,1995年推出了SCSI-3,其俗稱Ultra SCSI, 1997年推出了Ultra 2 SCSI(Fast-40),其採用了LVD(Low Voltage Differential,低電平微分)傳輸模式,16位的Ultra2SCSI(LVD)介面的最高傳輸速率可達80MB/S,允許介面電纜的最長為12米,大大增加了設備的靈活性。1998年,更高數據傳輸率的Ultra160/m SCSI(Wide下的Fast-80)規格正式公布,其最高數據傳輸率為160MB/s,昆騰推出的Atlas10K和Atlas四代等產品支持Ultra3 SCSI的Ultra160/m傳輸模式。
SCSI硬碟具備有非常優秀的傳輸性能。但由於大多數的主板並不內置SCSI介面,這就使得連接SCSI硬碟必須安裝相應的SCSI卡,目前關於SCSI卡有三個正式標准,SCSI-1,SCSI-2和SCSI-3,以及一些中間版本,要使SCSI硬碟獲得最佳性能就必須保證SCSI卡與SCSI硬碟版本一致(目前較新生產的SCSI硬碟和SCSI卡都是向前兼容的,不一定必須版本一致)。
(3)IEEE1394:IEEE1394又稱為Firewire(火線)或P1394,它是一種高速串列匯流排,現有的IEEE1394標准支持100Mbps、200Mbps和400Mbps的傳輸速率,將來會達到800Mbps、1600Mbps、3200Mbps甚至更高,如此高的速率使得它可以作為硬碟、DVD、CD-ROM等大容量存儲設備的介面。IEEE1394將來有望取代現有的SCSI匯流排和IDE介面,但是由於成本較高和技術上還不夠成熟等原因,目前仍然只有少量使用IEEE1394介面的產品,硬碟就更少了。

『陸』 存儲控制卡在伺服器上起到什麼做用沒有的話有影響么

一般存儲控制卡是在伺服器上用作組件磁碟陣列用的,也可能是用於硬碟介面不夠用的一個解決方法。沒有的話對於伺服器的影響是 當前已經組件的磁碟陣列(RAID)失效,和當前連接在控制卡上的硬碟或者其他存儲設備無法使用。如果上面什麼都沒有連接的話移除掉對系統沒有什麼影響。

『柒』 我的IBM的電腦不能開機了,打開以後就是系統自檢,自檢完就是進不去

電腦不啟動故障診治

了解電腦啟動的過程
在諸多電腦故障中,無法正常啟動是最令用戶頭痛的事了。筆者長期從事維護電腦的工作,在這個方面積累了一些經驗,現在就將這些經驗整理歸納出來與朋友們分享。本文將以家用電腦和windows98操作系統為基礎,介紹電腦無法正常啟動故障的診治。

要想准確地診斷電腦不啟動故障,首先要了解的起動過程,當我們按下電源開關時,電源就開始向主板和其它設備供電,此時電壓還沒有完全穩定,主板控制晶元組會根據CMOS中的CPU主頻設置向CPU發出一個Reset(重置)信號,讓CPU初始化,電壓完全穩定後,晶元組會撤去Reset信號,CPU馬上從地址FFFF0H處執行一條跳轉指令,跳到系統BIOS中真正的啟動代碼處。系統BIOS首先要做的事情就是進行POST(Power On Self Test,加電自檢)。POST的主要任務是檢測系統中的一些關鍵設備(電源、CPU晶元、BIOS晶元、定時器晶元、數據收發邏輯電路、DMA控制器、中斷控制器以及基本的64K內存和內存刷新電路等)是否存在和能否正常工作,如內存和顯卡等。

自檢通過後,系統BIOS將查找顯示卡的BIOS,由顯卡BIOS來完成顯示卡的初始化,顯示器開始有顯示,自此,系統就具備了最基本的運行條件,可以對主板上的其它部分進行診斷和測試,再發現故障時,屏幕上會有提示,但一般不死機,接著系統BIOS將檢測CPU的類型和工作頻率,然後開始測試主機所有的內存容量,內存測試通過之後,系統BIOS將開始檢測系統中安裝的一些標准硬體設備,這些設備包括:硬碟、CD-ROM、軟碟機、串列介面和並行介面等連接的設備,大多數新版本的系統BIOS在這一過程中還要自動檢測和設置內存的相關參數、硬碟參數和訪問模式等。

標准設備檢測完畢後,系統BIOS內部的支持即插即用的代碼將開始檢測和配置系統中已安裝的即插即用設備。每找到一個設備之後,系統BIOS都會在屏幕上顯示出設備的名稱和型號等信息,同時為該設備分配中斷、DMA通道和I/O埠等資源。最後系統BIOS將更新ESCD(Extended System Configuration Data,擴展系統配置數據)。ESCD數據更新完畢後,系統BIOS的啟動代碼將進行它的最後一項工作,即根據用戶指定的啟動順序從軟盤、硬碟或光碟機啟動。

以從C盤啟動為例,系統BIOS將讀取並執行硬碟上的主引導記錄,主引導記錄接著從分區表中找到第一個活動分區,然後讀取並執行這個活動分區的分區引導記錄,而分區引導記錄將負責讀取並執行IO.SYS,這是Windows最基本的系統文件。IO.SYS首先要初始化一些重要的系統數據,然後就顯示出我們熟悉的藍天白雲,在這幅畫面之下,Windows將繼續進行DOS部分和GUI(圖形用戶界面)部分的引導和初始化工作,一切順利結束,電腦正常啟動。

根據故障現象診治
了解電腦啟動的過程,故障就好判斷了,下面我們就根據故障現象開始診治了:

現象一:系統完全不能啟動,見不到電源指示燈亮,也聽不到冷卻風扇的聲音。這時,基本可以認定是電源部分故障,檢查:電源線和插座是否有電、主板電源插頭是否連好,UPS是否正常供電,再確認電源是否有故障,最簡單的就是替換法,但一般用戶家中不可能備有電源等備件,這時可以嘗試使用下面的方法(注意:要慎重):

先把硬碟,CPU風扇,或者CDROM連好,然後把ATX主板電源插頭用一根導線連接兩個插腳(把插頭的一側突起對著自己,上層插腳從左數第4個和下層插腳從右數第3個,方向一定要正確),然後把ATX電源的開關打開,如果電源風扇轉動,說明電源正常,否則電源損壞。如果電源沒問題直接短接主板上電源開關的跳線,如果正常,說明機箱面板的電源開關損壞。

現象二:電源批示燈亮,風扇轉,但沒有明顯的系統動作。這種情況如果出現在新組裝電腦上應該首先檢查CPU是否插牢或更換CPU,而正在使用的電腦的CPU損壞的情況比較少見(人為損壞除外),損壞時一般多帶有焦糊味,如果剛剛升級了BIOS或者遭遇了CIH病毒攻擊,這要考慮BIOS損壞問題(BIOS莫名其妙的損壞也是有的),修復BIOS的方法很多雜志都介紹過就不重復了;確認CPU和BIOS沒問題後,就要考慮CMOS設置問題,如果CPU主頻設置不正確也會出現這種故障,解決方法就是將CMOS信息清除,既要將CMOS放電,一般主板上都有一個CMOS放電的跳線,如果找不到這個跳線可以將CMOS電池取下來,放電時間不要低於5分鍾,然後將跳線恢復原狀或重新安裝好電池即可;如果CPU、BIOS和CMOS都沒問題還要考慮電源問題:PC機電源有一個特殊的輸出信號,稱為POWER GOOD(PG)信號,如果PG信號的低電平持續時間不夠或沒有低電平時間,PC機將無法啟動。如果PG信號一直為低電平,則PC機系統始終處於復位狀態。這時PC機也出現黑屏、無聲響等死機現象。但這需要專業的維修工具外加一些維修經驗,因此,建議採用替換法;電源沒有問題就要檢查是否有短路,確保主板表面不和金屬(特別是機箱的安裝固定點)接觸。把主板和電源拿出機箱,放在絕緣體表面,如果能啟動,說明主板有短路現象;如果還是不能啟動則要考慮主板問題,主板故障較為復雜,可以使用替換法確認,然後更換主板。

現象三:電源指示燈亮,系統能啟動,但系統在初始化時停住了,而且可以聽到嗽叭的鳴叫聲(沒有視頻):根據峰鳴代碼可以判斷出故障的部位。

ccid_page/

Award BIOS
1短聲:說明系統正常啟動。表明機器沒有問題。

2短聲:說明CMOS設置錯誤,重新設置不正確選項。

1長1短:說明內存或主板出錯,換一個內存條試試。

1長2短:說明顯示器或顯示卡存在錯誤。檢查顯卡和顯示器插頭等部位是否接觸良好或用替換法確定顯卡和顯示器是否損壞。

1長3短:說明鍵盤控制器錯誤,應檢查主板。

1長9短:說明主板Flash RAM、EPROM錯誤或BIOS損壞,更換Flash RAM。

重復短響:說明主板電源有問題。

不間斷的長聲:說明系統檢測到內存條有問題,重新安裝內存條或更換新內存條重試。

AMI BIOS
1短:說明內存刷新失敗。更換內存條。

2短:說明內存ECC較驗錯誤。在CMOS 中將內存ECC校驗的選項設為Disabled或更換內存。

3短:說明系統基本內存檢查失敗。換內存。

4短:說明系統時鍾出錯。更換晶元或CMOS電池。

5短:說明CPU出現錯誤。檢查CPU是否插好。

6短:說明鍵盤控制器錯誤。 應檢查主板。

7短:說明系統實模式錯誤,不能切換到保護模式。

8短:說明顯示內存錯誤。顯示內存有問題,更換顯卡試試。

9短:說明BIOS晶元檢驗和錯誤。

1長3短:說明內存錯誤。內存損壞,更換。

1長8短:說明顯示測試錯誤。顯示器數據線沒插好或顯示卡沒插牢。

現象四:系統能啟動,有視頻,出現故障提示,這時可以根據提示來判斷故障部位。下面就是一些常見的故障提示的判斷:

一、提示「CMOS Battery State Low」
原因:CMOS參數丟失,有時可以啟動,使用一段時間後死機,這種現象大多是CMOS供電不足引起的。

對於不同的CMOS供電方式,採取不同的措施:
1.焊接式電池:用電烙鐵重新焊上一顆新電池即可;

2.鈕扣式電池:直接更換;

3.晶元式:更換此晶元,最好採用相同型號晶元替換。

如果更換電池後時間不長又出現同樣現象的話,很可能是主板漏電,可檢查主板上的二極體或電容是否損壞,也可以跳線使用外接電池,不過這些都需要有一定的硬體維修基礎才能完成。

二、提示「CMOS Checksum Failure」
CMOS中的BIOS檢驗和讀出錯;提示「CMOS System Option Not Set」, CMOS系統未設置;提示「CMOS Display Type Mismatch 」,CMOS中顯示類型的設置與實測不一致;提示「CMOS Memory Size Mismatch」,主板上的主存儲器與CMOS中設置的不一樣;提示「CMOS Time & Date Not Set 」,CMOS中的時間和日期沒有設置。這些都需要對CMOS重新設置。

三、提示「Keyboard Interface Error」後死機
原因:主板上鍵盤介面不能使用,拔下鍵盤,重新插入後又能正常啟動系統,使用一段時間後鍵盤無反應,這種現象主要是多次拔插鍵盤引起主板鍵盤介面松動,拆下主板用電烙鐵重新焊接好即可;也可能是帶電拔插鍵盤,引起主板上一個保險電阻斷了(在主板上標記為Fn的東西),換上一個1歐姆/0.5瓦的電阻即可。

四、自檢過程中斷在xxxK Cache處
這表示主板上Cache損壞,可以在CMOS設置中將「External Cache」項設為「Disable」故障即可排除。同理,在自檢主板部件時出現中斷,則可以認為該部件損壞,解決方法一般可以在CMOS中將其屏蔽,如果不能屏蔽該部件最好更換主板。

五、提示「FDD Controller Failure」
BIOS不能與軟盤驅動器交換信息;提示「HDD Controller Failure」, BIOS不能與硬碟驅動器交換信息。應檢查FDD(HDD)控制卡及電纜。

六、提示「8042 Gate A20 Error 」
8042晶元壞;提示「DMA Error」, DMA 控制器壞。這種故障需要更換。

七、提示「Display Switch Not Proper」
主板上的顯示模式跳線設置錯誤,重新跳線。

八、提示「Keyboard is Lock...Unlock it」
鍵盤被鎖住,打開鎖後重新引導系統。

九、IDE介面設備檢測信息為:「Detecting Primary (或Secondary)Master(或Slave)... None」
表示該IDE介面都沒有找到硬碟,如果該IDE口確實接有硬碟的話,則說明硬碟沒接上或硬碟有故障,可以從以下幾方面檢查:

1、硬碟電源線和數據線是否接觸不良,或換一根線試試;

2、CMOS設置有無錯誤,進入CMOS將「Primary Master」、「Primary Slave」、「Secondary Master」三項的的「TYPE」都設置成「Auto」;

3、替換法確認硬碟本身有故障。

十、IDE介面設備檢測信息下面顯示「Floppy disk(s) fail(40)」出錯信息
表示CMOS所指定的軟盤驅動器有問題。判斷和解決的方法與硬碟相似。

現象五:系統不能引導。這種故障一般都不是嚴重問題,只是系統在找到的用於引導的驅動器中找不到引導文件,比如:BIOS的引導驅動器設置中將軟碟機排在了硬碟驅動的前面,而軟碟機中又放有沒有引導系統的軟盤或者BIOS的引導驅動器設置中將光碟機排在了硬碟驅動的前面,而光碟機中又放有沒有引導系統的光碟,這個都很簡單,將光碟或軟盤取出就可以了,實際應用中遇到「Disk Boot Failure,Insert System Disk And Press Enter」的提示,多數都是這個原因。如果是硬碟不能引導的話一般有兩種情況:一種是硬碟數據線沒有插好,另一種就是硬碟數據損壞。前者一般多會出現硬碟容量檢測不正確和引導時出現死機的現象;後者則是乾脆找不到引導文件或提示文件損壞。前者只需重新連接好數據線即可;後者則需要用win98的啟動軟盤或啟動光碟啟動,根據實際情況來定:

一、提示「Invalid partition table」或「Not Found any [active partition] in HDD Disk Boot Failure,Insert System Disk And Press Enter」 ,這說明找不到硬碟活動分區,需要對硬碟重新分區。

二、提示「Miss operation syste」,說明硬碟活動分區需要重新格式化(format c:/s)。

三、提示「Invalid system disk Replace the disk, and then press any key」或顯示「Starting Windows 98 …」時出現死機,說明硬碟上的系統文件丟失了或損壞,使用「sys c:」,命令傳遞系統文件給c盤,再將Command.com拷貝給c盤。

現象六:硬碟可以引導,但Windows不能正常啟動,也不能進入安全模式。這種情況表明Windows 98出現了嚴重的錯誤,首先,用殺毒軟體查殺病毒,看是不是病毒造成的,如果沒有發現病毒可以用以下方法試一試。

一、直接將介面卡與各個外設都撥去,再插回去,並調整介面卡上的設置(如果可以的話)來檢查是否是硬體沖突造成,開機看看是否 可正常進入Windows。

二、檢查CMOS中的設置是否 有不正確的地方,若不清楚,可選擇Load Bios Default項目,然後重開機,開機看是否可正常進入Windows。

三、在啟動時按下F8鍵,一般會出現6個選項(如果安裝了DOS6.22則出現7個選項)選擇第4項「step-by-step confirmation」進入單步運行方式,按照出現死機的命令選擇處理方法:

1、執行「Process the system registry」計算機就死機,說明是注冊表故障,那麼可以重新啟動按F8鍵,選第4項後,只在Device=c:\windows\himem.sys 這一項上按「Y」,其餘的按「N」後,在DOS提示符下輸入Scanreg /fix 修復注冊表或者是 scanreg /restore恢復到以前系統自動備份的注冊表後,再重新啟動即可。

2、在出現「Create a startup log file (BOOTTLOG.TXT) [Enter=Y,Esc=N]」時,選擇Y建立Bootlog.txt這個文件,可以檢查啟動過程中各個系統文件裝載的情況。如果在裝載某一個.vxd文件時死機,可以到其它計算機上復制該.vxd文件拷貝過來。

3、如果是一啟動就出現「現在可以安全地關閉計算機了」,一般是因為Windows的System目錄的vmm32.vxd被損壞,可以到其它計算機上重新復制一個過來。

4、一啟動就出現藍屏並顯示「VFAT Devcie Initialization Faild」,表示調用Windows目錄下的dblbuff.sys和ifshlp.sys文件出了問題,可以在config.sys文件中手工加入如:

「device=c:\windows\dblbuff.sys」和「devicehigh=c:\windows\ifshlp.sys」,如果還是不行,則表明這兩個文件己損壞,可以到其他計算機上新復制過來一份。

四、使用文本編輯程序將Msdos.sys文件中的LOGO參數設置為「0」,關閉後再開機時,看看是否 可進入Windows,若還是不行,則只能重新安裝Windows系統了。在重裝Windows時,建議先採用覆蓋原來的Windows的方法,這樣做的好處是:如果故障能夠排除,原來的許多應用程序就不用再安裝了;如果覆蓋式安裝不能解決問題,再採用硬碟格式化之後安裝Windows的方法。

現象七:Windows無法啟動,但能進入安全模式。這種故障一般問題不大,修復的幾率較高。具體可以參照下面的幾種方法去做:

一、在安裝新設備後不能正常啟動,進入安全模式後,在「控制面板」--「系統」中選擇「設備管理器」選項卡,在列出的所有設備中查找前有一個感嘆號沖突的設備,如果有的話,打開這個設備的「屬性」,查看「資源」選項卡,看看這個設備與其它設備的中斷沖突,然後取消「自動設置」復選框,單擊「更改設置」按鈕,選擇一個沒有使用的中斷號即可。如果還不行,則可以在設備屬性中選擇「常規」選項卡,選中「在此硬體配置文件中禁用」復選框,如果能正常啟動成功,證明這個硬體的驅動程序可能有問題,可以在設備管理器中將它刪除後重裝驅動程序。

二、安裝了啟動時自動運行軟的後不能正常啟動,可以將其卸載,待系統可以正常啟動後,嘗試重新安裝。順便說一句,安裝系統啟動時自動運行的軟體不要與其它軟體在同一次啟動中安裝可以減少此類故障。

三、電腦啟動時自動運行的文件出現故障造成Windows不能正常啟動,或者前一種情況軟體無法卸載(包括不能完全卸載)的,可以到下面的地方找到並將其刪除:

1、「開始」菜單內的「程序」文件夾中的「啟動」文件夾內。

2、Config.sys與Autoexec.bat中,若有則在該行前面加上「rem」不讓它運行。通常防病毒程序都會在這兩個文件中加入要執行的程序。

3、Window目錄下的Win.ini中[Windows]段中的Run或Load參數後,這里也可以在該行前加上「Rem」,不讓它執行。

4、注冊表(Registry)中,運行注冊表編輯器(Regedit),進入編輯器後利用「編輯」中的「查找」功能查找產生故障的自動可執行文件,將不要執行項目的主鍵刪除或將文件更名。注意:修改注冊表時,要事先用「導出注冊表文件」的方法做好備份。

四、如果在系統啟動時提示丟失了某些在system.ini文件中的.vxd、.386等文件,你可以到其他計算機上拷貝相應的文件到對應的位置,如果還不行,你還可以備份你的Windows 98安裝目錄下system.ini文件,然後用文本編輯器打開system.ini文件找到相應的.vxd或.386的那一行,將該行刪除即可,如果修改有誤,再用備份還原即可。

五、如果 Windows不能正常啟動是由系統文件損壞造成的,可以運行在Windows\system目錄下的Sfc.exe文件來檢查並恢復遺失或損毀的系統文件,如果產生問題的那個文件是Windows系統需要用到的,則會被修復回來。

六、如果Windows不能正常啟動是由文件版本沖突造成的,可以運行Windows目錄下的Vemui.exe文件,找出產生問題的文件後,選擇「恢復所選文件(R)」按扭,則Windows98會自動用不同號的版本取代目前使用文件,而版本沖突管理器也會給這個被取代的文件製作備份,可以再換回來。

好了,電腦不能正常啟動故障的診治就講這么多,文章中沒有提到的故障可以參考本文作以下處理:硬體類,採用替換或更換插槽的方法判斷和排除故障;軟體類就更簡單了,大不了格式化硬碟、重裝系統!不過筆者還是建議:在系統穩定時做一個克隆,這樣需要時回「克」一下就行了。

『捌』 電腦新做的系統和LED顯示屏控制器不匹配怎麼解決

那就是驅動程序不匹配,到戴爾的官網去下載和操作系統相匹配的驅動更新一下即可。http://www.dell.com/support/home/cn/zh/cnbsd1/Procts/?app=drivers①用戶購品牌電腦,一定要充分利用品牌機的優質資源,官網上都有和設備、操作系統相匹配的驅動程序可供用戶下載。尤其是用戶自行更改了操作系統(或者載入雙系統),就可以到官網找到匹配的設備驅動程序更新。電腦的更新換代太快,如果還沒有對老電腦的設備驅動程序進行備份,也許若干年之後,再找驅動程序可能會有些費勁。②電腦的標簽中涵蓋了很多訊息,這是到官網下載設備驅動程序一定要用到的。比如筆記本電腦一般在計算機的背面。③台式機的標簽一般在主機的背面。④還可以在官網上點擊 檢測我的產品 按鈕,讓其自動檢測電腦的型號。⑤點擊 是,我同意 按鈕(安裝協議),然後下載安裝自動檢測瀏覽器插件。⑥下載完畢,點擊 Install (安裝)按鈕,進行安裝。參考資料 《更新驅動程序 第15篇》http://jingyan..com/season/26867