『壹』 存儲器的發展史
存儲器設備發展
1.存儲器設備發展之汞延遲線
汞延遲線是基於汞在室溫時是液體,同時又是導體,每比特數據用機械波的波峰(1)和波谷(0)表示。機械波從汞柱的一端開始,一定厚度的熔融態金屬汞通過一振動膜片沿著縱向從一端傳到另一端,這樣就得名「汞延遲線」。在管的另一端,一感測器得到每一比特的信息,並反饋到起點。設想是汞獲取並延遲這些數據,這樣它們便能存儲了。這個過程是機械和電子的奇妙結合。缺點是由於環境條件的限制,這種存儲器方式會受各種環境因素影響而不精確。
1950年,世界上第一台具有存儲程序功能的計算機EDVAC由馮.諾依曼博士領導設計。它的主要特點是採用二進制,使用汞延遲線作存儲器,指令和程序可存入計算機中。
1951年3月,由ENIAC的主要設計者莫克利和埃克特設計的第一台通用自動計算機UNIVAC-I交付使用。它不僅能作科學計算,而且能作數據處理。
2.存儲器設備發展之磁帶
UNIVAC-I第一次採用磁帶機作外存儲器,首先用奇偶校驗方法和雙重運算線路來提高系統的可靠性,並最先進行了自動編程的試驗。
磁帶是所有存儲器設備發展中單位存儲信息成本最低、容量最大、標准化程度最高的常用存儲介質之一。它互換性好、易於保存,近年來,由於採用了具有高糾錯能力的編碼技術和即寫即讀的通道技術,大大提高了磁帶存儲的可靠性和讀寫速度。根據讀寫磁帶的工作原理可分為螺旋掃描技術、線性記錄(數據流)技術、DLT技術以及比較先進的LTO技術。
根據讀寫磁帶的工作原理,磁帶機可以分為六種規格。其中兩種採用螺旋掃描讀寫方式的是面向工作組級的DAT(4mm)磁帶機和面向部門級的8mm磁帶機,另外四種則是選用數據流存儲技術設計的設備,它們分別是採用單磁頭讀寫方式、磁帶寬度為1/4英寸、面向低端應用的Travan和DC系列,以及採用多磁頭讀寫方式、磁帶寬度均為1/2英寸、面向高端應用的DLT和IBM的3480/3490/3590系列等。
磁帶庫是基於磁帶的備份系統,它能夠提供同樣的基本自動備份和數據恢復功能,但同時具有更先進的技術特點。它的存儲容量可達到數百PB,可以實現連續備份、自動搜索磁帶,也可以在驅動管理軟體控制下實現智能恢復、實時監控和統計,整個數據存儲備份過程完全擺脫了人工干涉。
磁帶庫不僅數據存儲量大得多,而且在備份效率和人工佔用方面擁有無可比擬的優勢。在網路系統中,磁帶庫通過SAN(Storage Area Network,存儲區域網路)系統可形成網路存儲系統,為企業存儲提供有力保障,很容易完成遠程數據訪問、數據存儲備份或通過磁帶鏡像技術實現多磁帶庫備份,無疑是數據倉庫、ERP等大型網路應用的良好存儲設備。
3.存儲器設備發展之磁鼓
1953年,隨著存儲器設備發展,第一台磁鼓應用於IBM 701,它是作為內存儲器使用的。磁鼓是利用鋁鼓筒表面塗覆的磁性材料來存儲數據的。鼓筒旋轉速度很高,因此存取速度快。它採用飽和磁記錄,從固定式磁頭發展到浮動式磁頭,從採用磁膠發展到採用電鍍的連續磁介質。這些都為後來的磁碟存儲器打下了基礎。
磁鼓最大的缺點是利用率不高, 一個大圓柱體只有表面一層用於存儲,而磁碟的兩面都利用來存儲,顯然利用率要高得多。 因此,當磁碟出現後,磁鼓就被淘汰了。
4.存儲器設備發展之磁芯
美國物理學家王安1950年提出了利用磁性材料製造存儲器的思想。福雷斯特則將這一思想變成了現實。
為了實現磁芯存儲,福雷斯特需要一種物質,這種物質應該有一個非常明確的磁化閾值。他找到在新澤西生產電視機用鐵氧體變換器的一家公司的德國老陶瓷專家,利用熔化鐵礦和氧化物獲取了特定的磁性質。
對磁化有明確閾值是設計的關鍵。這種電線的網格和芯子織在電線網上,被人稱為芯子存儲,它的有關專利對發展計算機非常關鍵。這個方案可靠並且穩定。磁化相對來說是永久的,所以在系統的電源關閉後,存儲的數據仍然保留著。既然磁場能以電子的速度來閱讀,這使互動式計算有了可能。更進一步,因為是電線網格,存儲陣列的任何部分都能訪問,也就是說,不同的數據可以存儲在電線網的不同位置,並且閱讀所在位置的一束比特就能立即存取。這稱為隨機存取存儲器(RAM),在存儲器設備發展歷程中它是互動式計算的革新概念。福雷斯特把這些專利轉讓給麻省理工學院,學院每年靠這些專利收到1500萬~2000萬美元。
最先獲得這些專利許可證的是IBM,IBM最終獲得了在北美防衛軍事基地安裝「旋風」的商業合同。更重要的是,自20世紀50年代以來,所有大型和中型計算機也採用了這一系統。磁芯存儲從20世紀50年代、60年代,直至70年代初,一直是計算機主存的標准方式。
5.存儲器設備發展之磁碟
世界第一台硬碟存儲器是由IBM公司在1956年發明的,其型號為IBM 350 RAMAC(Random Access Method of Accounting and Control)。這套系統的總容量只有5MB,共使用了50個直徑為24英寸的磁碟。1968年,IBM公司提出「溫徹斯特/Winchester」技術,其要點是將高速旋轉的磁碟、磁頭及其尋道機構等全部密封在一個無塵的封閉體中,形成一個頭盤組合件(HDA),與外界環境隔絕,避免了灰塵的污染,並採用小型化輕浮力的磁頭浮動塊,碟片表面塗潤滑劑,實行接觸起停,這是現代絕大多數硬碟的原型。1979年,IBM發明了薄膜磁頭,進一步減輕了磁頭重量,使更快的存取速度、更高的存儲密度成為可能。20世紀80年代末期,IBM公司又對存儲器設備發展作出一項重大貢獻,發明了MR(Magneto Resistive)磁阻磁頭,這種磁頭在讀取數據時對信號變化相當敏感,使得碟片的存儲密度比以往提高了數十倍。1991年,IBM生產的3.5英寸硬碟使用了MR磁頭,使硬碟的容量首次達到了1GB,從此,硬碟容量開始進入了GB數量級。IBM還發明了PRML(Partial Response Maximum Likelihood)的信號讀取技術,使信號檢測的靈敏度大幅度提高,從而可以大幅度提高記錄密度。
目前,硬碟的面密度已經達到每平方英寸100Gb以上,是容量、性價比最大的一種存儲設備。因而,在計算機的外存儲設備中,還沒有一種其他的存儲設備能夠在最近幾年中對其統治地位產生挑戰。硬碟不僅用於各種計算機和伺服器中,在磁碟陣列和各種網路存儲系統中,它也是基本的存儲單元。值得注意的是,近年來微硬碟的出現和快速發展為移動存儲提供了一種較為理想的存儲介質。在快閃記憶體晶元難以承擔的大容量移動存儲領域,微硬碟可大顯身手。目前尺寸為1英寸的硬碟,存儲容量已達4GB,10GB容量的1英寸硬碟不久也會面世。微硬碟廣泛應用於數碼相機、MP3設備和各種手持電子類設備。
另一種磁碟存儲設備是軟盤,從早期的8英寸軟盤、5.25英寸軟盤到3.5英寸軟盤,主要為數據交換和小容量備份之用。其中,3.5英寸1.44MB軟盤占據計算機的標准配置地位近20年之久,之後出現過24MB、100MB、200MB的高密度過渡性軟盤和軟碟機產品。然而,由於USB介面的快閃記憶體出現,軟盤作為數據交換和小容量備份的統治地位已經動搖,不久會退出存儲器設備發展歷史舞台。
6. 存儲器設備發展之光碟
光碟主要分為只讀型光碟和讀寫型光碟。只讀型指光碟上的內容是固定的,不能寫入、修改,只能讀取其中的內容。讀寫型則允許人們對光碟內容進行修改,可以抹去原來的內容,寫入新的內容。用於微型計算機的光碟主要有CD-ROM、CD-R/W和DVD-ROM等幾種。
上世紀60年代,荷蘭飛利浦公司的研究人員開始使用激光光束進行記錄和重放信息的研究。1972年,他們的研究獲得了成功,1978年投放市場。最初的產品就是大家所熟知的激光視盤(LD,Laser Vision Disc)系統。
從LD的誕生至計算機用的CD-ROM,經歷了三個階段,即LD-激光視盤、CD-DA激光唱盤、CD-ROM。下面簡單介紹這三個存儲器設備發展階段性的產品特點。
LD-激光視盤,就是通常所說的LCD,直徑較大,為12英寸,兩面都可以記錄信息,但是它記錄的信號是模擬信號。模擬信號的處理機制是指,模擬的電視圖像信號和模擬的聲音信號都要經過FM(Frequency Molation)頻率調制、線性疊加,然後進行限幅放大。限幅後的信號以0.5微米寬的凹坑長短來表示。
CD-DA激光唱盤 LD雖然取得了成功,但由於事先沒有制定統一的標准,使它的開發和製作一開始就陷入昂貴的資金投入中。1982年,由飛利浦公司和索尼公司制定了CD-DA激光唱盤的紅皮書(Red Book)標准。由此,一種新型的激光唱盤誕生了。CD-DA激光唱盤記錄音響的方法與LD系統不同,CD-DA激光唱盤系統首先把模擬的音響信號進行PCM(脈沖編碼調制)數字化處理,再經過EMF(8~14位調制)編碼之後記錄到盤上。數字記錄代替模擬記錄的好處是,對干擾和雜訊不敏感,由於盤本身的缺陷、劃傷或沾污而引起的錯誤可以校正。
CD-DA系統取得成功以後,使飛利浦公司和索尼公司很自然地想到利用CD-DA作為計算機的大容量只讀存儲器。但要把CD-DA作為計算機的存儲器,還必須解決兩個重要問題,即建立適合於計算機讀寫的盤的數據結構,以及CD-DA誤碼率必須從現有的10-9降低到10-12以下,由此就產生了CD-ROM的黃皮書(Yellow Book)標准。這個標準的核心思想是,盤上的數據以數據塊的形式來組織,每塊都要有地址,這樣一來,盤上的數據就能從幾百兆位元組的存儲空間上被迅速找到。為了降低誤碼率,採用增加一種錯誤檢測和錯誤校正的方案。錯誤檢測採用了循環冗餘檢測碼,即所謂CRC,錯誤校正採用里德-索洛蒙(Reed Solomon)碼。黃皮書確立了CD-ROM的物理結構,而為了使其能在計算機上完全兼容,後來又制定了CD-ROM的文件系統標准,即ISO 9660。
在上世紀80年代中期,光碟存儲器設備發展速度非常快,先後推出了WORM光碟、磁光碟(MO)、相變光碟(Phase Change Disk,PCD)等新品種。20世紀90年代,DVD-ROM、CD-R、CD-R/W等開始出現和普及,目前已成為計算機的標准存儲設備。
光碟技術進一步向高密度發展,藍光光碟是不久將推出的下一代高密度光碟。多層多階光碟和全息存儲光碟正在實驗室研究之中,可望在5年之內推向市場。
7.存儲器設備發展之納米存儲
納米是一種長度單位,符號為nm。1納米=1毫微米,約為10個原子的長度。假設一根頭發的直徑為0.05毫米,把它徑向平均剖成5萬根,每根的厚度即約為1納米。與納米存儲有關的主要進展有如下內容。
1998年,美國明尼蘇達大學和普林斯頓大學制備成功量子磁碟,這種磁碟是由磁性納米棒組成的納米陣列體系。一個量子磁碟相當於我們現在的10萬~100萬個磁碟,而能源消耗卻降低了1萬倍。
1988年,法國人首先發現了巨磁電阻效應,到1997年,採用巨磁電阻原理的納米結構器件已在美國問世,它在磁存儲、磁記憶和計算機讀寫磁頭等方面均有廣闊的應用前景。
2002年9月,美國威斯康星州大學的科研小組宣布,他們在室溫條件下通過操縱單個原子,研製出原子級的硅記憶材料,其存儲信息的密度是目前光碟的100萬倍。這是納米存儲材料技術研究的一大進展。該小組發表在《納米技術》雜志上的研究報告稱,新的記憶材料構建在硅材料表面上。研究人員首先使金元素在硅材料表面升華,形成精確的原子軌道;然後再使硅元素升華,使其按上述原子軌道進行排列;最後,藉助於掃瞄隧道顯微鏡的探針,從這些排列整齊的硅原子中間隔抽出硅原子,被抽空的部分代表「0」,餘下的硅原子則代表「1」,這就形成了相當於計算機晶體管功能的原子級記憶材料。整個試驗研究在室溫條件下進行。研究小組負責人赫姆薩爾教授說,在室溫條件下,一次操縱一批原子進行排列並不容易。更為重要的是,記憶材料中硅原子排列線內的間隔是一個原子大小。這保證了記憶材料的原子級水平。赫姆薩爾教授說,新的硅記憶材料與目前硅存儲材料存儲功能相同,而不同之處在於,前者為原子級體積,利用其製造的計算機存儲材料體積更小、密度更大。這可使未來計算機微型化,且存儲信息的功能更為強大。
以上就是本文向大家介紹的存儲器設備發展歷程的7個關鍵時期
『貳』 三大技術推動大數據分析平台的發展
三大技術推動大數據分析平台的發展
在互聯網技術橫行的時代,數據即價值,數據即資源。大數據分析工具的職責就是規整數據,挖掘價值。因此,大數據分析平台的發展在一定程度上代表著大數據的發展。而在現階段,雲存儲技術、感知技術、數據可視化技術成為大數據應用技術中不可或缺的組成部分。
雲存儲技術
大數據可以抽象的分為大數據存儲和大數據分析,這兩者的關系是:大數據存儲的目的是支撐大數據分析。大數據存儲致力於研發可以擴展至PB甚至EB級別的大數據分析平台;大數據分析關注在最短時間內處理大量不同類型的數據集。
根據著名的「摩爾定律」,18個月集成電路的復雜性就增加一倍。所以,存儲器的成本大約每18-24個月就下降一半。這意味著雲存儲技術的潛力巨大,同時對於大數據分析平台而言意味著更大的數據存儲量和功能更強的線上大數據分析平台。如國雲數據開發的大數據魔鏡雲平台版本,實用且免費的設定讓其迅速在中國數據市場占據了重要的一席。
數據抓取技術
現在大多數的大數據分析平台的數據抓取功能還停留在對固定資料庫的數據處理和整合上。但是隨著互聯網技術的應用拓展,直接從互聯網甚至是行為個體上直接抓取數據並非是不可能的,在技術上也是可行的。
大數據的採集和數據抓取技術的發展是緊密聯系的。以感測器技術,指紋識別技術,RFID技術,坐標定位技術等為基礎的感知能力提升同樣是物聯網發展的基石。而隨著智能手機的普及,感知技術可謂迎來了發展的高峰期。大數據分析平台未來極有可能整合數據抓取技術,變被動分析為主動尋找,從而邁上大數據分析技術發展的新高峰。
數據可視化技術
數據可視化技術是當下最熱門的大數據應用數據,除了末端展示的需要,數據可視化也是數據分析時不可或缺的一部分,即返回數據時的二次分析。而數據可視化也利於大數據分析平台的學習功能建設,讓沒有技術背景和初學者也能很快掌握大數據分析平台的操作。
未來的大數據分析平台的承載平台也不可能固定在某一類平台,但是無論哪一類平台,數據分析和分析結果的末端展示都離不開數據可視化技術。其實與其說數據可視化技術是大數據應用技術發展的需要,不如說數據可視化技術簡化了數據分析技術,從而讓更多人可以走進大數據,使用大數據。
在大數據應用技術發展的歷程中,還有許多技術伴隨左右,但都沒有以上者三大技術重要,因為它們直接勾勒了大數據分析平台的未來甚至是人類的未來。而絕知此事要躬行,要想了解大數據,還是要親自參與,操作一些類似於大數據魔鏡這樣的新銳大數據分析平台,無論體驗如何,你終將會從中學到很多。
『叄』 大數據時代的安防數據存儲安全
大數據時代的安防數據存儲安全
近幾年隨著平安城市、智能交通、智能樓宇等行業的快速發展,大集成、大聯網推動安防行業進入了大數據時代。安防行業大數據的存在已經被越來越多的人熟知,特別是安防行業海量的非結構化視頻數據,以及飛速增長的特徵數據(卡口過車數據、人像抓拍數據、異常行為數據等),帶動了大數據的數據安全一系列問題,吸引著行業的關注。
大數據引發監控數據安全性問題突出
大數據的本質是系統通過處理採集到的所有數據,去提取其特徵和共性的信息。通過大數據的處理使得所有的數據都有價值。通過大數據的處理,把傳統認為沒有價值的信息也能夠產生非常有價值的信息,這就叫做數據挖掘。同樣的數據擺在我們面前不同的挖掘方法,不同的挖掘目標可以為各種各樣的業務的應用產生有價值的信息。對於安防行業,監控技術如今正面臨日新月異的變革,模擬視頻監控正在向IP網路監控轉變,巨大轉變的同時對安全性也提出了更高的要求。我們探討數據安全,包括產品本身的物理安全和產生數據的安全。所以,大數據時代引發監控數據安全性問題有以下幾點:
1、基礎設備的風險:包括監控中心的存儲設備、伺服器和前端節點設備的安全性、網路設備的安全性、傳輸線纜的安全性等。設備的安全可靠是整個大數據安防系統安全運行的基礎。
2、信息存取的風險:包括用戶非法訪問、數據丟失、數據被篡改等。系統信息的安全,主要運用各種加密技術、存儲技術、及備份方案來達到系統信息的安全。
3、信息在網路上傳輸的風險:包括視頻信息、錄像數據信息、用戶信息等在傳輸過程中保密性、完整性的保障以及傳輸鏈路上的節點設備的安全。另外還包括前端採集設備、社會監控資源接入公安監控專網的安全。
4、系統運行的風險:包括接入設備的識別和認證、設備運行故障、軟體病毒、惡意代碼、以及設備控制的優先順序調度等。系統運行時的風險控制主要依靠視頻監控軟體平台來保障,該軟體平台可以完成設備管理、故障監控、訪問控制、用戶管理、鑒權機制等一系列的功能來保障整個系統的安全運行。
基於以上4點,從存儲設備的角度我們主要談及前面兩點。
大數據也催生監控存儲方式變革
在一個時代下,必然會發生諸多變革。
視頻監控的存儲技術和介質從VCR模擬存儲、DVR數字存儲,逐漸向NVR、NAS、SAN等網路存儲發展。而在存儲方式上,主要有集中式存儲和分布式存儲兩種。大數據意味著海量的數據,也意味著更復雜、更敏感的數據,這些數據會吸引更多的潛在攻擊者。為此,我們關注點是,大數據下的信息安全問題將衍生新的機遇,提升安防的價值。
隨著安防形勢的復雜多變和大數據時代的來臨,對視頻錄像文件分析的需求越來越多。視頻監控系統中也越來越多的使用了高級的數據存儲設備和系統,例如專業的磁碟陣列系統等等。同理,安防行業使用這些專業存儲設備時,需要充分了解這些軟硬體的特性,而不要僅僅把它們當作超級外接大硬碟來使用。在系統設計和實施過程中可以充分利用這些設備中自帶的一些數據保護軟體來保護自己的數據。常用和流行的數據安全保護技術主要有以下七種:
磁碟陣列:磁碟陣列是指把多個類型、容量、介面甚至品牌一致的專用磁碟或普通硬碟連成一個陣列,使其以更快的速度、准確、安全的方式讀寫磁碟數據,從而加快數據讀取速度、提高數據保存的安全性。
SAN:SAN允許伺服器在共享存儲裝置的同時仍能高速傳送數據。這一方案具有帶寬高、可用性高、容錯能力強的優點,而且它可以輕松升級,容易管理,有助於改善整個系統的總體成本狀況。我們推薦FCSAN方案,它能為大數據時代的視頻監控,相較於IPSAN方案,大幅減少存儲設備台數,從而大幅降低成本,在數據安全方面由於自身設備超高的穩定性和性能來得以保障。
數據備份:備份管理包括數據備份的計劃,自動操作,備份日誌的保存。
雙機容錯:雙機容錯的目的在於保證系統數據和服務的在線性,即當某一系統發生故障時,仍然能夠正常的向網路系統提供數據和服務,使得系統不至於停頓,雙機容錯的目的在於保證數據不丟失和系統不停機。
NAS解決方案通常配置為作為文件服務的設備,由工作站或伺服器通過網路協議和應用程序來進行文件訪問,大多數NAS鏈接在工作站客戶機和NAS文件共享設備之間進行。這些鏈接依賴於企業的網路基礎設施來正常運行;NAS提供視頻監控系統後期視頻文件批量處理分析的基本可能。
數據遷移:由在線存儲設備和離線存儲設備共同構成一個協調工作的存儲系統,該系統在在線存儲和離線存儲設備間動態的管理數據,使得訪問頻率高的數據存放於性能較高的在線存儲設備中,而訪問頻率低的數據存放於較為廉價的離線存儲設備中;視頻錄像的歸檔可以充分利用高級存儲設備的數據遷移手段;分層存儲有效降低存儲系統的整體成本。
異地容災:以異地實時備份為基礎的、高效的、可靠的遠程數據存儲,在各單位的IT系統中,必然有核心部分,通常稱之為生產中心。往往給生產中心配備一個備份中心,改備份中心是遠程的,並且在生產中心的內部已經實施了各種各樣的數據保護。不管怎麼保護,當火災、地震這種災難發生時,一旦生產中心癱瘓了,備份中心會接管生產,繼續提供服務;視頻監控的多中心配置越來越多,各個中心的系統和數據容災應該借鑒IT的容災技術考慮。
結束語
大數據是繼雲計算、物聯網之後信息產業當前科技創新、產業政策及國家安全領域的又一次知識新增長點。在大數據的背景下信息安全面臨著很多的挑戰,特別是現階段視頻監控已有的信息安全手段已經不能滿足大數據時代的信息安全的實際要求,因此研究大數據時代視頻監控所面臨的信息安全問題具有重要意義。
以上是小編為大家分享的關於大數據時代的安防數據存儲安全的相關內容,更多信息可以關注環球青藤分享更多干貨
『肆』 大數據未來的發展前景怎麼樣
大數據技術目前正處在落地應用的初期,從大數據自身發展和行業發展的趨勢來看,大數據未來的前景還是不錯的,具體原因有以下幾點
一:大數據自身能夠創造出更多的價值。大數據相關技術緊緊圍繞數據價值化展開,數據價值化將開辟出廣大的市場空間,重點在於數據本身將為整個信息化社會賦能。隨著大數據的落地應用,大數據的價值將逐漸得到體現。目前在互聯網領域,大數據技術已經得到了較為廣泛的應用。
第二:大數據推動科技領域的發展。大數據的發展正在推動科技領域的發展進程,大數據的影響不僅僅體現在互聯網領域,也體現在金融、教育、醫療等諸多領域。在人工智慧研發領域,大數據也起到了重要的作用,尤其在機器學習、計算機視覺和自然語言處理等方面,大數據正在成為智能化社會的基礎。
第三:大數據產業鏈逐漸形成。經過近些年的發展,大數據已經初步形成了一個較為完整的產業鏈,包括數據採集、整理、傳輸、存儲、分析、呈現和應用,眾多企業開始參與到大數據產業鏈中,並形成了一定的產業規模,相信隨著大數據的不斷發展,相關產業規模會進一步擴大。
第四:產業互聯網將推動大數據落地。當前互聯網正在經歷從消費互聯網向產業互聯網過渡,產業互聯網將利用大數據、物聯網、人工智慧等技術來賦能廣大的傳統產業,可以說產業互聯網的發展空間非常大,而大數據則是產業互聯網發展的一個重點,大數據能否落地到傳統行業,關乎產業互聯網的發展進程,所以在產業互聯網階段,大數據將逐漸落地,也必然落地。
通過以上分析可以得出,未來大數據領域的發展空間還是比較大的,而且目前大數據領域的人才缺口比較大。
『伍』 當前存儲器系統的發展概況
發展趨勢
存儲器的發展都具有更大、更小、更低的趨勢,這在閃速存儲器行業表現得尤為淋漓盡致。隨著半導體製造工藝的發展,主流閃速存儲器廠家採用0�18μm,甚至0.15μm的製造工藝。藉助於先進工藝的優勢,Flash Memory的容量可以更大:NOR技術將出現256Mb的器件,NAND和AND技術已經有1Gb的器件;同時晶元的封裝尺寸更小:從最初DIP封裝,到PSOP、SSOP、TSOP封裝,再到BGA封裝,Flash Memory已經變得非常纖細小巧;先進的工藝技術也決定了存儲器的低電壓的特性,從最初12V的編程電壓,一步步下降到5V、3.3V、2�7V、1.8V單電壓供電。這符合國際上低功耗的潮流,更促進了攜帶型產品的發展。
另一方面,新技術、新工藝也推動Flash Memory的位成本大幅度下降:採用NOR技術的Intel公司的28F128J3價格為25美元,NAND技術和AND技術的Flash Memory將突破1MB 1美元的價位,使其具有了取代傳統磁碟存儲器的潛質。
世界閃速存儲器市場發展十分迅速,其規模接近DRAM市場的1/4,與DRAM和SRAM一起成為存儲器市場的三大產品。Flash Memory的迅猛發展歸因於資金和技術的投入,高性能低成本的新產品不斷涌現,刺激了Flash Memory更廣泛的應用,推動了行業的向前發展。
『陸』 數據挖掘中數據存儲的重要性
隨著互聯網的蓬勃興起,物聯網,雲計算,大數據,人工智慧在大眾視野出現的越來越頻繁了。
雲計算相當於人的大腦,是物聯網的神經中樞。雲計算是基於互聯網的相關服務的增加、使用和交付模式,通常涉及通過互聯網來提供動態易擴展且經常是虛擬化的資源。
大數據相當於人的大腦從小學到大學記憶和存儲的海量知識,這些知識只有通過消化,吸收、再造才能創造出更大的價值。
人工智慧打個比喻為一個人吸收了人類大量的知識(數據),不斷的深度學習、進化成為一方高人。人工智慧離不開大數據,更是基於雲計算平台完成深度學習進化。
而物聯網是互聯網的應用拓展,類似以前的「互聯網+」,也就是結合互聯網的業務和應用,核心是以用戶體驗為核心的應用創新。
我們主要講一下其中的「大數據」。
大數據的定義
在 2001 年左右,Gartner 就大數據提出了如下定義(目前仍是關於大數據的權威解釋):大數據指高速 (Velocity) 涌現的大量 (Volume) 的多樣化 (Variety) 數據。這一定義表明大數據具有 3V 特性。
簡而言之,大數據指越來越龐大、越來越復雜的數據集,特別是來自全新數據源的數據集,其規模之大令傳統數據處理軟體束手無策,卻能幫助我們解決以往非常棘手的業務難題。
大數據的價值和真實性
在過去幾年裡,大數據的定義又新增加了兩個 "V":價值 (Value) 和 真實性 (Veracity)。
首先,數據固然蘊含著價值,但是如果不通過適當方法將其價值挖掘出來,數據就毫無用處。其次,只有真實、可靠的數據才有意義。
如今,大數據已成為一種資本,全球各個大型技術公司無不基於大數據工作原理,在各種大數據用例中通過持續分析數據提高運營效率,促進新產品研發,他們所創造的大部分價值無不來自於他們掌握的數據。
目前,眾多前沿技術突破令數據存儲和計算成本呈指數級下降。相比過去,企業能夠以更低的經濟投入更輕松地存儲更多數據,而憑借經濟、易於訪問的海量大數據,您可以輕松做出更准確、更精準的業務決策。
然而,從大數據工作原理角度來講,大數據價值挖掘是一個完整的探索過程而不僅僅是數據分析,它需要富有洞察力的分析師、業務用戶和管理人員在大數據用例中有針對性地提出有效問題、識別數據模式、提出合理假設並准確開展行為預測。
大數據的歷史
雖然大數據這個概念是最近才提出的,但大型數據集的起源卻可追溯至 1960 - 70 年代。當時數據世界正處於萌芽階段,全球第一批數據中心和首個關系資料庫便是在那個時代出現的。
2005 年左右,人們開始意識到用戶在使用 Facebook、YouTube 以及其他在線服務時生成了海量數據。同一年,專為存儲和分析大型數據集而開發的開源框架 Hadoop 問世,NoSQL 也在同一時期開始慢慢普及開來。
Hadoop 及後來 Spark 等開源框架的問世對於大數據的發展具有重要意義,正是它們降低了數據存儲成本,讓大數據更易於使用。在隨後幾年裡,大數據數量進一步呈爆炸式增長。時至今日,全世界的「用戶」— 不僅有人,還有機器 — 仍在持續生成海量數據。
隨著物聯網 (IoT) 的興起,如今越來越多的設備接入了互聯網,它們大量收集客戶的使用模式和產品性能數據,而機器學習的出現也進一步加速了數據量的增長。
然而,盡管已經出現了很長一段時間,人們對大數據的利用才剛剛開始。今天,雲計算進一步釋放了大數據的潛力,通過提供真正的彈性 / 可擴展性,它讓開發人員能夠輕松啟動 Ad Hoc 集群來測試數據子集。
大數據和數據分析的優勢:
1.大數據意味著更多信息,可為您提供更全面的洞察。
2.更全面的洞察意味著更高的可靠性,有助於您開發全新解決方案。
其次,大數據還具有大量、高速、多樣化、密度低四大特性。
大量性:大數據與傳統數據最大的差異在於資料量,資料量遠大於傳統數據,例如抖音數據流、網路點擊流,面對的是海量低密度的數據,大數據的數據量通常高達數十PB。也因為資料量大,無法以傳統的方式儲存處理,因此衍生出大數據這一新興科學。
高速性:大數據與傳統數據最大的不同點,就是生成速度快。由於網際網路興起與資訊設備普及,以用戶突破20億人的臉書為例,如果每個用戶每天發一條消息,就會有20億筆資料。每一個人隨時隨地都可以創造數據,數據生成的速度已非過去可比擬。
多樣性:多樣化是指可用的數據類型眾多,隨著大數據的興起,文本、音頻和視頻等數據類型不斷涌現,它們需要經過額外的預處理操作才能真正提供洞察和支持性元數據。由於形式多元復雜,大數據儲存也需要不同於傳統數據的儲存技術。
密度低:數據價值密度相對較低,隨著互聯網以及物聯網的廣泛應用,信息感知無處不在,信息海量,但價值密度較低。以視頻為例,一小時的視頻,在不間斷的監控過程中,可能有用的數據僅僅只有一兩秒。
大數據的挑戰
1.安全挑戰
盡管大數據由於應用范圍廣泛,已成為各領域的發展趨勢,但數據的公布有時會伴隨使用者隱私的曝光,比如FaceBook資料外泄、Google+個人外泄風波等因數據外泄而引發隱私問題的事件層出不窮。用戶的哪些數據是可以獲取、哪些是不允許讀取,始終存在侵犯用戶隱私的法律風險。
2..技術創新
大數據需要從底層晶元到基礎軟體再到應用分析軟體等信息產業全產業鏈的支撐,無論是新型計算平台、分布式計算架構,還是大數據處理、分析和呈現方面與國外均存在較大差距,對開源技術和相關生態系統的影響力仍然較弱,總體上難以滿足各行各業大數據應用需求。
3.成本過高
運營商需要處理的數據量巨大,基本都是以PB為單位,處理這些數據需要巨大的投入。
4.實時性
具有實時性的數據才有價值,存儲的數據數據時間越長,數據的價值就越低。在如今這個快節奏的社會,每一天的市場都瞬息萬變,品牌商通過大數據分析用戶的需求,如果得到的用戶數據太過陳舊,參考這些數據來規劃產品的方向,可能會對企業的發展造成毀滅性的打擊。
無論哪個行業,想要在當今的形勢下取得成功,都必須能夠不斷地從數據中挖掘業務價值,因此數據的保護離不開存儲器,當下市面上用於大數據的存儲器主要有固態硬碟,混合硬碟,傳統硬碟。
固態硬碟(SSD),由控制單元和存儲單元,組成。固態硬碟的介面規格、定義、功能和用途與普通硬碟相同,形狀和尺寸也與普通硬碟相同。廣泛應用於軍事、車輛、工業控制、視頻監控、網路監控、網路終端、電力、醫療、航空、導航設備等領域。
優點:讀寫速度快;震動;低功耗。無噪音;工作溫度范圍廣;缺點:容量小;壽命有限;價格高。
混合硬碟是一種由傳統硬碟和快閃記憶體模塊組成的大容量存儲設備。快閃記憶體處理存儲器中最常寫入或恢復的數據。許多公司都在提供不同的技術,他們希望這些技術能在高端系統中流行起來,特別是筆記本電腦和掌上電腦。
與傳統硬碟相比,混合硬碟具有許多優勢:更快的數據存儲和恢復應用程序,如文字處理器;縮短系統啟動時間;降低功耗;減少熱量產生;延長硬碟壽命;筆記本電腦和筆記本電腦電池壽命;降低噪音水平:
傳統硬碟指的是機械硬碟(HDD),電腦最基本的內存,我們常說電腦硬碟C盤,D盤是磁碟分區,屬於硬碟。目前普通硬碟的容量有80G、128g、160g、256g、320g、500g、750g、1TB、2TB等,按容量可分為3.5英寸、2.5英寸、1.8英寸、5400rpm/7200rpm/10000rpm等。
通過物聯網產生、收集海量的數據存儲於雲平台,再通過大數據分析,甚至更高形式的人工智慧為人類的生產活動,生活所需提供更好的服務,這一切所產生的數據承載者——存儲器,在第四次工業革命進化的方向中,存儲行業也將是一顆亮眼的星。
『柒』 存儲技術發展歷史
最早的外置存儲器可以追溯到19世紀末。為了解決人口普查的需要,霍列瑞斯首先把穿孔紙帶改造成穿孔卡片。
他把每個人所有的調查項目依次排列於一張卡片,然後根據調查結果在相應項目的位置上打孔。在以後的計算機系統里,用穿孔卡片輸入數據的方法一直沿用到20世紀70年代,數據處理也發展成為電腦的主要功能之一。
2、磁帶
UNIVAC-I第一次採用磁帶機作外存儲器,首先用奇偶校驗方法和雙重運算線路來提高系統的可靠性,並最先進行了自動編程的試驗。此時這個磁帶長達1200英寸、包含8個磁軌,每英寸可存儲128bits,每秒可記錄12800個字元,容量也達到史無前例的184KB。從 此之後,磁帶經歷了迅速發展,後來廣泛應用了錄音、影像領域。
3、軟盤(見過這玩意的一定是80後)
1967年 IBM公司推出世界上第一張「軟盤」,直徑32英寸。隨著技術的發展,軟盤的尺寸一直在減小,容量也在不斷提升,大小從8英寸,減到到5.25英寸軟盤,以及到後來的3.5英寸軟盤,容量卻從最早的81KB到後來的1.44MB。在80-90年代3.5英寸軟盤達到了巔峰。直到CD-ROM、USB存儲設備出現後,軟盤銷量才逐漸下滑。
4、CD
CD也就是我們常說的光碟、光碟,誕生於1982年,最早用於數字音頻存儲。1985年,飛利浦和索尼將其引入PC,當時稱之為CD-ROM(只 讀),後來又發展成CD-R(可讀)。因為聲頻CD的巨大成功,今天這種媒體的用途已經擴大到進行數據儲存,目的是數據存檔和傳遞。
5、磁碟
第一台磁碟驅動器是由IBM於1956年生產,可存儲5MB數據,總共使用了50個24英寸碟片。到1973年,IBM推出第一個現代「溫徹斯特」磁碟驅動器3340,使用了密封組件、潤滑主軸和小質量磁頭。此後磁碟的容量一度提升MB到GB再到TB。
6、DVD
數字多功能光碟,簡稱DVD,是一種光碟存儲器。起源於上世紀60年代,荷蘭飛利浦公司的研究人員開始使用激光光束進行記錄和重放信息的研究。1972年,他們的研究獲得了成功,1978年投放市場。最初的產品就是大家所熟知的激光視盤(LD,Laser Vision Disc)系統。它們的直徑多是120毫米左右。容量目前最大可到17.08GB。
7、快閃記憶體
淺談存儲器的進化歷程
快閃記憶體(Flash Memory)是一種長壽命的非易失性(在斷電情況下仍能保持所存儲的數據信+息)的存儲器。包含U盤、SD卡、CF卡、記憶棒等等種類。在1984年,東芝公司的發明人舛岡富士雄首先提出了快速快閃記憶體存儲器(此處簡稱快閃記憶體)的概念。與傳統電腦內存不同,快閃記憶體的特點是非易失性(也就是所存儲的數據在主機掉電後不會丟失),其記錄速度也非常快。Intel是世界上第一個生產快閃記憶體並將其投放市場的公司。到目前為止快閃記憶體形態多樣,存儲容量也不斷擴展到256GB甚至更高。
隨著存儲器的更新換代,存儲容量越來越大,讀寫速度也越來越快,企業級硬碟單盤容量已經達到10TB以上,目前使用的SSD固態硬碟,讀速度達:3000+MB/s,寫速度達:1700MB/s,用起來美滋滋啊。
『捌』 移動大數據的四個發展趨勢
移動大數據的四個發展趨勢
如果我告訴你,你可以做到從海量數據來源(包括各種各樣的移動設備)中把數據提取到一個系統,然後只用少量的程序行數描述所需的信息就可以讓結果輕松呈現,還可以做到實時處理這些數據,並且保持系統同時運行,你相信嗎?
不用懷疑,你可以做到。
這首先要歸功於信息爆炸時代移動數據的飛速發展。移動應用不停地產生大量信息,比如用戶行為的信息(包括對話開始、事件發生、事務處理等),然後設備生成數據(崩潰數據、應用日誌、位置數據、網路日誌等)。這些數據的意義在於它們給大數據提供了源源不斷的信息源去識別和分析手機用戶一天的所見所聞。
不得不說,移動大數據時代是應運而生。而為了收集智能手機的數據,就不得不面臨數據收集、分析和運行的挑戰。毫無疑問,能夠利用移動數據的企業和移動設備開發者在市場競爭中更有競爭力和業務優勢。因為他們可以在一開始就准確地識別出影響用戶行為的因素,有效地將客戶需求分級,從而能夠既有創造力又有效率地實現客戶需求。
而在大數據實時分析的競爭中能否決勝的關鍵是內存資料庫。內存資料庫保證了大數據的動態分析——用指數級的速度處理以噴發狀態產生的大量數據,然後及時產生結果。內存資料庫能為以不同速度為移動設備進行實時和動態的內存數據處理,還可以導入其他數據來源例如汽車和家庭系統的數據。
大數據的分布式處理能夠在計算機上實現跨集群操作,擴展到成千上萬種設備上,比如Hadoop就用分布式處理方式完成了多項任務。然而對於這個高速運轉、信息不停噴發的移動時代來說,分散處理並不是最有效最經濟的方式。內存資料庫的產生無疑給企業提供了利用實時數據的新工具:盡可能快地在數據產生之初就進行分析,發現其趨勢並更快地做出反應,實現降低服務成本和提高收益的目標。那些企業級的流式資料庫,比如StreamBase和KDB,包括CEPs和混合式,內存資料庫開始利用新的演算法和可視化技術來填充實時處理技術的缺口。移動大數據的提供者正在試圖將內存資料庫、動態處理技術、演算法與可視化技術融為一體,讓企業能夠運用移動大數據,讓它成為一種業務驅動力。
移動應用團隊更能理解同步分析數據的重要性。為了留住用戶,開發者要能夠預見誤差,了解誤差對用戶行為的影響,衡量新產品的效益,識別用戶的參與趨勢,檢測客戶端,這樣才能趕在問題暴露在消極用戶面前之前消滅它。
下面是我們觀察到的移動大數據的四個發展趨勢:
1. 事務處理最重要
「移動」最關鍵的就是交互活動和對其的監控。用戶選擇應用是出於不同的目的:娛樂、購物、學習、分享等;而一旦有任何因素干擾或者減慢他們實現目的的體驗過程,用戶很容易就會產生消極情緒。利用應用軟體監控事務處理,讓企業能對用戶體驗進行評估和回應,盡量避免用戶卸載軟體或者給出差評。如今對事務性數據和功能性數據的監控都很重要,也不能沒有一個適應移動發展時代的戰略了。
2. 三駕馬車,三個「V」
Business Insider的最新報道指出,大數據有三個特點:大量(volume)、多樣(variety)、高速(velocity),我們把它們概括成三個「V」。數據本身的產生非常快,而且形式多樣,大小不一,數量還很大。更別提移動數據了,數量都是成倍地增長。而Cisco最近的報告表明,有數以百萬計的人只通過移動設備連接互聯網,很明顯,這些設備產生了大量的數據。KashRangan說,有很多互動被忽略了沒有得到分析,而這些就是被忽視的機會。更有趣的是,數據的多樣性恰恰是由移動設備造成的。從用戶跟蹤到崩潰報告,有各種各樣五花八門詳細的應用數據,包括商業貿易、情感反應、心跳測量、住宿記錄,甚至包括風象報告。移動應用越來越多地影響了人們的生活方式,結果是數據增長的速度也在不斷上升。只要想想一個手機用戶比如你我每天都被手機牢牢套住的情況就可以理解了。
3. 測度是關鍵
面對大數據用戶的一個挑戰是考慮經營的影響因素。如果定位不好、收益不好,大數據可能反而會成為一種牽絆。如何鑒別哪種信息能夠幫助更好地進行經營決策,而哪種信息卻毫無用處呢?在企業投身移動數據的熱潮之前,必須要弄清楚他們的關鍵度量指標是什麼,不然就會被困在一堆派不上用場的數據里,進退兩難。
4. 先監控,再提問
這聽來好像跟我們的直覺不一樣,但實際上企業都應該採用這種策略,先對應用進行監控並收集數據,然後回答關鍵的業務問題,再去探索從數據里發現的新的發展機會。去了解應用發展的情況是能否駕馭大數據的決定性的一步。在基本了解以後,企業和開發者們就可以深入研究關鍵性因素了。移動大數據提供者也讓各種規模的公司有了讓移動數據為他們所用的能力,無論是獨立經營者還是大企業都是一樣。現在,內存資料庫已經有了,移動大數據提供者們又開始為下一個目標努力:通過最大化地提升數據的收集和傳輸效率來優化移動方面的東西,同時關注新的挑戰,例如電池消耗、3G數據使用、連接速度慢、隱私問題和局部存儲器的問題,還要擴展通信量並控制可預見的通信量激增。這場競賽的關鍵已經不再是誰的移動設備革新速度快,而是誰對移動設備所產生數據的反應速度更快。
『玖』 開展微型數據存儲技術創新研發搶占未來大數據存儲技術高地的建議
我國數據存儲核心技術長期落後,大數據中心按照傳統的 科技 房地產的思路將面臨資源約束。為了防止我國存儲技術「卡脖子」,節省未來海量數據存儲佔地空間,系統化整合資源解決當前中國大數據存儲技術產品的容量問題,建議國家立項 開展微型數據存儲技術創新研發 。
我國數據儲存的現狀和面臨的問題
計算機數據存儲技術是信息技術應用的核心。一切計算機應用數據都需要由物理設備來存儲,以便計算機系統進行讀寫等處理,數據應用與數據存儲恰似樹干與樹根的密切關系。伴隨著信息技術應用的持續高速發展,可以預見未來的數據量必將呈現爆炸式增長,隨之而來的海量數據存儲瓶頸問題必然日趨嚴重,加劇著數據存儲領域長期面臨的容量、安全、性能、擴充、維護、災備、監管等諸多挑戰。其中,容量困境,首當其沖。
當前痛點。 為了滿足數據存儲容量日益增長的需求,大數據存儲中心建設必不可少。放眼當下全國各地的大數據存儲中心建設,由於數據存儲基礎核心技術缺位,流行的模式是不可持續的「 科技 房地產」,即單純拓展佔地面積蓋樓建設數據中心,進而耗費寶貴自然資源。目前我國城市監控視頻圖像數據受限於數據中心存儲容量空間,一般只能保留一個月左右,相關的數據應用嚴重受制。
應用基石。 底層數據存儲是信息產業發展的基石,數據存儲技術產品是信息應用系統的架構基礎,也是我國的關鍵行業技術短板。有效的數據存儲技術產品涉及到所有信息技術應用場景:人工智慧,信息安全,智慧城市,大數據,雲計算,區塊鏈,城市大腦,雪亮工程,城市管理視頻監控,醫學影像識別,等等。
嚴峻局面。 追溯信息技術百年來的發展軌跡,中國在數據存儲基礎技術領域的貢獻幾乎為零。國內數據存儲行業主要擅長於市場側的商業應用創新,數據存儲底層管理的核心技術研發嚴重依賴國外的開源開放。缺乏基礎研發梯隊,沒有關鍵理論 探索 ;沿襲陳舊的發展思路,習於外購器件設備;底層技術積累短缺,核心創新能力薄弱;嚴峻的局面至今沒有重大改變。
危情險勢。 中國在核心存儲產品、底層支撐技術、商業應用理念上長期跟跑,遭受外部勢力釜底抽薪式的「存儲底層關鍵核心技術精準打擊」的隱患和風險極大。面對復雜多變的國際環境,一旦遭遇卡脖子,如外購存儲產品斷貨或核心技術交流封鎖,舉國上下所有涉及信息技術應用的行業領域都必然窒息。從而直接降低相關產業迭代發展速度,掣肘 社會 前進步伐,削弱國家治理能力,進而危及影響到國家的政治和 社會 穩定。
時不我待。 我們需要立即行動起來,通過立項開展微型數據存儲技術創新研發,凝聚國內外數據存儲領域資源力量,構建數據存儲專業核心技術團隊;從研發軟體定義的存儲(數據去重)技術產品入手,填補國內技術產品領域空白;啟動研發微型化(原子級)數據存儲設備,搶占未來數據存儲領域的制高點。這項舉措也是解除我國數據存儲技術產品創新研發「卡脖子」危機的最佳途徑。
開展微型數據存儲技術創新研發的思路
我國應抓住當前數據應用驅動信息技術升級換代的大數據發展 歷史 契機,凝聚國內外資源力量,構建中國數據存儲專業核心技術團隊。近期:研發部署模塊化數據去重技術產品,壓縮海量數據存儲空間需求,填補國內底層數據存儲管理技術空白。遠期:啟動研發微型數據存儲設備,搶占未來數據存儲技術領域的制高點。
從開展微型數據存儲技術創新研發入手,聚焦國際存儲技術領域的戰略性前沿技術趨勢;聯手科研院所、高等院校、生產企業、大型用戶的資源,建設國家級核心技術團隊;積極引進/培養數據存儲技術人才,研發自主可控系列產品。
1.近期跟蹤行業動態
對標國際頂級數據存儲技術產品,砥礪學習底層模塊級數據存儲去重技術,壓縮海量數據存儲空間需求,實現自主可控國產數據存儲技術管理軟體產品的商務應用。基本原理是首先識別出重復的數據模塊,然後優化存儲多個重復數據模塊中的單一模塊,以及同其它重復模塊的鏈接關系。進而減少企業級客戶存儲數據所需的物理空間佔有量,降低采購部署數據存儲設備的增量。
2.遠期重點突出推進
探索 下一代數據存儲技術,整合跨學科資源啟動開展研發微型存儲器,力圖將現有基於磁碟/光碟/磁帶的計算機數據存儲器,轉化為未來基於原子/電子運動狀態的微型化數字信息採集與存取機制。其原理是將現在耗費數百萬個原子的材料介質所表徵的一位「0」或「1」二進制計算機數據,試圖由單個原子狀態變化來表徵。於是,可以將現有數據存儲設備體積縮小數十萬乃至百萬倍,最終將佔地約足球場面積的大數據存儲倉庫縮小為攜帶型器件。
3.研發工作開展建議
開展微型數據存儲技術創新研發應該建設成為國內領先、國際一流的數據存儲技術研究機構、產業孵化溫室、以及人才培養基地。
延攬數據存儲技術專家領銜擔綱咨詢顧問。全球招聘在世界頂級數據存儲公司工作多年的業界精英加盟指導。
構建中國數據存儲技術研發團隊。採用引進師資/開設培訓課程等有效方式,積累培育國內數據存儲技術力量。
結盟矽谷存儲技術研究院。依託美國矽谷地區的數據存儲實體公司,共享數據存儲底層技術知識。
注冊成立企業運營機構。開發軟體定義存儲(數據去重)技術產品,服務數據用戶市場,遵循商務運作規律。
融資涵蓋多種基金渠道。申報獲取國家重大專項基礎項目研發資金,吸引專業投資基金加盟。首期投資約需10億元人民幣(參考國際相關工程估值:美國IBM公司同類項目投資約600億美元/10年)。
推動微型數據存儲技術創新研發的建議
我國在開展新型基礎設施建設的同時,應當抓住當前數據計算應用驅動信息技術升級換代的大數據發展 歷史 契機,建立數據存儲技術的自主知識產權體系,填補國內空白,保障數字中國建設長遠規劃實施,推進國產數據存儲產品崛起,為相關產業發展鋪路。
2.建議遠期緊跟世界主流研發創新步伐,聚焦研發原子級微型化數據存儲技術產品(2020-2040年),在2040年前研發出原子級大數據存儲技術,並逐步實現產業化。
3.建議將微型化數據存儲技術創新作為國家戰略。搭建政產學研用共建共治共享的中國數據存儲技術聯合創新平台,建設國家級重點實驗室。依託科研院所/高等院校/相關企業,奠定從微型數據存儲理論、硬體設計、軟體開發、結構設計、系統集成等一整套原子級微型數據存儲技術研發工作的基礎。
4.建議國家相關部委給予配套資金支持。加快推進原子級大數據存儲技術研發和產業化轉化。支持申報重大 科技 項目和專項扶持資金。
5.建議形成能夠長期從事數據存儲技術創新的人才隊伍。借鑒全球數據存儲技術創新研發經驗,引進海內外數據存儲技術領域頂尖科學家和工程師。在高等院校與科研院所開設數據存儲技術專業課程,搭建完善的國內人才培養體系。
6.建議立項過程不宜採用常規項目申報、審批流程,亟需特事特辦予以批准。主要是有鑒於本項目相關的科研生產領域中,國內現有技術力量薄弱分散,評估體系資源匱乏。
7.建議項目推進應當低調快速務實:不重造勢,不揚虛名,不謀近利。主要是基於當前復雜敏感的國際政治經濟形勢,預計本項目勢將關聯國家核心產業戰略布局,影響未來數十年中國數字經濟命脈與發展。
作 者:中央 財經 大學中國互聯網經濟研究院研究員 歐陽日輝
通訊員:李 翀
戰略性新興產業專題報道 辦事,「刷臉」就行
張家口敢闖敢試、先行先試,積極 探索 氫能產業創新發展的有益路徑
「東數西算」正式啟動,樞紐網路如何建設?
「十四五」浪潮下如何構建城市數據中心網路?
「我為群眾辦實事」北京市發展改革委發布第三批政策工具應用指南
大美密雲 助推新興產業發展
東方測控:打造智能製造示範工廠,引領礦山行業新未來