當前位置:首頁 » 服務存儲 » 人工智慧如何存儲信息
擴展閱讀
webinf下怎麼引入js 2023-08-31 21:54:13
堡壘機怎麼打開web 2023-08-31 21:54:11

人工智慧如何存儲信息

發布時間: 2023-02-26 18:04:57

A. 人工智慧聯想存儲有何特點

(1)可以存儲許多相關(激勵、響應)模式。
(2)通過自組織過程可以完成多種存儲。
(3)以分步、穩健的方式(可能會有很多的冗餘度)存儲信息。
(4)可以根據接收到的相關激勵模式產生並輸出適當的響應模式。
(5)即使輸入激勵模式失真或不完全,仍然可以產生正確的響應模式。
(6)可在原存儲中加入新的存儲模式。

B. 人工智慧黑庫是什麼

您好,人工智慧黑庫是一種用於存儲和管理人工智慧系統中的數據和信息的資料庫。它可以幫助人工智慧系統更好地理解和處理數據,從而提高系統的性能和准確性。人工智慧黑庫可以用來存儲用戶信息、訓練數據、模型參數和其他相關信息,以便在需要時可以快速訪問和分析。此外,它還可以用來存儲模型訓練結果,以便在需要時可以快速檢索和更新。

C. 人工智慧技術基於什麼提供的儲存資源

利用計算存儲資源池和智能演算法為各行業應用提供智能化服務。

在計算機科學中,人工智慧(AI)有時被稱為機器智能,是由機器展示的智能,與人類和動物展示的自然智能形成對比。通俗地說,「人工智慧」一詞用來描述模仿人類與其他人類思維相關聯的「認知」功能的機器,如「學習」和「解決問題」。

隨著機器變得越來越有能力,被認為需要「智能」的任務通常會從人工智慧的定義中刪除,這種現象被稱為人工智慧效應。 特斯勒定理(Tesler's Theorem)中的一句妙語說:「人工智慧是尚未完成的事情。」

例如,光學字元識別經常被排除在人工智慧之外,已經成為一種常規技術。現代機器能力通常被歸類為人工智慧,包括成功理解人類語言, 在戰略游戲系統(如象棋和圍棋)中處於最高水平的競爭, 自主操作汽車、內容傳遞網路中的智能路由以及軍事模擬。

D. 人工智慧的原理是什麼

人工智慧的原理,簡單的形容就是:

人工智慧=數學計算。

機器的智能程度,取決於「演算法」。最初,人們發現用電路的開和關,可以表示1和0。那麼很多個電路組織在一起,不同的排列變化,就可以表示很多的事情,比如顏色、形狀、字母。再加上邏輯元件(三極體),就形成了「輸入(按開關按鈕)——計算(電流通過線路)——輸出(燈亮了)」

但是到了圍棋這里,沒法再這樣窮舉了。力量再大,終有極限。圍棋的可能性走法,遠超宇宙中全部原子之和(已知),即使用目前最牛逼的超算,也要算幾萬年。在量子計算機成熟之前,電子計算機幾無可能。

所以,程序員給阿爾法狗多加了一層演算法:

A、先計算:哪裡需要計算,哪裡需要忽略。

B、然後,有針對性地計算。

——本質上,還是計算。哪有什麼「感知」!

在A步,它該如何判斷「哪裡需要計算」呢?

這就是「人工智慧」的核心問題了:「學習」的過程。

仔細想一下,人類是怎樣學習的?

人類的所有認知,都來源於對觀察到的現象進行總結,並根據總結的規律,預測未來。

當你見過一隻四條腿、短毛、個子中等、嘴巴長、汪汪叫的動物,名之為狗,你就會把以後見到的所有類似物體,歸為狗類。

不過,機器的學習方式,和人類有著質的不同:

人通過觀察少數特徵,就能推及多數未知。舉一隅而反三隅。

機器必須觀察好多好多條狗,才能知道跑來的這條,是不是狗。

這么笨的機器,能指望它來統治人類嗎。

它就是仗著算力蠻干而已!力氣活。

具體來講,它「學習」的演算法,術語叫「神經網路」(比較唬人)。

(特徵提取器,總結對象的特徵,然後把特徵放進一個池子里整合,全連接神經網路輸出最終結論)

它需要兩個前提條件:

1、吃進大量的數據來試錯,逐漸調整自己的准確度;

2、神經網路層數越多,計算越准確(有極限),需要的算力也越大。

所以,神經網路這種方法,雖然多年前就有了(那時還叫做「感知機」)。但是受限於數據量和計算力,沒有發展起來。

神經網路聽起來比感知機不知道高端到哪裡去了!這再次告訴我們起一個好聽的名字對於研(zhuang)究(bi)有多重要!

現在,這兩個條件都已具備——大數據和雲計算。誰擁有數據,誰才有可能做AI。

目前AI常見的應用領域:

圖像識別(安防識別、指紋、美顏、圖片搜索、醫療圖像診斷),用的是「卷積神經網路(CNN)」,主要提取空間維度的特徵,來識別圖像。

自然語言處理(人機對話、翻譯),用的是」循環神經網路(RNN)「,主要提取時間維度的特徵。因為說話是有前後順序的,單詞出現的時間決定了語義。

神經網路演算法的設計水平,決定了它對現實的刻畫能力。頂級大牛吳恩達就曾經設計過高達100多層的卷積層(層數過多容易出現過擬合問題)。

當我們深入理解了計算的涵義:有明確的數學規律。那麼,

這個世界是是有量子(隨機)特徵的,就決定了計算機的理論局限性。——事實上,計算機連真正的隨機數都產生不了。

——機器仍然是笨笨的。

更多神佑深度的人工智慧知識,想要了解,可以私信詢問。

E. 關於人工智慧

人腦有意識,電腦有意識嗎?在科學極其發展的今天,電腦是否會超越人腦,人是否會成為電腦的奴隸?哲學不能不對這一問題做出回答。
人工智慧是20世紀中葉科學技術所取得的重大成果之一。它的誕生與發展對人類文明產生了巨大的影響和效益。同時也引起了哲學意識與人工智慧的理論探討。
人工智慧是相對於人類智能而言的。它是指用機械和電子裝置來模擬和代替人類的某些智能。人工智慧也稱「機器智能」或「智能模擬」。當今人工智慧主要是利用電子技術成果和仿生學方法,從大腦的結構方面模擬人腦的活動,即結構模擬。
人腦是智能活動的物質基礎,是由上百億個神經元組成的復雜系統。結構模擬是從單個神經元入手的,先用電子元件製成神經元模型,然後把神經元模型連接成神經網路(腦模型) ,以完成某種功能,模擬人的某些智能。如1957年美國康乃爾大學羅森布萊特等人設計的「感知機」;1975年日本的福島設計的「認知機」(自組織多層神經網路) 。
電子計算機是智能模擬的物質技術工具。它是一種自動、高速處理信息的電子機器。它採用五個與大腦功能相似的部件組成了電腦,來模擬人腦的相應功能。這五個部件是:(1) 輸入設備,模擬人的感受器(眼、耳、鼻等) ,用以接受外來的信息。人通過輸入設備將需要計算機完成的任務、課題、運算步驟和原始數據採用機器所能接受的形式告訴計算機,並經輸入設備把這些存放到存貯器中。(2) 存貯器,模擬人腦的記憶功能, 將輸入的信息存儲起來,供隨時提取使用,是電子計算機的記憶裝置。(3) 運算器,模擬人腦的計算、判斷和選擇功能,能進行加減乘除等算術運算和邏輯運算。(4) 控制器,人腦的分析綜合活動以及通過思維活動對各個協調工作的控制功能,根據存貯器內的程序,控制計算機的各個部分協調工作。它是電腦的神經中樞。 (5)輸出設備,模擬人腦的思維結果和對外界刺激的反映,把計算的結果報告給操作人員或與外部設備聯系,指揮別的機器動作。
以上五部分組成的電腦是電子模擬計算機的基本部分,稱為硬體。只有硬體還不能有效地模擬和代替人腦的某些功能,還必須有相應的軟體或軟設備。所謂軟體就是一套又一套事先編好的程序系統。
人工智慧的產生是人類科學技術進步的結果,是機器進化的結果。人類的發展史是人們利用各種生產工具有目的地改造第一自然( 自然造成的環境,如江河湖海、山脈森林等) ,創造第二自然( 即人化自然,如人造房屋、車輛機器等) 的歷史。人類為了解決生理機能與勞動對象之間的矛盾,生產更多的財富,就要使其生產工具不斷向前發展。人工智慧,是隨著科學技術的發展,在人們創造了各種復雜的機器設備,大大延伸了自己的手腳功能之後,為了解決迫切要延伸思維器官和放大智力功能的要求而產生和發展起來的。
從哲學上看,物質世界不僅在本原上是統一的,而且在規律上也是相通的。不論是機器、動物和人,都存在著共同的信息與控制規律,都是信息轉換系統,其活動都表現為一定信息輸入與信息輸出。人們認識世界與在實踐中獲取和處理信息的過程相聯系,改造世界與依據已有的信息對外界對象進行控制的過程相聯系。總之,一切系統都能通過信息交換與反饋進行自我調節,以抵抗干擾和保持自身的穩定。因此,可以由電子計算機運用信息與控制原理來模擬人的某些智能活動。
從其它科學上來說,控制論與資訊理論就是運用系統方法,從功能上揭示了機器、動物、人等不同系統所具有的共同規律。以此把實際的描述形式化,即為現象和行為建立一個數學模型;把求解問題的方式機械化,即根據數學模型,制定某種演算法和規則,以便機械地執行;把解決問題的過程自動化,即用符號語言把演算法和規則編成程序,交給知識智能機器執行某種任務,使電子計算機模擬人的某些思維活動。所以,控制論、資訊理論是"智能模擬"的科學依據,「智能模擬」是控制論、資訊理論在實踐中的最重要的實踐結果。
人工智慧是人類智能的必要補充,但是人工智慧與人類智能仍存在著本質的區別:
1 、人工智慧是機械的物理過程,不是生物過程。它不具備世界觀、人生觀、情感、意志、興趣、愛好等心理活動所構成的主觀世界。而人類智能則是在人腦生理活動基礎上產生的心理活動,使人形成一個主觀世界。因此,電腦與人腦雖然在信息的輸入和輸出的行為和功能上有共同之處,但在這方面兩者的差別是十分明顯的。從信息的輸入看,同一件事,對於兩個智能機具有相同的信息量,而對於兩個不同的人從中獲取的信息量卻大不相同。「行家看門道,外行看熱鬧」就是這個道理。從信息的輸出方面看,兩台機器輸出的同一信息,其信息量相等。而同一句話,對於飽於風霜的老人和天真幼稚的兒童,所說的意義卻大不相同。
2 、人工智慧在解決問題時,不會意識到這是什麼問題,它有什麼意義,會帶來什麼後果。電腦沒有自覺性,是靠人的操作完成其機械的運行機能;而人腦智能,人的意識都有目的性,可控性,人腦的思維活動是自覺的,能動的。
3 、電腦必須接受人腦的指令,按預定的程序進行工作。它不能輸出末經輸入的任何東西。所謂結論,只不過是輸入程序和輸入數據的邏輯結果。它不能自主地提出問題,創造性地解決問題,在遇到沒有列入程序的「意外」情況時,就束手無策或中斷工作。人工智慧沒有創造性。而人腦功能則能在反映規律的基礎上,提出新概念,作出新判斷,創造新表象,具有豐富的想像力和創造性。
4 、人工機器沒有社會性。作為社會存在物的人,其腦功能是適應社會生活的需要而產生和發展的。人們的社會需要遠遠超出了直接生理需要的有限目的,是由社會的物質文明與精神文明的發展程序所決定的。因此,作為人腦功能的思維能力,是通過社會的教育和訓練,通過對歷史上積累下來的文化的吸收逐漸形成的。人的內心世界所以豐富多采,是由於人的社會聯系是豐富的和多方面的,人類智能具有社會性。所以要把人腦功能全面模擬下來,就需要再現人的思想發展的整個歷史邏輯。這是無論多麼「聰明」的電腦都做不到的。隨著科學技術的發展,思維模擬范圍的不斷擴大,電腦在功能上會不斷向人腦接近。但從本質上看,它們之間只能是一條漸近線,它們之間的界限是不會清除的。模擬是近似而不能是等同。
人工智慧與人腦在功能上是局部超過,整體上不及。由於人工智慧是由人造機器而產生的,因此,人工智慧永遠也不會趕上和超過人類智能。所謂「機器人將超過人奴役人」、「人將成為計算機思想家的玩物或害蟲,…… 保存在將來的動物園」的「預言」是不能成立的。因為,它抹煞了人與機器的本質差別與根本界限。
人工智慧充實和演化了辯證唯物主義的意識論。它進一步表明了意識是人腦的機能,物質的屬性。電腦對人腦的功能的模擬,表明了意識並不是神秘的不可捉摸的東西,不是游離於肉體內外脫離人腦的靈魂,也不是人腦分泌出來的特殊物質形態,而是人腦的機能屬性。這就進一步證明了意識本質的原理。
人工智慧的出現深化了意識對物質的反作用的原理。人工智慧是人類意識自我認識的產物。電腦的出現,意昧著人類意識已能部分地從人腦中分化出來,物化為物質的機械運動。這不僅延長了意識的器官,也說明意識能反過來創造"人腦"。這是意識對人腦的巨大的反作用。從意識與人腦的相互關系中進一步深化了意識對物質形態進步的反作用,意識作為最高的物質屬性對於物質運動發展的反作用。
人工智慧引起了意識結構的變化,擴大了意識論的研究領域。電腦作為一種新形態的機器而進入了意識器官的行列。它不僅能完成人腦的一部分意識活動,而且在某種功能上還優於人腦。如人腦處理信息和採取行動的速度不如電腦,記憶和動作的准確性不如電腦。因此,在現代科學認識活動中,沒有人工智慧,就不會有人類認識能力的突破性發展和認識范圍的不斷擴大。電腦不僅依賴於人,人也依賴於電腦。這就使得在意識論結構上增加了對人工智慧的探討以及對人機互補的關系的探討。同時思維模擬,也把思維形式在思維中的作用問題突出出來,為意識論的研究提出了一個重要課題。

F. 人工智慧的記憶和以像數據一樣長期保存並重啟嗎

從一個悲劇故事談起
黛博拉(Deborah)輕輕地推開房門,探頭往裡看。克萊夫(Clive)發現進來的是妻子,臉上露出無限的喜悅。他直奔門前,高喊「太好了」,並張開雙臂緊緊地抱住黛博拉。克萊夫一邊和黛博拉親吻,一邊說「你來了,真讓我吃驚」。接著兩人又開始擁抱,好像分別已久。坐下來後,黛博拉用溫柔的眼光看著克萊夫說「其實我今天早上也來過」,克萊夫搖搖頭反駁道「不可能,這是我今天第一次見到你。」這樣的場景每天都在黛博拉和克萊夫之間重復上演。

克萊夫·韋爾林(Clive Wearing)是英國的一位音樂家¹ 。他四十多歲的時候突然患上了病毒性腦炎,這是一種死亡率很高的疾病。幸運的是他活了下來,不幸的是疾病給他留下了失憶症(amnesia)。過去發生的很多事情已不能記起,但他還認識妻子,卻不認識女兒。更嚴重的是他對當前發生的事情不能記憶到腦子里,幾分鍾後就會完全忘記。他的行動沒有任何問題,語言和思維似乎也正常,可以飲食、行走、說話、寫字,甚至彈琴、唱歌,看上去和正常人一樣。但他就是長期記憶(long term memory)出了問題。他感受到的世界和大家是一樣的,但轉過頭去,剛發生的一切就會從腦海中消失,他所擁有的只是「瞬間到瞬間的意識」,沒有過去可以聯系,也沒有未來可以展望。

克萊夫·韋爾林用自己不幸的經歷為我們揭示了長期記憶對我們的智能,乃至我們的人生的重要意義。

記憶與智能
人腦的記憶模型如圖1所示,由中央處理器、寄存器、短期記憶和長期記憶組成。視覺、聽覺等感測器從外界得到輸入,存放到寄存器中,在寄存器停留1~5秒。如果人的注意力關注這些內容,就會將它們轉移到短期記憶,在短期記憶停留30秒左右。如果人有意將這些內容記住,就會將它們轉移到長期記憶,半永久地留存在長期記憶里。人們需要這些內容的時候,就從長期記憶中進行檢索,並將它們轉移到短期記憶,進行處理[1]。

圖1 人腦記憶模型
長期記憶的內容既有信息,也有知識。簡單地說,信息表示的是世界的事實,知識表示的是人們對世界的理解,兩者之間並不一定有明確的界線。人在長期記憶里存儲信息和知識時,新的內容和已有的內容聯繫到一起,規模不斷增大,這就是長期記憶的特點。

大腦中,負責向長期記憶讀寫的是邊緣系統中的海馬體(hippocampus)。克萊夫·韋爾林患失憶症,是因為海馬體受到了損傷。長期記憶實際上存在於大腦皮層(cerebral cortex)。在大腦皮層,記憶意味著改變腦細胞之間的鏈接,構建新的鏈路,形成新的網路模式。

我們可以認為,現在的人工智慧系統是沒有長期記憶的。無論是阿爾法狗,還是自動駕駛汽車,都是重復使用已經學習好的模型或者已經被人工定義好的模型,不具備不斷獲取信息和知識,並把新的信息與知識加入到系統中的機制。假設人工智慧系統也有意識的話,那麼其所感受到的世界和克萊夫·韋爾林是一樣的,那就是,只有瞬間到瞬間的意識。

那麼,意識是什麼?這是當今科學的最大疑團之一,眾說紛紜,莫衷一是。日裔美國物理學家加萊道雄 (Michio Kaku)給出了他的定義。如果一個系統與外部環境(包括生物、非生物、空間、時間)互動過程中,其內部狀態隨著環境的變化而變化,那麼這個系統就擁有「意識」[2]。按照這個定義,溫度計、花兒是有意識的系統,人工智慧系統也是有意識的。擁有意識的當前的人工系智能系統缺少的是長期記憶。

具有長期記憶將使人工智慧系統演進到一個更高的階段。這應該是人工智慧今後發展的方向。

智能問答系統
未來人工智慧技術不斷發展,預計將會出現智能性的問答系統,系統包括語言處理模塊、短期記憶、長期記憶、中央處理模塊(如圖2所示)。有大量的結構化的、非結構化的信息和知識作為輸入,也有大量的問答語對作為訓練數據。系統能夠自動獲取信息與知識,掌握語言理解與生成能力,將信息和知識處理存儲到長期記憶,理解用戶用自然語言提的問題,利用記憶的信息與知識給出正確的答案。

圖2 智能問答系統
在某種意義上,現在已經存在這種系統的原型,例如,互聯網搜索引擎就可以看作是其簡化版。但是要真正構建人類的智能信息助手,還有許多難關要攻克,有許多課題要解決。

知識問答的本質問題是:

(1)語義分析,即將輸入的自然語言的表示映射到內部的語義表示;

(2)知識表示,即將輸入的信息知識轉換為內部的語義表示。最大的挑戰來自語言的多義性和多樣性,以及知識的模糊性。

語言具有多義性(ambiguity),也就是說一個表達可以表示不同的意思。下面是語言學家查爾斯·菲爾默(Charles Fillmore)給出的例子。英語單詞climb,其基本語義是四肢用力沿著一條軌跡向上移動,表示「向上爬」的意思。所以如果用climb造句,大家一般會給出這樣的句子「The boy climbed the tree」(男孩爬上了樹)。但是climb一詞的語義會向不同方向擴展,可以說「Prices are climbing day by day」(物價每日飆升),這里climb就沒有了四肢用力移動的意思。也可以說「He climbed out of a sleeping bag」(他從睡袋中爬出),這里climb就沒有了向上移動的意思。語言的詞彙都具有如下性質:有一個核心的語義,對應一些典型說法,可以由一些特徵表示。但部分特徵可以缺失,形成新的語義,產生新的說法。語言中,除了詞彙的多義性,還有句法的多義性。

同時語言也具有多樣性(variability),也就是說多個表達可以表示同一個意思。比如,「地球和太陽的距離」,「地球離太陽有多遠?」,「太陽和地球相隔有多少公里?」等,都是同義表達。

人們的知識,特別是常識,具有模糊性(fuzziness)。下面是人工智慧研究的先驅者特里·維諾格拉特(Terry Winograd)給出的例子。英文中,bachelor是指未婚成年男性,即單身的意思。看似是一個明確的概念,但是當我們判斷現實中的具體情況時,就會發現我們對這個概念的認識是模糊的,比如,未婚父親是否是bachelor?假結婚的男子是否是bachelor?過著花花公子生活的高中生是否是bachelor?大家並沒有一致的意見。

神經符號處理
近年,深度學習給自然語言處理帶來了巨大變化,使機器翻譯、對話等任務的性能有了大幅度的提升,成為領域的核心技術。但是另一方面,深度學慣用於自然語言處理的局限也顯現出來。面向未來,深度學習(神經處理)與傳統符號處理的結合應該成為一個重要發展方向,神經符號處理(neural symbolic processing)的新範式被越來越多的人所接受,其研究也取得初步進展。

圖 3 基於神經符號處理的智能問答系統
深度學慣用實數向量來表示語言,包括單詞、句子、文章,向量表示又稱為神經表示(neural representation)。神經表示的優點在於其穩健性,可以更好地應對語言的多義性和多樣性,以及語言數據中的噪音。另一方面,傳統的符號表示(symbolic representation)的優點在於其可讀性和可操作性。語言是基於符號的,計算機擅長的是符號處理,用符號表示語言處理的結果是自然的選擇。神經符號處理旨在同時使用神經表示與符號表示來描述語言的語義,發揮兩者的優勢,更好地進行自然語言處理。

基於神經符號處理的智能問答系統也是由語言處理模塊、短期記憶、長期記憶、中央處理模塊組成,如圖3所示。語言處理模塊又由編碼器和解碼器組成。編碼器將自然語言問題轉換為內部的語義表示,存放在短期記憶中,包括符號表示和神經表示。中央處理模塊通過問題的語義表示,從長期記憶中找出相關的信息和知識。長期記憶中的信息和知識也是基於符號表示和神經表示的。找到相關的答案後,解碼器把答案的語義表示轉換為自然語言答案。

最新進展
實現問答系統有三種方法,分別是基於分析的、檢索的、生成的方法。通常是單輪對話,也可以是多輪對話。這里考慮單輪的基於分析的問答系統。

傳統的技術是語義分析(semantic parsing) [3]。基於人工定義的語法規則,對問句進行句法分析以及語義分析,得到內部語義表示——邏輯表達式。語義分析需要人工定義句法,開發成本較高,可擴展性不好。

近年,基於神經符號處理的問答系統的研究有了很大突破。可以從數據出發,完全端到端地構建問答系統。不需要人工干預,只需要提供足夠量的訓練數據。問答的准確率也有了一定的提升。傳統的語義分析技術被顛覆。下面介紹幾個有代表性的工作。

臉書(Facebook)的韋斯頓(Weston)等人提出了記憶網路(memory networks)框架[4],可以用於如下場景的問答:

John is in the playground.
Bob is in the office.
John picked up the football.
Bob went to the kitchen.
Q: where is the football?
A: playground.
記憶網路由神經網路和長期記憶組成。長期記憶是一個矩陣,矩陣的每一個行向量是一個句子的語義表示。閱讀時,記憶網路可以把給定的句子轉換成內部表示,存儲到長期記憶中。問答時,把問句也轉換成內部表示,與長期記憶中每行的句子語義表示進行匹配,找到答案,並做回答。

谷歌DeepMind的格拉夫(Graves)等發明了可微分神經計算機(differentiable neural computer)模型[5]。該模型由神經網路和外部記憶組成。外部記憶是一個矩陣,可以表示復雜的數據結構。神經網路負責對外部記憶進行讀寫,它有三種類型,擁有不同的注意力機制,表示三種不同的讀寫控制,對應哺乳動物中海馬體的三種功能。神經網路在數據中進行端到端的學習,學習的目標函數是可微分的函數。可微分神經計算機模型被成功應用到了包括智能問答的多個任務中。

谷歌的尼拉康藤(Neelakantan)等開發了神經編程器(neural programmer)模型[6],可以從關系資料庫中尋找答案,自動回答自然語言問題。模型整體是一個循環神經網路。每一步都是基於問句的表示(神經表示)以及前一步的狀態表示(神經表示),還包括計算操作的概率分布和列的概率分布,以及選擇對資料庫表的一個列來執行一個操作(符號表示)。順序執行這些操作,並找到答案。操作表示對資料庫列的邏輯或算數計算,如求和、大小比較。學習時,整體目標函數是可微分的,用梯度下降法訓練循環神經網路的參數。

谷歌的Liang等開發了神經符號機(neural symbolic machines)模型[7]。神經符號機可以從知識圖譜三元組中找到答案,回答像「美國最大的城市是哪個?」這樣的問題。模型是序列對序列(sequence-to-sequence)模型,將問題的單詞序列轉換成命令的序列。命令的序列是LISP語言²的程序,執行程序就可以找到答案。神經符號機的最大特點是序列對序列模型表示和使用程序執行的變數,用附加的鍵-變數記憶(key-variable memory)記錄變數的值,其中鍵是神經表示,變數是符號表示。模型的訓練是基於強化學習(策略梯度法)的端到端的學習。

圖4 包含查詢器的智能問答系統
華為公司的呂正東等開發了神經查詢器(neural enquirer)、符號查詢器(symbolic enquirer)和連接查詢器(coupled enquirer)三個模型[8,9],用於自然語言的關系資料庫查詢。例如,可以從奧林匹克運動會的資料庫中尋找答案,回答「觀眾人數最多的奧運會的舉辦城市的面積有多大?」這樣的問題。問答系統包括語言處理模塊、短期記憶、長期記憶和查詢器,語言處理模塊又包括編碼器和解碼器。圖4即是這種架構的具體實現。查詢器基於短期記憶的問題表示(神經表示)從長期記憶的資料庫中(符號表示與神經表示)尋找答案。符號查詢器是一個循環神經網路,將問句的表示(神經表示)轉換為查詢操作(符號表示)的序列,執行操作序列就可以找到答案。利用強化學習,具體的策略梯度法,可以端到端地學習此循環神經網路。神經查詢器是一組深度神經網路,將問句的表示(神經表示)多次映射到資料庫的一個元素(符號表示),也就是答案,其中一個神經網路表示一次映射的模式。利用深度學習,具體的梯度下降法,可以端到端地學習這些深度神經網路。符號查詢器執行效率高,學習效率不高;神經查詢器學習效率高,執行效率不高。連接查詢器結合了兩者的優點。學習時首先訓練神經查詢器,然後以其結果訓練符號查詢器,問答時只使用符號查詢器。

未來展望
計算機最擅長的是計算和存儲,其強大的計算能力已經在現實中展現出巨大的威力,但是其強大的存儲能力並沒有得到充分的發揮,通常存儲的是數據,而不是信息和知識。計算機還不能自動地對數據進行篩選和提煉,抽取信息和知識,並把它們關聯起來,存儲在長期記憶里,為人類服務。

可以預見,未來會有這樣的智能信息和知識管理系統出現,它能夠自動獲取信息和知識,如對之進行有效的管理,能准確地回答各種問題,成為每一個人的智能助手。人工智慧技術,特別是神經符號處理技術,有望幫助我們實現這樣的夢想。期盼這一天的到來!

致謝
感謝呂正東、蔣欣、尚利峰、牟力立、殷鵬程等,本文中的很多想法是在與他們合作的工作中產生的。

腳注
¹互聯網上有文章和視頻介紹克萊夫·韋爾林的生平。

²LISP是List Processing的縮寫,是一種早期開發的、具有重大意義的表處理語言。它適用於符號處理、自動推理、硬體描述和超大規模集成電路設計等。

參考文獻
[1] Frank L. Learning and Memory: How It Works and When It Fails. Stanford Lecture, 2010.

[2] Michio K. Consciousness Can be Quantified. Big Think, Youtube, 2014.

[3] Percy L. Learning Executable Semantic Parsers for Natural Language Understanding [J]. Communications of the ACM, 2016.

[4] Weston J, Chopra S, Bordes A. Memory Networks[C]// Proceedings of the International Conference on Learning Representations (ICLR), 2015.

[5] Graves A, Wayne G, Reynolds M, et al. Hybrid computing using a neural network with dynamic external memory [J]. Nature, 2016, 538(7626):471.

[6] Neelakantan A, Le Q V, Sutskever I. Programmer: Incing Latent Programs with Gradient Descent[C]// Proceedings of the International Conference on Learning Representations (ICLR), 2016.

[7] Liang C, Berant J, Le Q, et al. Neural Symbolic Machines: Learning Semantic Parsers on Freebase with Weak Supervision[C]// Proceedings of the 55th Annual Meeting of Association for Computational Linguistics (ACL』17), 2017.

[8] Yin P, Lu Z, Li H, Kao B. Neural Enquirer: Learning to Query Tables with Natural Language[C]// Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI』16), 2016:2308-2314.

[9] Mou L, Lu Z, Li H, Jin Z, Coupling Distributed and Symbolic Execution for Natural Language Queries[C]// Proceedings of the 34th International Conference on Machine Learning (ICML』17), 2017:2518-2526.

發布於 5 年前著作權歸作者所有

贊同 13

喜歡 1