當前位置:首頁 » 服務存儲 » 只讀存儲器的發展歷程
擴展閱讀
webinf下怎麼引入js 2023-08-31 21:54:13
堡壘機怎麼打開web 2023-08-31 21:54:11

只讀存儲器的發展歷程

發布時間: 2023-03-07 03:21:05

1. 存儲器的讀寫過程是什麼樣的

首頁 采購專區 供應專區 技術資料 環保電子 商情資訊 我的B2BIC

5.1 存儲器系統基本知識

作者: 時間: 2008-04-10 來源:

5.1.1存儲器的分類

按照存儲介質不同,可以將存儲器分為半導體存儲器、磁存儲器、激光存儲器。

這里我們只討論構成內存的半導體存儲器。

按照存儲器的存取功能不同,半導體存儲器可分為只讀存儲器(Read Only Memory簡稱ROM)和隨機存儲器(Random Access Memory簡稱RAM)

1.只讀存儲器(ROM)

ROM的特點是把信息寫入存儲器以後,能長期保存,不會因電源斷電而丟失信息。計算機在運行過程中,只能讀出只讀存儲器中的信息,不能再寫入信息。一般地,只讀存儲器用來存放固定的程序和數據,如微機的監控程序、匯編程序、用戶程序、數據表格等。根據編程方式的不同,ROM共分為以下5種:

(1)掩模工藝ROM

這種ROM是晶元製造廠根據ROM要存貯的信息,設計固定的半導體掩模版進行生產的。一旦制出成品之後,其存貯的信息即可讀出使用,但不能改變。這種ROM常用於批量生產,生產成本比較低。微型機中一些固定不變的程序或數據常採用這種ROM存貯。

(2)可一次性編程ROM(PROM)

為了使用戶能夠根據自己的需要來寫ROM,廠家生產了一種PROM。允許用戶對其進行一次編程──寫入數據或程序。一旦編程之後,信息就永久性地固定下來。用戶可以讀出和使用,但再也無法改變其內容。

(3)紫外線擦除可改寫ROM(EPROM)

可改寫ROM晶元的內容也由用戶寫入,但允許反復擦除重新寫入。EPROM是用電信號編程而用紫外線擦除的只讀存儲器晶元。在晶元外殼上方的中央有一個圓形窗口,通過這個窗口照射紫外線就可以擦除原有的信息。由於陽光中有紫外線的成分,所以程序寫好後要用不透明的標簽封窗口,以避免因陽光照射而破壞程序。EPROM的典型晶元是Intel公司的27系列產品,按存儲容量不同有多種型號,例如2716(2KB′8)、2732(4KB′8)、2764(8KB′8)、27128(16KB′8)、27256(32KB′8)等,型號名稱後的數字表示其存儲容量。

(4)電擦除可改寫ROM(EEPROM或E2PROM)

這是一種用電信號編程也用電信號擦除的ROM晶元,它可以通過讀寫操作進行逐個存儲單元讀出和寫入,且讀寫操作與RAM存儲器幾乎沒有什麼差別,所不同的只是寫入速度慢一些。但斷電後卻能保存信息。典型E2PROM晶元有28C16、28C17、2817A等。

(5)快擦寫ROM(flash ROM)

E2PROM雖然具有既可讀又可寫的特點,但寫入的速度較慢,使用起來不太方便。而flash ROM是在EPROM和E2PROM的基礎上發展起來的一種只讀存儲器,讀寫速度都很快,存取時間可達70ns,存儲容量可達16MB~128MB。這種晶元可改寫次數可從1萬次到100萬次。典型flash ROM晶元有28F256、28F516、AT89等。

2.隨機存儲器RAM(也叫讀寫存儲器)

讀寫存儲器RAM按其製造工藝又可以分為雙極型RAM和金屬氧化物RAM。

(1) 雙極型RAM
雙極型RAM的主要特點是存取時間短,通常為幾到幾十納秒(ns)。與下面提到的MOS型RAM相比,其集成度低、功耗大,而且價格也較高。因此,雙極型RAM主要用於要求存取時間短的微型計算機中。

(2) 金屬氧化物(MOS)RAM
用MOS器件構成的RAM又分為靜態讀寫存儲器(SRAM)和動態讀寫存儲器(DRAM)。

j靜態RAM(SRAM)

靜態RAM的基本存儲單元是MOS雙穩態觸發器。一個觸發器可以存儲一個二進制信息。靜態RAM的主要特點是,其存取時間為幾十到幾百納秒(ns),集成度比較高。目前經常使用的靜態存儲器每片的容量為幾KB到幾十KB。SRAM的功耗比雙極型RAM低,價格也比較便宜。

k動態RAM(DRAM)

動態RAM的存取速度與SRAM的存取速度差不多。其最大的特點是集成度特別高。其功耗比SRAM低,價格也比SRAM便宜。DRAM在使用中需特別注意的是,它是靠晶元內部的電容來存貯信息的。由於存貯在電容上的信息總是要泄漏的,所以,每隔2ms到4ms,DRAM要求對其存貯的信息刷新一次。

l集成RAM(i RAM)

集成RAM――Integrated RAM,縮寫為i RAM,這是一種帶刷新邏輯電路的DRAM。由於它自帶刷新邏輯,因而簡化與微處理器的連接電路,使用它和使用SRAM一樣方便。

m非易失性RAM(NVRAM)

非易失性RAM――Non-Volatile RAM,縮寫為NVRAM,其存儲體由SRAM和EEPROM兩部分組合而成。正常讀寫時,SRAM工作;當要保存信息時(如電源掉電),控制電路將SRAM的內容復制到EEPROM中保存。存入EEPROM中的信息又能夠恢復到SRAM中。

NVRAM既能隨機存取,又具有非易失性,適合用於需要掉電保護的場合。

5.1.2存儲器的主要性能指標
1.存貯容量
不同的存儲器晶元,其容量不一樣。通常用某一晶元有多少個存貯單元,每個存貯單元存貯若干位來表示。例如,靜態RAM6264的容量為8KB′8bit,即它有8K個單元(1K=1024),每個單元存貯8位(一個位元組)數據。

2.存取時間
存取時間即存取晶元中某一個單元的數據所需要的時間。在計算機工作時,CPU在讀寫RAM時,它所提供的讀寫時間必須比RAM晶元所需要的存取時間長。如果不能滿足這一點,微型機則無法正常工作。

3.可靠性
微型計算機要正確地運行,必然要求存儲器系統具有很高的可靠性。內存的任何錯誤就足以使計算機無法工作。而存儲器的可靠性直接與構成它的晶元有關。目前所用的半導體存儲器晶元的平均故障間隔時間(MTBF)大概是(5′106∽1′108)小時左右。

4.功耗
使用功耗低的存儲器晶元構成存儲器系統,不僅可以減少對電源容量的要求,而且還可以提高存貯系統的可靠性。

關於我們 | 網站地圖 | 推薦給朋友 | 友情鏈接 | 服務介紹 | 配套雜志 | IC庫存
E-mail:[email protected]
Copyright (c) 2003-2008 經營許可證號:冀B2 - 20060071 備案序號:冀ICP備字05001825號
Powered by POAKs 5010375

2. 存儲器的發展史

存儲器設備發展

1.存儲器設備發展之汞延遲線

汞延遲線是基於汞在室溫時是液體,同時又是導體,每比特數據用機械波的波峰(1)和波谷(0)表示。機械波從汞柱的一端開始,一定厚度的熔融態金屬汞通過一振動膜片沿著縱向從一端傳到另一端,這樣就得名「汞延遲線」。在管的另一端,一感測器得到每一比特的信息,並反饋到起點。設想是汞獲取並延遲這些數據,這樣它們便能存儲了。這個過程是機械和電子的奇妙結合。缺點是由於環境條件的限制,這種存儲器方式會受各種環境因素影響而不精確。

1950年,世界上第一台具有存儲程序功能的計算機EDVAC由馮.諾依曼博士領導設計。它的主要特點是採用二進制,使用汞延遲線作存儲器,指令和程序可存入計算機中。

1951年3月,由ENIAC的主要設計者莫克利和埃克特設計的第一台通用自動計算機UNIVAC-I交付使用。它不僅能作科學計算,而且能作數據處理。

2.存儲器設備發展之磁帶

UNIVAC-I第一次採用磁帶機作外存儲器,首先用奇偶校驗方法和雙重運算線路來提高系統的可靠性,並最先進行了自動編程的試驗。

磁帶是所有存儲器設備發展中單位存儲信息成本最低、容量最大、標准化程度最高的常用存儲介質之一。它互換性好、易於保存,近年來,由於採用了具有高糾錯能力的編碼技術和即寫即讀的通道技術,大大提高了磁帶存儲的可靠性和讀寫速度。根據讀寫磁帶的工作原理可分為螺旋掃描技術、線性記錄(數據流)技術、DLT技術以及比較先進的LTO技術。

根據讀寫磁帶的工作原理,磁帶機可以分為六種規格。其中兩種採用螺旋掃描讀寫方式的是面向工作組級的DAT(4mm)磁帶機和面向部門級的8mm磁帶機,另外四種則是選用數據流存儲技術設計的設備,它們分別是採用單磁頭讀寫方式、磁帶寬度為1/4英寸、面向低端應用的Travan和DC系列,以及採用多磁頭讀寫方式、磁帶寬度均為1/2英寸、面向高端應用的DLT和IBM的3480/3490/3590系列等。

磁帶庫是基於磁帶的備份系統,它能夠提供同樣的基本自動備份和數據恢復功能,但同時具有更先進的技術特點。它的存儲容量可達到數百PB,可以實現連續備份、自動搜索磁帶,也可以在驅動管理軟體控制下實現智能恢復、實時監控和統計,整個數據存儲備份過程完全擺脫了人工干涉。

磁帶庫不僅數據存儲量大得多,而且在備份效率和人工佔用方面擁有無可比擬的優勢。在網路系統中,磁帶庫通過SAN(Storage Area Network,存儲區域網路)系統可形成網路存儲系統,為企業存儲提供有力保障,很容易完成遠程數據訪問、數據存儲備份或通過磁帶鏡像技術實現多磁帶庫備份,無疑是數據倉庫、ERP等大型網路應用的良好存儲設備。

3.存儲器設備發展之磁鼓

1953年,隨著存儲器設備發展,第一台磁鼓應用於IBM 701,它是作為內存儲器使用的。磁鼓是利用鋁鼓筒表面塗覆的磁性材料來存儲數據的。鼓筒旋轉速度很高,因此存取速度快。它採用飽和磁記錄,從固定式磁頭發展到浮動式磁頭,從採用磁膠發展到採用電鍍的連續磁介質。這些都為後來的磁碟存儲器打下了基礎。

磁鼓最大的缺點是利用率不高, 一個大圓柱體只有表面一層用於存儲,而磁碟的兩面都利用來存儲,顯然利用率要高得多。 因此,當磁碟出現後,磁鼓就被淘汰了。

4.存儲器設備發展之磁芯

美國物理學家王安1950年提出了利用磁性材料製造存儲器的思想。福雷斯特則將這一思想變成了現實。

為了實現磁芯存儲,福雷斯特需要一種物質,這種物質應該有一個非常明確的磁化閾值。他找到在新澤西生產電視機用鐵氧體變換器的一家公司的德國老陶瓷專家,利用熔化鐵礦和氧化物獲取了特定的磁性質。

對磁化有明確閾值是設計的關鍵。這種電線的網格和芯子織在電線網上,被人稱為芯子存儲,它的有關專利對發展計算機非常關鍵。這個方案可靠並且穩定。磁化相對來說是永久的,所以在系統的電源關閉後,存儲的數據仍然保留著。既然磁場能以電子的速度來閱讀,這使互動式計算有了可能。更進一步,因為是電線網格,存儲陣列的任何部分都能訪問,也就是說,不同的數據可以存儲在電線網的不同位置,並且閱讀所在位置的一束比特就能立即存取。這稱為隨機存取存儲器(RAM),在存儲器設備發展歷程中它是互動式計算的革新概念。福雷斯特把這些專利轉讓給麻省理工學院,學院每年靠這些專利收到1500萬~2000萬美元。

最先獲得這些專利許可證的是IBM,IBM最終獲得了在北美防衛軍事基地安裝「旋風」的商業合同。更重要的是,自20世紀50年代以來,所有大型和中型計算機也採用了這一系統。磁芯存儲從20世紀50年代、60年代,直至70年代初,一直是計算機主存的標准方式。

5.存儲器設備發展之磁碟

世界第一台硬碟存儲器是由IBM公司在1956年發明的,其型號為IBM 350 RAMAC(Random Access Method of Accounting and Control)。這套系統的總容量只有5MB,共使用了50個直徑為24英寸的磁碟。1968年,IBM公司提出「溫徹斯特/Winchester」技術,其要點是將高速旋轉的磁碟、磁頭及其尋道機構等全部密封在一個無塵的封閉體中,形成一個頭盤組合件(HDA),與外界環境隔絕,避免了灰塵的污染,並採用小型化輕浮力的磁頭浮動塊,碟片表面塗潤滑劑,實行接觸起停,這是現代絕大多數硬碟的原型。1979年,IBM發明了薄膜磁頭,進一步減輕了磁頭重量,使更快的存取速度、更高的存儲密度成為可能。20世紀80年代末期,IBM公司又對存儲器設備發展作出一項重大貢獻,發明了MR(Magneto Resistive)磁阻磁頭,這種磁頭在讀取數據時對信號變化相當敏感,使得碟片的存儲密度比以往提高了數十倍。1991年,IBM生產的3.5英寸硬碟使用了MR磁頭,使硬碟的容量首次達到了1GB,從此,硬碟容量開始進入了GB數量級。IBM還發明了PRML(Partial Response Maximum Likelihood)的信號讀取技術,使信號檢測的靈敏度大幅度提高,從而可以大幅度提高記錄密度。

目前,硬碟的面密度已經達到每平方英寸100Gb以上,是容量、性價比最大的一種存儲設備。因而,在計算機的外存儲設備中,還沒有一種其他的存儲設備能夠在最近幾年中對其統治地位產生挑戰。硬碟不僅用於各種計算機和伺服器中,在磁碟陣列和各種網路存儲系統中,它也是基本的存儲單元。值得注意的是,近年來微硬碟的出現和快速發展為移動存儲提供了一種較為理想的存儲介質。在快閃記憶體晶元難以承擔的大容量移動存儲領域,微硬碟可大顯身手。目前尺寸為1英寸的硬碟,存儲容量已達4GB,10GB容量的1英寸硬碟不久也會面世。微硬碟廣泛應用於數碼相機、MP3設備和各種手持電子類設備。

另一種磁碟存儲設備是軟盤,從早期的8英寸軟盤、5.25英寸軟盤到3.5英寸軟盤,主要為數據交換和小容量備份之用。其中,3.5英寸1.44MB軟盤占據計算機的標准配置地位近20年之久,之後出現過24MB、100MB、200MB的高密度過渡性軟盤和軟碟機產品。然而,由於USB介面的快閃記憶體出現,軟盤作為數據交換和小容量備份的統治地位已經動搖,不久會退出存儲器設備發展歷史舞台。

6. 存儲器設備發展之光碟

光碟主要分為只讀型光碟和讀寫型光碟。只讀型指光碟上的內容是固定的,不能寫入、修改,只能讀取其中的內容。讀寫型則允許人們對光碟內容進行修改,可以抹去原來的內容,寫入新的內容。用於微型計算機的光碟主要有CD-ROM、CD-R/W和DVD-ROM等幾種。

上世紀60年代,荷蘭飛利浦公司的研究人員開始使用激光光束進行記錄和重放信息的研究。1972年,他們的研究獲得了成功,1978年投放市場。最初的產品就是大家所熟知的激光視盤(LD,Laser Vision Disc)系統。

從LD的誕生至計算機用的CD-ROM,經歷了三個階段,即LD-激光視盤、CD-DA激光唱盤、CD-ROM。下面簡單介紹這三個存儲器設備發展階段性的產品特點。

LD-激光視盤,就是通常所說的LCD,直徑較大,為12英寸,兩面都可以記錄信息,但是它記錄的信號是模擬信號。模擬信號的處理機制是指,模擬的電視圖像信號和模擬的聲音信號都要經過FM(Frequency Molation)頻率調制、線性疊加,然後進行限幅放大。限幅後的信號以0.5微米寬的凹坑長短來表示。

CD-DA激光唱盤 LD雖然取得了成功,但由於事先沒有制定統一的標准,使它的開發和製作一開始就陷入昂貴的資金投入中。1982年,由飛利浦公司和索尼公司制定了CD-DA激光唱盤的紅皮書(Red Book)標准。由此,一種新型的激光唱盤誕生了。CD-DA激光唱盤記錄音響的方法與LD系統不同,CD-DA激光唱盤系統首先把模擬的音響信號進行PCM(脈沖編碼調制)數字化處理,再經過EMF(8~14位調制)編碼之後記錄到盤上。數字記錄代替模擬記錄的好處是,對干擾和雜訊不敏感,由於盤本身的缺陷、劃傷或沾污而引起的錯誤可以校正。

CD-DA系統取得成功以後,使飛利浦公司和索尼公司很自然地想到利用CD-DA作為計算機的大容量只讀存儲器。但要把CD-DA作為計算機的存儲器,還必須解決兩個重要問題,即建立適合於計算機讀寫的盤的數據結構,以及CD-DA誤碼率必須從現有的10-9降低到10-12以下,由此就產生了CD-ROM的黃皮書(Yellow Book)標准。這個標準的核心思想是,盤上的數據以數據塊的形式來組織,每塊都要有地址,這樣一來,盤上的數據就能從幾百兆位元組的存儲空間上被迅速找到。為了降低誤碼率,採用增加一種錯誤檢測和錯誤校正的方案。錯誤檢測採用了循環冗餘檢測碼,即所謂CRC,錯誤校正採用里德-索洛蒙(Reed Solomon)碼。黃皮書確立了CD-ROM的物理結構,而為了使其能在計算機上完全兼容,後來又制定了CD-ROM的文件系統標准,即ISO 9660。

在上世紀80年代中期,光碟存儲器設備發展速度非常快,先後推出了WORM光碟、磁光碟(MO)、相變光碟(Phase Change Disk,PCD)等新品種。20世紀90年代,DVD-ROM、CD-R、CD-R/W等開始出現和普及,目前已成為計算機的標准存儲設備。

光碟技術進一步向高密度發展,藍光光碟是不久將推出的下一代高密度光碟。多層多階光碟和全息存儲光碟正在實驗室研究之中,可望在5年之內推向市場。

7.存儲器設備發展之納米存儲

納米是一種長度單位,符號為nm。1納米=1毫微米,約為10個原子的長度。假設一根頭發的直徑為0.05毫米,把它徑向平均剖成5萬根,每根的厚度即約為1納米。與納米存儲有關的主要進展有如下內容。

1998年,美國明尼蘇達大學和普林斯頓大學制備成功量子磁碟,這種磁碟是由磁性納米棒組成的納米陣列體系。一個量子磁碟相當於我們現在的10萬~100萬個磁碟,而能源消耗卻降低了1萬倍。

1988年,法國人首先發現了巨磁電阻效應,到1997年,採用巨磁電阻原理的納米結構器件已在美國問世,它在磁存儲、磁記憶和計算機讀寫磁頭等方面均有廣闊的應用前景。

2002年9月,美國威斯康星州大學的科研小組宣布,他們在室溫條件下通過操縱單個原子,研製出原子級的硅記憶材料,其存儲信息的密度是目前光碟的100萬倍。這是納米存儲材料技術研究的一大進展。該小組發表在《納米技術》雜志上的研究報告稱,新的記憶材料構建在硅材料表面上。研究人員首先使金元素在硅材料表面升華,形成精確的原子軌道;然後再使硅元素升華,使其按上述原子軌道進行排列;最後,藉助於掃瞄隧道顯微鏡的探針,從這些排列整齊的硅原子中間隔抽出硅原子,被抽空的部分代表「0」,餘下的硅原子則代表「1」,這就形成了相當於計算機晶體管功能的原子級記憶材料。整個試驗研究在室溫條件下進行。研究小組負責人赫姆薩爾教授說,在室溫條件下,一次操縱一批原子進行排列並不容易。更為重要的是,記憶材料中硅原子排列線內的間隔是一個原子大小。這保證了記憶材料的原子級水平。赫姆薩爾教授說,新的硅記憶材料與目前硅存儲材料存儲功能相同,而不同之處在於,前者為原子級體積,利用其製造的計算機存儲材料體積更小、密度更大。這可使未來計算機微型化,且存儲信息的功能更為強大。

以上就是本文向大家介紹的存儲器設備發展歷程的7個關鍵時期

3. 全息存儲器容量的發展史

存儲器設備發展

1.存儲器設備發展之汞延遲線

汞延遲線是基於汞在室溫時是液體,同時又是導體,每比特數據用機械波的波峰(1)和波谷(0)表示。機械波從汞柱的一端開始,一定厚度的熔融態金屬汞通過一振動膜片沿著縱向從一端傳到另一端,這樣就得名「汞延遲線」。在管的另一端,一感測器得到每一比特的信息,並反饋到起點。設想是汞獲取並延遲這些數據,這樣它們便能存儲了。這個過程是機械和電子的奇妙結合。缺點是由於環境條件的限制,這種存儲器方式會受各種環境因素影響而不精確。

1950年,世界上第一台具有存儲程序功能的計算機EDVAC由馮.諾依曼博士領導設計。它的主要特點是採用二進制,使用汞延遲線作存儲器,指令和程序可存入計算機中。

1951年3月,由ENIAC的主要設計者莫克利和埃克特設計的第一台通用自動計算機UNIVAC-I交付使用。它不僅能作科學計算,而且能作數據處理。

2.存儲器設備發展之磁帶

UNIVAC-I第一次採用磁帶機作外存儲器,首先用奇偶校驗方法和雙重運算線路來提高系統的可靠性,並最先進行了自動編程的試驗。

磁帶是所有存儲器設備發展中單位存儲信息成本最低、容量最大、標准化程度最高的常用存儲介質之一。它互換性好、易於保存,近年來,由於採用了具有高糾錯能力的編碼技術和即寫即讀的通道技術,大大提高了磁帶存儲的可靠性和讀寫速度。根據讀寫磁帶的工作原理可分為螺旋掃描技術、線性記錄(數據流)技術、DLT技術以及比較先進的LTO技術。

根據讀寫磁帶的工作原理,磁帶機可以分為六種規格。其中兩種採用螺旋掃描讀寫方式的是面向工作組級的DAT(4mm)磁帶機和面向部門級的8mm磁帶機,另外四種則是選用數據流存儲技術設計的設備,它們分別是採用單磁頭讀寫方式、磁帶寬度為1/4英寸、面向低端應用的Travan和DC系列,以及採用多磁頭讀寫方式、磁帶寬度均為1/2英寸、面向高端應用的DLT和IBM的3480/3490/3590系列等。

磁帶庫是基於磁帶的備份系統,它能夠提供同樣的基本自動備份和數據恢復功能,但同時具有更先進的技術特點。它的存儲容量可達到數百PB,可以實現連續備份、自動搜索磁帶,也可以在驅動管理軟體控制下實現智能恢復、實時監控和統計,整個數據存儲備份過程完全擺脫了人工干涉。

磁帶庫不僅數據存儲量大得多,而且在備份效率和人工佔用方面擁有無可比擬的優勢。在網路系統中,磁帶庫通過SAN(Storage Area Network,存儲區域網路)系統可形成網路存儲系統,為企業存儲提供有力保障,很容易完成遠程數據訪問、數據存儲備份或通過磁帶鏡像技術實現多磁帶庫備份,無疑是數據倉庫、ERP等大型網路應用的良好存儲設備。

3.存儲器設備發展之磁鼓

1953年,隨著存儲器設備發展,第一台磁鼓應用於IBM 701,它是作為內存儲器使用的。磁鼓是利用鋁鼓筒表面塗覆的磁性材料來存儲數據的。鼓筒旋轉速度很高,因此存取速度快。它採用飽和磁記錄,從固定式磁頭發展到浮動式磁頭,從採用磁膠發展到採用電鍍的連續磁介質。這些都為後來的磁碟存儲器打下了基礎。

磁鼓最大的缺點是利用率不高, 一個大圓柱體只有表面一層用於存儲,而磁碟的兩面都利用來存儲,顯然利用率要高得多。 因此,當磁碟出現後,磁鼓就被淘汰了。

4.存儲器設備發展之磁芯

美國物理學家王安1950年提出了利用磁性材料製造存儲器的思想。福雷斯特則將這一思想變成了現實。

為了實現磁芯存儲,福雷斯特需要一種物質,這種物質應該有一個非常明確的磁化閾值。他找到在新澤西生產電視機用鐵氧體變換器的一家公司的德國老陶瓷專家,利用熔化鐵礦和氧化物獲取了特定的磁性質。

對磁化有明確閾值是設計的關鍵。這種電線的網格和芯子織在電線網上,被人稱為芯子存儲,它的有關專利對發展計算機非常關鍵。這個方案可靠並且穩定。磁化相對來說是永久的,所以在系統的電源關閉後,存儲的數據仍然保留著。既然磁場能以電子的速度來閱讀,這使互動式計算有了可能。更進一步,因為是電線網格,存儲陣列的任何部分都能訪問,也就是說,不同的數據可以存儲在電線網的不同位置,並且閱讀所在位置的一束比特就能立即存取。這稱為隨機存取存儲器(RAM),在存儲器設備發展歷程中它是互動式計算的革新概念。福雷斯特把這些專利轉讓給麻省理工學院,學院每年靠這些專利收到1500萬~2000萬美元。

最先獲得這些專利許可證的是IBM,IBM最終獲得了在北美防衛軍事基地安裝「旋風」的商業合同。更重要的是,自20世紀50年代以來,所有大型和中型計算機也採用了這一系統。磁芯存儲從20世紀50年代、60年代,直至70年代初,一直是計算機主存的標准方式。

5.存儲器設備發展之磁碟

世界第一台硬碟存儲器是由IBM公司在1956年發明的,其型號為IBM 350 RAMAC(Random Access Method of Accounting and Control)。這套系統的總容量只有5MB,共使用了50個直徑為24英寸的磁碟。1968年,IBM公司提出「溫徹斯特/Winchester」技術,其要點是將高速旋轉的磁碟、磁頭及其尋道機構等全部密封在一個無塵的封閉體中,形成一個頭盤組合件(HDA),與外界環境隔絕,避免了灰塵的污染,並採用小型化輕浮力的磁頭浮動塊,碟片表面塗潤滑劑,實行接觸起停,這是現代絕大多數硬碟的原型。1979年,IBM發明了薄膜磁頭,進一步減輕了磁頭重量,使更快的存取速度、更高的存儲密度成為可能。20世紀80年代末期,IBM公司又對存儲器設備發展作出一項重大貢獻,發明了MR(Magneto Resistive)磁阻磁頭,這種磁頭在讀取數據時對信號變化相當敏感,使得碟片的存儲密度比以往提高了數十倍。1991年,IBM生產的3.5英寸硬碟使用了MR磁頭,使硬碟的容量首次達到了1GB,從此,硬碟容量開始進入了GB數量級。IBM還發明了PRML(Partial Response Maximum Likelihood)的信號讀取技術,使信號檢測的靈敏度大幅度提高,從而可以大幅度提高記錄密度。

目前,硬碟的面密度已經達到每平方英寸100Gb以上,是容量、性價比最大的一種存儲設備。因而,在計算機的外存儲設備中,還沒有一種其他的存儲設備能夠在最近幾年中對其統治地位產生挑戰。硬碟不僅用於各種計算機和伺服器中,在磁碟陣列和各種網路存儲系統中,它也是基本的存儲單元。值得注意的是,近年來微硬碟的出現和快速發展為移動存儲提供了一種較為理想的存儲介質。在快閃記憶體晶元難以承擔的大容量移動存儲領域,微硬碟可大顯身手。目前尺寸為1英寸的硬碟,存儲容量已達4GB,10GB容量的1英寸硬碟不久也會面世。微硬碟廣泛應用於數碼相機、MP3設備和各種手持電子類設備。

另一種磁碟存儲設備是軟盤,從早期的8英寸軟盤、5.25英寸軟盤到3.5英寸軟盤,主要為數據交換和小容量備份之用。其中,3.5英寸1.44MB軟盤占據計算機的標准配置地位近20年之久,之後出現過24MB、100MB、200MB的高密度過渡性軟盤和軟碟機產品。然而,由於USB介面的快閃記憶體出現,軟盤作為數據交換和小容量備份的統治地位已經動搖,不久會退出存儲器設備發展歷史舞台。

6. 存儲器設備發展之光碟

光碟主要分為只讀型光碟和讀寫型光碟。只讀型指光碟上的內容是固定的,不能寫入、修改,只能讀取其中的內容。讀寫型則允許人們對光碟內容進行修改,可以抹去原來的內容,寫入新的內容。用於微型計算機的光碟主要有CD-ROM、CD-R/W和DVD-ROM等幾種。

上世紀60年代,荷蘭飛利浦公司的研究人員開始使用激光光束進行記錄和重放信息的研究。1972年,他們的研究獲得了成功,1978年投放市場。最初的產品就是大家所熟知的激光視盤(LD,Laser Vision Disc)系統。

從LD的誕生至計算機用的CD-ROM,經歷了三個階段,即LD-激光視盤、CD-DA激光唱盤、CD-ROM。下面簡單介紹這三個存儲器設備發展階段性的產品特點。

LD-激光視盤,就是通常所說的LCD,直徑較大,為12英寸,兩面都可以記錄信息,但是它記錄的信號是模擬信號。模擬信號的處理機制是指,模擬的電視圖像信號和模擬的聲音信號都要經過FM(Frequency Molation)頻率調制、線性疊加,然後進行限幅放大。限幅後的信號以0.5微米寬的凹坑長短來表示。

CD-DA激光唱盤 LD雖然取得了成功,但由於事先沒有制定統一的標准,使它的開發和製作一開始就陷入昂貴的資金投入中。1982年,由飛利浦公司和索尼公司制定了CD-DA激光唱盤的紅皮書(Red Book)標准。由此,一種新型的激光唱盤誕生了。CD-DA激光唱盤記錄音響的方法與LD系統不同,CD-DA激光唱盤系統首先把模擬的音響信號進行PCM(脈沖編碼調制)數字化處理,再經過EMF(8~14位調制)編碼之後記錄到盤上。數字記錄代替模擬記錄的好處是,對干擾和雜訊不敏感,由於盤本身的缺陷、劃傷或沾污而引起的錯誤可以校正。

CD-DA系統取得成功以後,使飛利浦公司和索尼公司很自然地想到利用CD-DA作為計算機的大容量只讀存儲器。但要把CD-DA作為計算機的存儲器,還必須解決兩個重要問題,即建立適合於計算機讀寫的盤的數據結構,以及CD-DA誤碼率必須從現有的10-9降低到10-12以下,由此就產生了CD-ROM的黃皮書(Yellow Book)標准。這個標準的核心思想是,盤上的數據以數據塊的形式來組織,每塊都要有地址,這樣一來,盤上的數據就能從幾百兆位元組的存儲空間上被迅速找到。為了降低誤碼率,採用增加一種錯誤檢測和錯誤校正的方案。錯誤檢測採用了循環冗餘檢測碼,即所謂CRC,錯誤校正採用里德-索洛蒙(Reed Solomon)碼。黃皮書確立了CD-ROM的物理結構,而為了使其能在計算機上完全兼容,後來又制定了CD-ROM的文件系統標准,即ISO 9660。

在上世紀80年代中期,光碟存儲器設備發展速度非常快,先後推出了WORM光碟、磁光碟(MO)、相變光碟(Phase Change Disk,PCD)等新品種。20世紀90年代,DVD-ROM、CD-R、CD-R/W等開始出現和普及,目前已成為計算機的標准存儲設備。

光碟技術進一步向高密度發展,藍光光碟是不久將推出的下一代高密度光碟。多層多階光碟和全息存儲光碟正在實驗室研究之中,可望在5年之內推向市場。

7.存儲器設備發展之納米存儲

納米是一種長度單位,符號為nm。1納米=1毫微米,約為10個原子的長度。假設一根頭發的直徑為0.05毫米,把它徑向平均剖成5萬根,每根的厚度即約為1納米。與納米存儲有關的主要進展有如下內容。

1998年,美國明尼蘇達大學和普林斯頓大學制備成功量子磁碟,這種磁碟是由磁性納米棒組成的納米陣列體系。一個量子磁碟相當於我們現在的10萬~100萬個磁碟,而能源消耗卻降低了1萬倍。

1988年,法國人首先發現了巨磁電阻效應,到1997年,採用巨磁電阻原理的納米結構器件已在美國問世,它在磁存儲、磁記憶和計算機讀寫磁頭等方面均有廣闊的應用前景。

2002年9月,美國威斯康星州大學的科研小組宣布,他們在室溫條件下通過操縱單個原子,研製出原子級的硅記憶材料,其存儲信息的密度是目前光碟的100萬倍。這是納米存儲材料技術研究的一大進展。該小組發表在《納米技術》雜志上的研究報告稱,新的記憶材料構建在硅材料表面上。研究人員首先使金元素在硅材料表面升華,形成精確的原子軌道;然後再使硅元素升華,使其按上述原子軌道進行排列;最後,藉助於掃瞄隧道顯微鏡的探針,從這些排列整齊的硅原子中間隔抽出硅原子,被抽空的部分代表「0」,餘下的硅原子則代表「1」,這就形成了相當於計算機晶體管功能的原子級記憶材料。整個試驗研究在室溫條件下進行。研究小組負責人赫姆薩爾教授說,在室溫條件下,一次操縱一批原子進行排列並不容易。更為重要的是,記憶材料中硅原子排列線內的間隔是一個原子大小。這保證了記憶材料的原子級水平。赫姆薩爾教授說,新的硅記憶材料與目前硅存儲材料存儲功能相同,而不同之處在於,前者為原子級體積,利用其製造的計算機存儲材料體積更小、密度更大。這可使未來計算機微型化,且存儲信息的功能更為強大。

4. 第1、2、3、4代計算機的特點和主要應用領域

1、第一代計算機(1946~1958)

電子管為基本電子器件;使用機器語言和匯編語言;主要應用於國防和科學計算;運算速度每秒幾千次至幾萬次。

計算機主要用於科學計算。主存儲器是決定計算機技術面貌的主要因素。當時,主存儲器有水銀延遲線存儲器、陰極射線示波管靜電存儲器、磁鼓和磁心存儲器等類型,通常按此對計算機進行分類

2、第二代計算機(1958~1964)

晶體管為主要器件;軟體上出現了操作系統和演算法語言;運算速度每秒幾萬次至幾十萬次。

主存儲器均採用磁心存儲器,磁鼓和磁碟開始用作主要的輔助存儲器。不僅科學計算用計算機繼續發展,而且中、小型計算機,特別是廉價的小型數據處理用計算機開始大量生產。

3、第三代計算機(1964~1971)

普遍採用集成電路;體積縮小;運算速度每秒幾十萬次至幾百萬次。

在集成電路計算機發展的同時,計算機也進入了產品系列化的發展時期。半導體存儲器逐步取代了磁心存儲器的主存儲器地位,磁碟成了不可缺少的輔助存儲器,並且開始普遍採用虛擬存儲技術。

隨著各種半導體只讀存儲器和可改寫的只讀存儲器的迅速發展,以及微程序技術的發展和應用,計算機系統中開始出現固件子系統

4、第四代計算機(1971~至今 )

新一代計算機是把信息採集存儲處理、通信和人工智慧結合在一起的智能計算機系統。它不僅能進行一般信息處理,而且能面向知識處理,具有形式化推理、聯想、學習和解釋的能力,將能幫助人類開拓未知的領域和獲得新的知識。

以大規模集成電路為主要器件;運算速度每秒幾百萬次至上億次。

(4)只讀存儲器的發展歷程擴展閱讀:

計算機主要特點

運算速度快:計算機內部電路組成,可以高速准確地完成各種算術運算。當今計算機系統的運算速度已達到

每秒萬億次,微機也可達每秒億次以上,使大量復雜的科學計算問題得以解決。例如:衛星軌道的計算、大型水壩的計算、24小時天氣算需要幾年甚至幾十年,而在現代社會里,用計算機只需幾分鍾就可完成。

計算精確度高:科學技術的發展特別是尖端科學技術的發展,需要高度精確的計算。計算機控制的導彈之所以能准確地擊中預定的目標,是與計算機的精確計算分不開的。

一般計算機可以有十幾位甚至幾十位(二進制)有效數字,計算精度可由千分之幾到百萬分之幾,是任何計算工具所望塵莫及的。

邏輯運算能力強:計算機不僅能進行精確計算,還具有邏輯運算功能,能對信息進行比較和判斷。計算機能把參加運算的數據、程序以及中間結果和最後結果保存起來,並能根據判斷的結果自動執行下一條指令以供用戶隨時調用。

存儲容量大:計算機內部的存儲器具有記憶特性,可以存儲大量的信息,這些信息,不僅包括各類數據信息,還包括加工這些數據的程序。

自動化程度高:由於計算機具有存儲記憶能力和邏輯判斷能力,所以人們可以將預先編好的程序組納入計算機內存,在程序控制下,計算機可以連續、自動地工作,不需要人的干預。

性價比高:幾乎每家每戶都會有電腦,越來越普遍化、大眾化,21世紀電腦必將成為每家每戶不可缺少的電器之一。計算機發展很迅速,有台式的還有筆記本。

參考資料來源:

網路-計算機

5. 誰能告訴我內存條的發展史!拜託!

作為PC不可缺少的重要核心部件——內存,它伴隨著DIY硬體走過了多年歷程。從286時代的30pin SIMM內存、486時代的72pin SIMM 內存,到Pentium時代的EDO DRAM內存、PII時代的SDRAM內存,到P4時代的DDR內存和目前9X5平台的DDR2內存。內存從規格、技術、匯流排帶寬等不斷更新換代。不過我們有理由相信,內存的更新換代可謂萬變不離其宗,其目的在於提高內存的帶寬,以滿足CPU不斷攀升的帶寬要求、避免成為高速CPU運算的瓶頸。那麼,內存在PC領域有著怎樣的精彩人生呢?下面讓我們一起來了解內存發展的歷史吧。

一、歷史起源——內存條概念

如果你細心的觀察,顯存(或緩存)在目前的DIY硬體上都很容易看到,顯卡顯存、硬碟或光碟機的緩存大小直接影響到設備的性能,而寄存器也許是最能代表PC硬體設備離不開RAM的,的確如此,如果沒有內存,那麼PC將無法運轉,所以內存自然成為DIY用戶討論的重點話題。

在剛剛開始的時候,PC上所使用的內存是一塊塊的IC,要讓它能為PC服務,就必須將其焊接到主板上,但這也給後期維護帶來的問題,因為一旦某一塊內存IC壞了,就必須焊下來才能更換,由於焊接上去的IC不容易取下來,同時加上用戶也不具備焊接知識(焊接需要掌握焊接技術,同時風險性也大),這似乎維修起來太麻煩。

因此,PC設計人員推出了模塊化的條裝內存,每一條上集成了多塊內存IC,同時在主板上也設計相應的內存插槽,這樣內存條就方便隨意安裝與拆卸了(如圖1),內存的維修、升級都變得非常簡單,這就是內存「條」的來源。
小帖士:內存(Random Access Memory,RAM)的主要功能是暫存數據及指令。我們可以同時寫數據到RAM 內存,也可以從RAM 讀取數據。由於內存歷來都是系統中最大的性能瓶頸之一,因此從某種角度而言,內存技術的改進甚至比CPU 以及其它技術更為令人激動。
……………………

以上未完部分,我不轉貼了,在下面的網址,我個人認為是非常全面的了:
http://www.incpc.net/Html/histroy/20060907817.html

給你一點參考吧,雖然我不支持寫論文從網上搬點東西來。

DOS操作系統最早設計時,PC機的硬體系統只支持1M位元組的定址空間,所以DOS只能管理最多1M位元組的連續內存空間。在這1M內存中,又只有640K被留給應用程序使用,它們被稱為常規內存或基本內存,其它384K被稱為高端內存,是留給視頻顯示和BIOS等使用的。在1982年,640K內存對微型計算機來說顯得綽綽有餘,人們甚至認為,640K的內存可以用來干任何事。現在看起來有些可笑,但在當時,情況確實如此。

現在的情況是,即使你的電腦裝有幾兆或幾十兆內存,但如果你使用DOS操作系統,那麼你也只有640K的內存可以直接使用,1M以上的內存要通過一些內存管理工具才能使用。值得慶幸的是,Windows 95已經不存在常規內存的限制了,你所有的內存,不管是8M還是128M,都可以被直接使用。

在DOS下,系統中存在以下四種內存:
常規內存(Conventional Memory);
高端內存(Upper Memory);
擴充內存(Expanded Memory);
擴展內存(Extended Memory)。

常規內存指的是0-640K的內存區。在DOS下,一般的應用程序只能使用系統的常規內存,因而都要受到640KB內存的限制。而且由於DOS本身和config.sys文件中的安裝的設備驅動程序和autoexec.bat文件中執行的內存駐留程序都要佔用一些常規內存,所以應用程序能使用的常規內存是不到640K的。有很多時候,我們都要想方設法地整理內存,好為一些「胃口」比較大的應用程序留出足夠的常規內存,這一點想必是許多DOS時代的電腦愛好者最熟悉不過的了。

高端內存是指位於常規內存之上的384K內存。程序一般不能使用這個內存區域,但是EMM386.exe可以激活高端內存的一部分,並且它允許用戶將某些設備驅動程序和用戶程序用Devicehigh或LH(即loadhigh)裝入高端內存。dos=high,umb也是把DOS的一部分裝到高端內存里。這里的umb是高端內存塊(Upper Memory Block)的縮寫。

擴充內存是一種早期的增加內存的標准,最多可擴充到32M。使用擴充內存必須在計算機中安裝專門的擴充內存板,而且還要安裝管理擴充內存板的管理程序。由於擴充內存是在擴展內存之前推出的,所以大多數程序都被設計成能使用擴充內存,而不能使用擴展內存。由於擴充內存使用起來比較麻煩,所以在擴展內存出現後不久就被淘汰了。

擴展內存只能用在80286或更高檔次的機器上,目前幾乎所有使用DOS的機器上超過1M的內存都是擴展內存。擴展內存同樣不能被DOS直接使用,DOS5.0以後提供了Himem.sys這個擴展內存管理程序,我們可以通過它來管理擴展內存。emm386.exe可以把擴展內存(XMS)模擬成擴充內存(EMS),以滿足一些要求使用擴充內存的程序。

最後再強調一下,不管擴充內存或擴展內存有多大,DOS的應用程序只能在常規內存下運行。有的程序可以通過DOS擴展器(比如DOS4GW.exe等程序)使CPU進入保護模式,從而直接訪問擴展內存;但是要注意,進入保護模式以後,計算機就脫離了DOS狀態。

在計算機的組成結構中,有一個很重要的部分,就是存儲器。存儲器是用來存儲程序和數據的部件,對於計算機來說,有了存儲器,才有記憶功能,才能保證正常工作。存儲器的種類很多,按其用途可分為主存儲器和輔助存儲器,主存儲器又稱內存儲器(簡稱內存).內存在電腦中起著舉足輕重的作用。內存一般採用半導體存儲單元,包括隨機存儲器(RAM),只讀存儲器(ROM),以及高速緩存(CACHE)。只不過因為RAM是其中最重要的存儲器。S(SYSNECRONOUS)DRAM 同步動態隨機存取存儲器:SDRAM為168腳,這是目前PENTIUM及以上機型使用的內存。SDRAM將CPU與RAM通過一個相同的時鍾鎖在一起,使CPU和RAM能夠共享一個時鍾周期,以相同的速度同步工作,每一個時鍾脈沖的上升沿便開始傳遞數據,速度比EDO內存提高50%。DDR(DOUBLE DATA RAGE)RAM :SDRAM的更新換代產品,他允許在時鍾脈沖的上升沿和下降沿傳輸數據,這樣不需要提高時鍾的頻率就能加倍提高SDRAM的速度。

●內存

內存就是存儲程序以及數據的地方,比如當我們在使用WPS處理文稿時,當你在鍵盤上敲入字元時,它就被存入內存中,當你選擇存檔時,內存中的數據才會被存入硬(磁)盤。在進一步理解它之前,還應認識一下它的物理概念。

●只讀存儲器(ROM)

ROM表示只讀存儲器(Read Only Memory),在製造ROM的時候,信息(數據或程序)就被存入並永久保存。這些信息只能讀出,一般不能寫入,即使機器掉電,這些數據也不會丟失。ROM一般用於存放計算機的基本程序和數據,如BIOS ROM。其物理外形一般是雙列直插式(DIP)的集成塊。

●隨機存儲器(RAM)

隨機存儲器(Random Access Memory)表示既可以從中讀取數據,也可以寫入數據。當機器電源關閉時,存於其中的數據就會丟失。我們通常購買或升級的內存條就是用作電腦的內存,內存條(SIMM)就是將RAM集成塊集中在一起的一小塊電路板,它插在計算機中的內存插槽上,以減少RAM集成塊佔用的空間。目前市場上常見的內存條有128M/條、256M/條、512M/條等。

●高速緩沖存儲器(Cache)

Cache也是我們經常遇到的概念,它位於CPU與內存之間,是一個讀寫速度比內存更快的存儲器。當CPU向內存中寫入或讀出數據時,這個數據也被存儲進高速緩沖存儲器中。當CPU再次需要這些數據時,CPU就從高速緩沖存儲器讀取數據,而不是訪問較慢的內存,當然,如需要的數據在Cache中沒有,CPU會再去讀取內存中的數據。

當你理解了上述概念後,也許你會問,內存就是內存,為什麼又會出現各種內存名詞,這到底又是怎麼回事呢?

在回答這個問題之前,我們再來看看下面這一段。

物理存儲器和地址空間

物理存儲器和存儲地址空間是兩個不同的概念。但是由於這兩者有十分密切的關系,而且兩者都用B、KB、MB、GB來度量其容量大小,因此容易產生認識上的混淆。初學者弄清這兩個不同的概念,有助於進一步認識內存儲器和用好內存儲器。

物理存儲器是指實際存在的具體存儲器晶元。如主板上裝插的內存條和裝載有系統的BIOS的ROM晶元,顯示卡上的顯示RAM晶元和裝載顯示BIOS的ROM晶元,以及各種適配卡上的RAM晶元和ROM晶元都是物理存儲器。

存儲地址空間是指對存儲器編碼(編碼地址)的范圍。所謂編碼就是對每一個物理存儲單元(一個位元組)分配一個號碼,通常叫作「編址」。分配一個號碼給一個存儲單元的目的是為了便於找到它,完成數據的讀寫,這就是所謂的「定址」(所以,有人也把地址空間稱為定址空間)。

地址空間的大小和物理存儲器的大小並不一定相等。舉個例子來說明這個問題:某層樓共有17個房間,其編號為801~817。這17個房間是物理的,而其地址空間採用了三位編碼,其范圍是800~899共100個地址,可見地址空間是大於實際房間數量的。

對於386以上檔次的微機,其地址匯流排為32位,因此地址空間可達232即4GB。但實際上我們所配置的物理存儲器通常只有1MB、2MB、4MB、8MB、16MB、32MB等,遠小於地址空間所允許的范圍。

好了,現在可以解釋為什麼會產生諸如:常規內存、保留內存、上位內存、高端內存、擴充內存和擴展內存等不同內存類型。

各種內存概念

這里需要明確的是,我們討論的不同內存的概念是建立在定址空間上的。

IBM推出的第一台PC機採用的CPU是8088晶元,它只有20根地址線,也就是說,它的地址空間是1MB。

PC機的設計師將1MB中的低端640KB用作RAM,供DOS及應用程序使用,高端的384KB則保留給ROM、視頻適配卡等系統使用。從此,這個界限便被確定了下來並且沿用至今。低端的640KB就被稱為常規內存即PC機的基本RAM區。保留內存中的低128KB是顯示緩沖區,高64KB是系統BIOS(基本輸入/輸出系統)空間,其餘192KB空間留用。從對應的物理存儲器來看,基本內存區只使用了512KB晶元,佔用0000至80000這512KB地址。顯示內存區雖有128KB空間,但對單色顯示器(MDA卡)只需4KB就足夠了,因此只安裝4KB的物理存儲器晶元,佔用了B0000至B10000這4KB的空間,如果使用彩色顯示器(CGA卡)需要安裝16KB的物理存儲器,佔用B8000至BC000這16KB的空間,可見實際使用的地址范圍都小於允許使用的地址空間。

在當時(1980年末至1981年初)這么「大」容量的內存對PC機使用者來說似乎已經足夠了,但是隨著程序的不斷增大,圖象和聲音的不斷豐富,以及能訪問更大內存空間的新型CPU相繼出現,最初的PC機和MS-DOS設計的局限性變得越來越明顯。

1.什麼是擴充內存?

EMS工作原理

到1984年,即286被普遍接受不久,人們越來越認識到640KB的限制已成為大型程序的障礙,這時,Intel和Lotus,這兩家硬、軟體的傑出代表,聯手制定了一個由硬體和軟體相結合的方案,此方法使所有PC機存取640KB以上RAM成為可能。而Microsoft剛推出Windows不久,對內存空間的要求也很高,因此它也及時加入了該行列。

在1985年初,Lotus、Intel和Microsoft三家共同定義了LIM-EMS,即擴充內存規范,通常稱EMS為擴充內存。當時,EMS需要一個安裝在I/O槽口的內存擴充卡和一個稱為EMS的擴充內存管理程序方可使用。但是I/O插槽的地址線只有24位(ISA匯流排),這對於386以上檔次的32位機是不能適應的。所以,現在已很少使用內存擴充卡。現在微機中的擴充內存通常是用軟體如DOS中的EMM386把擴展內存模擬或擴充內存來使用。所以,擴充內存和擴展內存的區別並不在於其物理存儲器的位置,而在於使用什麼方法來讀寫它。下面將作進一步介紹。

前面已經說過擴充存儲器也可以由擴展存儲器模擬轉換而成。EMS的原理和XMS不同,它採用了頁幀方式。頁幀是在1MB空間中指定一塊64KB空間(通常在保留內存區內,但其物理存儲器來自擴展存儲器),分為4頁,每頁16KB。EMS存儲器也按16KB分頁,每次可交換4頁內容,以此方式可訪問全部EMS存儲器。符合EMS的驅動程序很多,常用的有EMM386.EXE、QEMM、TurboEMS、386MAX等。DOS和Windows中都提供了EMM386.EXE。

2.什麼是擴展內存?

我們知道,286有24位地址線,它可定址16MB的地址空間,而386有32位地址線,它可定址高達4GB的地址空間,為了區別起見,我們把1MB以上的地址空間稱為擴展內存XMS(eXtend memory)。

在386以上檔次的微機中,有兩種存儲器工作方式,一種稱為實地址方式或實方式,另一種稱為保護方式。在實方式下,物理地址仍使用20位,所以最大定址空間為1MB,以便與8086兼容。保護方式採用32位物理地址,定址范圍可達4GB。DOS系統在實方式下工作,它管理的內存空間仍為1MB,因此它不能直接使用擴展存儲器。為此,Lotus、Intel、AST及Microsoft公司建立了MS-DOS下擴展內存的使用標准,即擴展內存規范XMS。我們常在Config.sys文件中看到的Himem.sys就是管理擴展內存的驅動程序。

擴展內存管理規范的出現遲於擴充內存管理規范。

3.什麼是高端內存區?

在實方式下,內存單元的地址可記為:

段地址:段內偏移

通常用十六進制寫為XXXX:XXXX。實際的物理地址由段地址左移4位再和段內偏移相加而成。若地址各位均為1時,即為FFFF:FFFF。其實際物理地址為:FFF0+FFFF=10FFEF,約為1088KB(少16位元組),這已超過1MB范圍進入擴展內存了。這個進入擴展內存的區域約為64KB,是1MB以上空間的第一個64KB。我們把它稱為高端內存區HMA(High Memory Area)。HMA的物理存儲器是由擴展存儲器取得的。因此要使用HMA,必須要有物理的擴展存儲器存在。此外HMA的建立和使用還需要XMS驅動程序HIMEM.SYS的支持,因此只有裝入了HIMEM.SYS之後才能使用HMA。

4.什麼是上位內存?

為了解釋上位內存的概念,我們還得回過頭看看保留內存區。保留內存區是指640KB~1024KB(共384KB)區域。這部分區域在PC誕生之初就明確是保留給系統使用的,用戶程序無法插足。但這部分空間並沒有充分使用,因此大家都想對剩餘的部分打主意,分一塊地址空間(注意:是地址空間,而不是物理存儲器)來使用。於是就得到了又一塊內存區域UMB。

UMB(Upper Memory Blocks)稱為上位內存或上位內存塊。它是由擠占保留內存中剩餘未用的空間而產生的,它的物理存儲器仍然取自物理的擴展存儲器,它的管理驅動程序是EMS驅動程序。

5.什麼是SHADOW(影子)內存?

對於細心的讀者,可能還會發現一個問題:即是對於裝有1MB或1MB以上物理存儲器的機器,其640KB~1024KB這部分物理存儲器如何使用的問題。由於這部分地址空間已分配為系統使用,所以不能再重復使用。為了利用這部分物理存儲器,在某些386系統中,提供了一個重定位功能,即把這部分物理存儲器的地址重定位為1024KB~1408KB。這樣,這部分物理存儲器就變成了擴展存儲器,當然可以使用了。但這種重定位功能在當今高檔機器中不再使用,而把這部分物理存儲器保留作為Shadow存儲器。Shadow存儲器可以占據的地址空間與對應的ROM是相同的。Shadow由RAM組成,其速度大大高於ROM。當把ROM中的內容(各種BIOS程序)裝入相同地址的Shadow RAM中,就可以從RAM中訪問BIOS,而不必再訪問ROM。這樣將大大提高系統性能。因此在設置CMOS參數時,應將相應的Shadow區設為允許使用(Enabled)。

6、什麼是奇/偶校驗?

奇/偶校驗(ECC)是數據傳送時採用的一種校正數據錯誤的一種方式,分為奇校驗和偶校驗兩種。

如果是採用奇校驗,在傳送每一個位元組的時候另外附加一位作為校驗位,當實際數據中「1」的個數為偶數的時候,這個校驗位就是「1」,否則這個校驗位就是「0」,這樣就可以保證傳送數據滿足奇校驗的要求。在接收方收到數據時,將按照奇校驗的要求檢測數據中「1」的個數,如果是奇數,表示傳送正確,否則表示傳送錯誤。

同理偶校驗的過程和奇校驗的過程一樣,只是檢測數據中「1」的個數為偶數。

總 結

經過上面分析,內存儲器的劃分可歸納如下:

●基本內存 占據0~640KB地址空間。

●保留內存 占據640KB~1024KB地址空間。分配給顯示緩沖存儲器、各適配卡上的ROM和系統ROM BIOS,剩餘空間可作上位內存UMB。UMB的物理存儲器取自物理擴展存儲器。此范圍的物理RAM可作為Shadow RAM使用。

●上位內存(UMB) 利用保留內存中未分配使用的地址空間建立,其物理存儲器由物理擴展存儲器取得。UMB由EMS管理,其大小可由EMS驅動程序設定。

●高端內存(HMA) 擴展內存中的第一個64KB區域(1024KB~1088KB)。由HIMEM.SYS建立和管理。

●XMS內存 符合XMS規范管理的擴展內存區。其驅動程序為HIMEM.SYS。

●EMS內存 符合EMS規范管理的擴充內存區。其驅動程序為EMM386.EXE等。

6. 光碟發展歷史存儲量 變化

一.只讀式光碟存儲器CD-ROM

自1985年Philips和Sony公布了在光碟上記錄計算機數據的黃皮書以來,CD-ROM驅動器便在計算機領域得到了廣泛的應用。CD-ROM光碟不僅可交叉存儲大容量的文字、聲音、圖形和圖象等多種媒體的數字化信息,而且便於快速檢索,因此CD-ROM驅動器已成為多媒體計算機中的標准配置之一。MPC標准已經對CD-ROM的數據傳輸速率和所支持的數據格式進行了規定。MPC 3標准要求CD-ROM驅動器的數據傳輸率為600KB/秒(4倍速),並支持CD-ROM、CD-ROM XA、Photo CD、Video CD和CD-I等光碟格式。

CD-ROM是發行多媒體節目的優選載體。原因是它的存儲容量大,製造成本低,大批量生產時每片不到5元人民幣。目前,大量的文獻資料、視聽材料、教育節目、影視節目、游戲、圖書、計算機軟體等都通過CD-ROM來傳播

二.一次寫光碟存儲器CD-R

信息時代的加速到來使得越來越多的數據需要保存,需要交換。由於CD-ROM是只讀式光碟,因此用戶自己無法利用CD-ROM對數據進行備份和交換。在CD-R刻錄機大批量進入市場以前,用戶的唯一選擇就是採用可擦寫光碟機。

可擦寫光碟機根據其記錄原理的不同,有磁光碟機動器MO和相變驅動器PD。雖然這兩種產品較早進入市場,但是記錄在MO或PD碟片上的數據無法在廣泛使用的CD-ROM驅動器上讀取,因此難以實現數據交換和數據分發,更不可能製作自己的CD、VCD或CD-ROM節目。

CD-R的出現適時地解決了上述問題,CD-R是英文CD Recordable的簡稱,中文簡稱刻錄機。CD-R標准(橙皮書)是由Philips公司於1990年制定的,目前已成為工業界廣泛認可的標准。CD-R的另一英文名稱是CD-WO(Write Once ),顧名思義,就是只允許寫一次,寫完以後,記錄在CD-R盤上的信息無法被改寫,但可以象CD-ROM碟片一樣,在CD-ROM驅動器和CD-R驅動器上被反復地讀取多次。

CD-R盤與CD-ROM盤相比有許多共同之處,它們的主要差別在於CD-R盤上增加了一層有機染料作為記錄層,反射層用金,而不是CD-ROM中的鋁。當寫入激光束聚焦到記錄層上時,染料被加熱後燒溶,形成一系列代表信息的凹坑。這些凹坑與CD-ROM盤上的凹坑類似,但CD-ROM盤上的凹坑是用金屬壓模壓出的。

CD-R驅動器中使用的光學讀/寫頭與CD-ROM的光學讀出頭類似,只是其激光功率受寫入信號的調制。CD-R驅動器刻錄時,在要形成凹坑的地方,半導體激光器的輸出功率變大;不形成凹坑的地方,輸出功率變小。在讀出時,與CD-ROM一樣,要輸出恆定的小功率。

通常,CD-ROM除了要符合黃皮書以外,還要遵照一個附加的國際標准:ISO9660。這是因為當初Philips和Sony沒有定義CD-ROM的文件結構,而且各種計算機操作系統也只規定了該操作系統下的硬碟和軟盤文件結構,使得不同廠家生產的CD-ROM具有不同的文件結構,曾經一度引起了混亂。後來,ISO 9660規定了CD-ROM的文件結構,Microsoft公司很快就為CD-ROM開發了設備驅動軟體MSCDEX,使得不同生產廠家的CD-ROM在不同的操作系統環境下都能彼此兼容,就象該操作系統下的另外一個邏輯驅動器--目錄或磁碟。

CD-R的發展已有很多年的歷史,但是也還存在上述類似的問題。我們無法在DOS或Windows環境下對CD-R驅動器直接進行讀寫,而是要依賴於CD-R生產廠家提供的刻錄軟體。大多數刻錄軟體的用戶界面並不直觀,而且系統安裝設置也比較繁瑣,給用戶的使用帶來很多麻煩和障礙。

為了改變這一狀況,國際標准化組織下的OSTA(光學存儲技術協會)最近制定了CD-UDF通用磁碟格式,只要對每一種操作系統開發相應的設備驅動軟體或擴展軟體,就可使操作系統將CD-R驅動器看作為一個邏輯驅動器。採用CD-UDF的CD-R刻錄機會使用戶感到,使用CD-R備份文件就如同使用軟盤或硬碟一樣方便。用戶可以直接使用DOS命令對CD-R進行讀寫操作,如果用戶使用如Windows Explorer這樣的圖形文件管理軟體,可將文件拖曳或投入(drag and drop)到CD-R刻錄機中,就可將文件課錄到CD-R盤上。

CD-UDF也是溝通ISO9660與DVD-UDF文件結構的橋梁,採用CD-UDF文件結構的CD-R盤可在DVD-ROM驅動器上讀出。

Philips公司推出的第四代CDD2600刻錄機首先採用了CD-UDF文件格式,並可在Windows 環境下即插即用,使CD-R技術的發展步入了一個新的里程。

三.可擦寫光碟存儲器

1.MO可擦寫光碟存儲器

MO是英文Magnet-Optical的縮寫,是指利用激光與磁性共同作用的結果記錄信息的光磁碟。MO盤用來存儲信息的媒體與軟磁碟相似,但其信息記錄密度和容量卻比軟磁碟高的多。這是由於記錄時在盤的上面施加磁場,而在盤下面用激光照射。磁場作用於盤面上的區域比較大,而激光通過光學系統聚焦於盤面的光點直徑只有1~2微米。在受光區域,激光的光能轉化為熱能,並使磁性層受熱而變的不穩定,即變的易受磁場影響。這樣,在直徑只有1~2微米的極小區域內就可記錄下一個單位的信息。通常的磁性記錄方式存儲一個單位的信息時,要佔用相當大的區域,因而磁軌也相應變寬,盤上記錄信息的總量也就很小。

MO碟片雖然比硬碟和軟盤便宜和耐用,但是與CD-R碟片相比就顯得比較昂貴了。MO的致命缺點是不能用普通CD-ROM驅動器讀出,因而不能滿足信息社會對計算機數據進行交換和數據分發的要求,在網路技術和網路建設不發達的地方,這一問題日驅突出和嚴重。

2.可擦寫光碟存儲器CD-RW

為了使可擦寫相變光碟與CD-ROM和CD-R兼容,早在1995年4月,飛利浦公司就提出了與CD-ROM和CD-R兼容的相變型可擦寫光碟驅動器CD-E(CD Erasable)。CD-E得到了包括IBM、HP、Mitsubishi 、Mitsumi、松下電器、Sony、3M以及Olympus等公司的支持。1996年10月,Philips、Sony、HP、Mitsubishi和Ricoh五家公司共同宣布了這一新的可擦寫CD標准,並將CD-E更名為CD-RW(CD-ReWritable)。CD-RW標準的制定標志著工業界可以開發並向市場提供這種新產品。

CD-RW兼容CD-ROM和CD-R,CD-RW驅動器允許用戶讀取CD-ROM、CD-R和CD-RW盤,刻錄CD-R盤,擦除和重寫CD-RW盤。由於CD-RW採用CD-UDF文件結構,因此CD-RW可作為一台海量軟盤驅動器使用,也可在DVD-ROM驅動器讀取,具有更廣泛的應用前景。

MO雖然有不少特點,但是它們只能被其它同類驅動器讀取,不能在廣泛流行的CD-ROM上使用。MO沒有市場共享性,購買者只是將它們用於數據備份,因此難以實現數據交換和數據分發,更不可能製作自己的CD、VCD或CD-ROM節目。 因此MO很難在市場上流行起來。

CD-R是可記錄光碟市場上的後起之秀,雖然只能刻錄一次,但由於它與廣泛使用的CD-ROM兼容,並具有較低的記錄成本和很高的數據可靠性贏得了眾多計算機用戶的普遍歡迎。CD-R目前是各種光碟存儲產品中發展最迅猛的一種,。CD-R刻錄機的價格相對幾年前已下跌了很大幅度。在國外,CD-R刻錄機正在逐步取代CD-ROM驅動器而成為計算機的一種標准配置。

CD-RW是一個已經得到眾多公司和用戶普遍支持的可擦寫光碟標准。由於CD-RW仍沿用了CD的EFM調制方式和CIR檢糾錯方法,CD-RW盤與CD-ROM盤具有相同的物理格式和邏輯格式,因此CD-RW驅動器與CD-R驅動器的光學、機械、及電子部分類似,一些零部件甚至可以互換,這將大大節省CD-RW的開發和生產費用,降低CD-RW驅動器的成本,使CD-RW未來就能迅速在可擦寫光碟產品市場佔有一定的份額。光碟技術的發展與展望-光電技術光碟技術的發展與展望光碟技術的發展

7. 電子計算機中的只讀存儲器有什麼作用

只讀存儲器(Read-Only Memory,ROM)以非破壞性讀出方式工作,只能讀出無法寫入信息。信息一旦寫入後就固定下來,即使切斷電源,信息也不會丟失,所以又稱為固定存儲器。ROM所存數據通常是裝入整機前寫入的,整機工作過程中只能讀出,不像隨機存儲器能快速方便地改寫存儲內容。ROM所存數據穩定 ,斷電後所存數據也不會改變,並且結構較簡單,使用方便,因而常用於存儲各種固定程序和數據。
除少數種類的只讀存儲器(如字元發生器)可通用之外,不同種類的只讀存儲器功能不同。為便於用戶使用和大批量生產,進一步發展出可編程只讀存儲器(PROM)、可擦可編程序只讀存儲器(EPROM)和帶電可擦可編程只讀存儲器(EEPROM)等不同的種類。ROM應用廣泛,諸如Apple II或IBM PC XT/AT等早期個人電腦的開機程序(操作系統)或是其他各種微電腦系統中的軔體(Firmware),所使用的硬體都是ROM。
只讀存儲器的特點是只能讀出而不能寫入信息,通常在電腦主板的ROM裡面固化一個基本輸入/輸出系統,稱為BIOS(基本輸入輸出系統)。其主要作用是完成對系統的加電自檢、系統中各功能模塊的初始化、系統的基本輸入/輸出的驅動程序及引導操作系統。

8. 存儲技術發展歷史

最早的外置存儲器可以追溯到19世紀末。為了解決人口普查的需要,霍列瑞斯首先把穿孔紙帶改造成穿孔卡片。

他把每個人所有的調查項目依次排列於一張卡片,然後根據調查結果在相應項目的位置上打孔。在以後的計算機系統里,用穿孔卡片輸入數據的方法一直沿用到20世紀70年代,數據處理也發展成為電腦的主要功能之一。

2、磁帶

UNIVAC-I第一次採用磁帶機作外存儲器,首先用奇偶校驗方法和雙重運算線路來提高系統的可靠性,並最先進行了自動編程的試驗。此時這個磁帶長達1200英寸、包含8個磁軌,每英寸可存儲128bits,每秒可記錄12800個字元,容量也達到史無前例的184KB。從 此之後,磁帶經歷了迅速發展,後來廣泛應用了錄音、影像領域。

3、軟盤(見過這玩意的一定是80後)

1967年 IBM公司推出世界上第一張「軟盤」,直徑32英寸。隨著技術的發展,軟盤的尺寸一直在減小,容量也在不斷提升,大小從8英寸,減到到5.25英寸軟盤,以及到後來的3.5英寸軟盤,容量卻從最早的81KB到後來的1.44MB。在80-90年代3.5英寸軟盤達到了巔峰。直到CD-ROM、USB存儲設備出現後,軟盤銷量才逐漸下滑。

4、CD

CD也就是我們常說的光碟、光碟,誕生於1982年,最早用於數字音頻存儲。1985年,飛利浦和索尼將其引入PC,當時稱之為CD-ROM(只 讀),後來又發展成CD-R(可讀)。因為聲頻CD的巨大成功,今天這種媒體的用途已經擴大到進行數據儲存,目的是數據存檔和傳遞。

5、磁碟

第一台磁碟驅動器是由IBM於1956年生產,可存儲5MB數據,總共使用了50個24英寸碟片。到1973年,IBM推出第一個現代「溫徹斯特」磁碟驅動器3340,使用了密封組件、潤滑主軸和小質量磁頭。此後磁碟的容量一度提升MB到GB再到TB。

6、DVD

數字多功能光碟,簡稱DVD,是一種光碟存儲器。起源於上世紀60年代,荷蘭飛利浦公司的研究人員開始使用激光光束進行記錄和重放信息的研究。1972年,他們的研究獲得了成功,1978年投放市場。最初的產品就是大家所熟知的激光視盤(LD,Laser Vision Disc)系統。它們的直徑多是120毫米左右。容量目前最大可到17.08GB。

7、快閃記憶體

淺談存儲器的進化歷程
快閃記憶體(Flash Memory)是一種長壽命的非易失性(在斷電情況下仍能保持所存儲的數據信+息)的存儲器。包含U盤、SD卡、CF卡、記憶棒等等種類。在1984年,東芝公司的發明人舛岡富士雄首先提出了快速快閃記憶體存儲器(此處簡稱快閃記憶體)的概念。與傳統電腦內存不同,快閃記憶體的特點是非易失性(也就是所存儲的數據在主機掉電後不會丟失),其記錄速度也非常快。Intel是世界上第一個生產快閃記憶體並將其投放市場的公司。到目前為止快閃記憶體形態多樣,存儲容量也不斷擴展到256GB甚至更高。

隨著存儲器的更新換代,存儲容量越來越大,讀寫速度也越來越快,企業級硬碟單盤容量已經達到10TB以上,目前使用的SSD固態硬碟,讀速度達:3000+MB/s,寫速度達:1700MB/s,用起來美滋滋啊。