『壹』 示波器 如何自動存儲數據
示波器的分段存儲功能可以解決你的問題:
分段存儲其實就是讓示波器只記錄我們想要的片段,從而可以更高效地利用示波器的存儲深度且保證波形細節。在足夠的采樣率下捕獲多個波形事件,以便進行有效的分析。分段存儲還可以幫助測試者捕獲偶發信號和更優化地保存和顯示所需的數據。
我們來看看如何設置分段存儲以記錄上圖中I2C匯流排信號的有用片段,以及如何用分段存儲來捕獲偶發信號和更優化地保存所需的數據。
首先,我們調整示波器的時基,設置好觸發方式,使得有用信息部分佔滿整個示波器屏幕,如下圖所示,可見此時的采樣率為1GSa/s
『貳』 數字示波器有波形存儲和像素存儲功能,它們的作用各自什麼
1、我估計你說的波形存儲是示波器內部存儲功能,點擊類似【保存/調出】按鈕,出現菜單中會出現類似「保存位置」的選項,裡面可能會有refA,refB,1,2,3。。9等幾個位置選項,選擇其中一項,點擊類似【保存波形】功能鍵,就可以把當前波形保存在示波器內存中,需要時可以調出波形。
2、像素存儲估計是將波形保存(准確的說應該是示波器整個界面圖片)到示波器外部,如U盤中,一般數字示波器都有U盤介面
不同廠家的示波器各菜單功能鍵描述可能會有一定程度上的區別,特別是國外的廠家翻譯成中文會有更大的區別,故我在上面寫到「類似」一詞
『叄』 示波器如何保存波形
只要選擇存儲格式為二進制格式,即可對波形進行保存。需要注意的是保存路徑和U盤大小。如果需要重新導入波形文件,只需要選擇導入即可。
『肆』 示波器如何保存波形
我用的SDS5102X,保存波形有兩種格式:圖像和數據。
圖像格式就是直接將屏幕圖象以.bmp、.jpg或.png格式保存,這種比較直觀但是無法查詢數據。
數據格式就以二進制數據(.bin)、CSV數據(.csv)或matlab數據(.dat)保存,可以用相應的方式打開並繪制波形,這種比較有利於後續分析。
『伍』 數字存儲示波器只能實時顯示波
數字存儲示波器不能實時顯示波形。數字示波器的處理時間比較長,每秒只捕捉幾十個波形,不能實時顯示所有數字波形。數字示波器有獨特的優勢可以進行波形觸發、存儲、測量等。
『陸』 普源精電示波器可以存儲一段時間內的波形嗎
這要看你使用的示波器帶不帶記錄儀的功能了漏鄭備。
一般示波器都是可以截圖的,如果有記錄儀功能,返毀就可以截取一段時間的波形,回放查看。
金涵JDS30系列的示叢則波器都是有這個功能的。
『柒』 固緯系列數字示波器能否長時間記錄波形
不能長時間,一般就是20組內部存儲,需要及時轉移出來。
『捌』 示波器可以實時顯示波形嗎
可以實現顯示波形,必須同時在偏轉板上加一掃描電壓,使電子束的亮點沿水平方向拉開。
『玖』 示波器如何保存波形數據,保存下來的怎麼看
有一篇文章專門講解這個的:了解示波器的多種文件存儲方式WAV:數據文件保存的第一種方式,將屏幕上顯示的波形數據進行抽樣後保存為二進制文件,以WAV格式保存到本地或者外部存儲器中,可在本機調用打開查看、縮放等。CSV:數據文件保存的第二種方式,它會保存示波器當前通道的波形數據,以CSV格式存到示波器內部存儲或外部存儲器U盤中,是一種逗號分隔值文件格式,其文件以純文本形式存儲表格數據,它會將需要的二進制數據轉換成ASCII碼,以ASCII碼數據進行保存,可用Excel、Access或者文本文件打開,本機不可調用。下圖是用Excel打開一CSV文件後的界面,下部分是以E、F兩項為坐標合成的折線圖:由於保存時間的原因,以WAV和CSV保存的數據文件也是經過取樣的(下圖中有87500個數據點坐標),在保證可以看到信號大部分信息的同時,又將數據保存的時間控制在2秒以內.那麼對於個別需要將一屏28M的波形數據完整保存下來的用戶,面對這幾千萬的龐大數據量,難道真的要等示波器存儲幾個小時嗎?不用著急,TO1000系列平板示波器為這種需求提供第三種保存方式:BIN具體操作流程如下圖所示,前後的操作不到60S的時間,即可獲得這幾千萬的龐大數據量。Data2csv.exe小工具下載地址:
『拾』 示波器的工作原理是什麼維修中如何運用
示波器是一種用途十分廣泛的電子測量儀器。俗話說,電是看不見摸不著的。但是示波器可以幫我們「看見」電信號,便於人們研究各種電現象的變化過程。所以示波器的核心功能,就和他的名字一樣,是顯示電信號波形的儀器,以供工程師查找定位問題或評估系統性能等等。
而波形,也有多種定義,比如時域或者頻域的波形,對於示波器而言,大多數時候測量的是電壓隨時間的變化,也就是時域的波形。因此,示波器可以分析被測點電壓變化情況,從而被廣泛的應用於各個電子行業及領域中。
一般我們業內對示波器的分類只按模擬示波器和數字示波器來分,有些廠家可能為了突出其示波器的某項功能給其命名為其他名字,比如數字熒光示波器等。但其本質原理依然逃不出這2大示波器類別。
模擬示波器是屬於早期的示波器,主要基於陰極射線管(也叫顯像管,曾廣泛應用於早期的電視機、顯示器)打出的電子束通過水平偏轉和垂直偏轉系統,打在屏幕的熒光物質上顯示波形。
③ARM處理器控制FPGA調節ADC模數轉換器采樣率,示波器軟體上表現為調節時基,由於存儲深度為固定值,采樣率 = 存儲深度 ÷ 波形記錄時長,通常時基設置的改變是通過改變采樣率來實現的。因此廠家標注的采樣率往往是在特定時基設置之下才有效的,在大時基下受存儲深度的影響,采樣率不得不降低。ADC模數轉換器和RAM高速存儲器影響著示波器的另外兩大指標:采樣率和存儲深度。
④接下去,由FPGA驅動ADC同步采樣,ADC將採集到的數據進行二進制數據化並寫入高速緩存。存儲器緩存即存儲深度,一般存儲器的大小是示波器標識存儲深度大小的四倍,因為FPGA無法控制示波器的觸發,因此採集的信號必定先是標識存儲深度的2倍,然後再來根據觸發篩選其中的一段波形,所以示波器可以看到觸發位置之前的波形。又由於示波器在篩選之前採集的波形的時候,採集不能停,否則就會導致波形捕獲率太低,因此同時還需要繼續採集同樣長度的采樣點,如此反復,這樣一來就是四倍了。
⑤收到觸發指令後,存儲器再把數據交給ARM處理器處理
⑥ARM處理器將數據處理後通過顯示介面將數據輸出至顯示屏展示給使用者。通過計算,示波器還能模仿出類似模擬示肆模雀波器的多級輝度顯示,以及數字示波器特有的色溫顯示效果,余暉顯示效果。
⑦示波器處理完數據後,可以把當前的波形圖像或者是數據保存到存儲器中,要注意這里的存儲完全不同於存儲深度的高速存緩,大多數示波器採用外部存儲器如U盤,SD卡,電腦等,現在一些現代化的示波器會內置大存儲可以直接保存在示波器里。
這個過程中,②③④都是並行處理的。
由於數字示波器處理速度的制約,所以它並不能保證被測信號的波形能連續不斷地實時顯示在屏幕上,顯示的兩個波形之間會有波形數據丟失,也即所說的死區時間,這也是數字示波器相比較於模擬示波器的最大缺點了。不過,隨著示波器運算能力的增強,波形捕獲率的不斷上升,這一缺點也在被慢慢彌補。
維修相關的應用的話,不知道你是哪個行業的,示波器的使用只要學會了原理,操作其實不難。