① 沙井酸壓後壓力恢復資料的試井解釋
王昔彬陳志海
(新星石油公司規劃研究院北京100083)
摘要65井經酸壓改造形成的人工裂縫與天然縫洞系統相溝通。針對該典型的酸壓措施井,藉助法國Kappa公司開發的Saphir軟體,利用復合油藏模型對該井壓力恢復測試資料開展了試井解釋。採用典型曲線非線性回歸擬合方法和MDH特徵直線法,獲得了人工酸壓裂縫和天然縫洞系統的一些基本參數,解釋結果比較符合地層實際情況。為今後類似酸壓井的試井解釋工作提供了可供借鑒的研究方法。
關鍵詞酸壓天然縫洞試井復合油藏模型壓力恢復
1油藏基本概況
沙65井是塔河4號油田沙48井西北約5km的一口探井,該井在構造上位於艾協克2號構造西翼。裸眼完井井段為5451.82~5520.0m,岩性上為灰色、黃灰色的微晶灰岩。該井完鑽後首先進行DST測試結論為干層,然後對測試層段開展了前置液酸壓,從酸壓施工曲線上分析,酸壓前期形成人工酸壓裂縫,隨後表現出泵壓下降、排量增加、與天然裂縫溝通的明顯特徵。該井於1999年9月4日12:40開井生產,8mm油嘴生產獲得336 m3/d的高產,至1999年9月10日11:52關井,開始測壓力恢復(以下簡稱壓恢)。
2解釋參數的選取
沙65井測試報告中沒有提供解釋所需的所有油藏地質參數和流體的 PVT物性參數,由於該井位於塔河4號油田,因此將沙65井和沙48井的油藏特徵和流體性質進行比較 新疆塔里木盆地塔河3號、4號油氣資料匯集成果(內部資料),1999。
從表1可以看出,沙65井和沙48井的原油都屬於高粘稠油,PVT性質相差不大,因此對沙65井測試資料進行解釋時,油層厚度取裸眼完井層段厚度,綜合壓縮系數取沙48井的值,沙65井解釋參數具體取值如表2所示。
表1沙48井和沙65井地層及流體參數對比Table1Reservoir and fluid parameters comparison of S48 and S65
表2沙65井試井解釋參數取值Table2Interpretation parameters of S65
3實際測試資料的解釋
筆者採用法國Kappa公司開發的Saphir(2.3R)試井解釋軟體開展解釋工作。在解釋過程中,通過不同手段進行模型識別,力求選擇出最接近油藏地質特徵的解釋模型,對於同一模型通過多種解釋方法進行對比,解釋出油藏參數。
3.1流量史
經過核實,沙65井從1999年9月4日12:40開井生產至1999年9月10日11:52關井為止,總共生產時間為143.3h,以8mm油嘴生產平均原油產量為336m3/d,產氣量很小未計量,因此流量史如表3所示。
表3沙65井試井解釋流量史Table3The flowing history of S65
3.2模型識別
圖1是沙65井壓力恢復數據的雙對數曲線圖。從圖中可以看出,在早期壓力與壓力導數曲線不重合(壓力導數曲線在450線以上,壓力曲線在450線以下),主要因為壓力恢復測試時井口關井地面流量為0,但由於井筒續流效應的影響,井底流量並不為0引起的。
圖1沙65井壓力恢復數據雙對數圖Fig.1The log-log build-up pressure plot of S65
將圖1中關井時間進行校正,通過比較,將沙65井開井生產時間延長0.05h,壓力恢復數據取143.35h以後的數據。這樣修正後的壓力恢復數據雙對數圖如圖2所示。
圖2所示的壓力恢復雙對數特徵如下:
圖2沙65井修正後的壓力恢復雙對數圖Fig.2The corrected log-log build-up pressure plot of S65
早期(AB)段:壓力及其導數的斜率為0.5~1.0,由於該井經過酸壓措施,反應出無限導流能力裂縫特徵和雙井筒存儲特徵。
中期(BD)段:壓力導數出現「下凹」,由於地層原油的泡點壓力約為20MPa,而油藏原始壓力約為59.4MPa,因此油藏中是單相流,並且在開井生產過程中,因氣產量很小未計量,所以壓力導數上出現的「下凹」並非是原油中氣相的逸出而引起的變井筒存儲,但是油井與酸壓裂縫相連通,因此由裂縫存儲引起的雙井筒存儲效應可以在壓力導數上引起「下凹」,這一點可以在早期壓力及其導數斜率為0.5~1.0這一特徵上體現出來。
晚期(EF)段:反應出地層徑向流特徵。如果排除雙井筒存儲效應,中期和晚期壓力導數曲線上出現兩個台階,這說明酸壓措施形成的裂縫(人工裂縫)與地層天然裂縫-溶洞系統連通,從沙65井酸壓施工曲線圖(圖3)可以反映出這一特徵,從而形成兩個滲透率不同的區域。
圖3沙65井酸壓施工曲線Fig.3The acid fracturing curve of S65
因此實際解釋時,主模型應該選擇徑向復合油藏模型。基於以上分析,在解釋沙65井壓力恢復數據時,本文選擇的模型為:「無限導流裂縫+雙井筒存儲(變井筒存儲)+徑向復合油藏+無限大邊界」。
3.3地層參數的解釋
經過以上模型識別,採用Saphir軟體的典型曲線非線性回歸法和特徵直線法這兩種方法進行對比解釋,分別闡述如下:
3.3.1典型曲線非線性回歸法
選擇「無限導流裂縫+雙井筒存儲(變井筒存儲)+徑向復合油藏+無限大邊界」模型,對該模型典型曲線進行非線性回歸擬合結果如圖4所示。
圖4沙65井壓力恢復數據典型曲線非線性回歸擬合雙對數圖Fig.4The non-linear regression match log-log plot of S65
通過圖4的擬合,解釋結果如表4所示。
表4沙65井壓力恢復數據典型曲線非線性回歸擬合結果Table4Reservoir parameters interpreted by non-linear regression match of S65
根據以上解釋結果,我們可以計算出如下參數:
(1)初始井筒存儲系數Ci和終止井筒存儲系數Cf
計算初始井筒存儲系數和終止井筒井筒存儲系數公式如下:
塔里木盆地北部油氣田勘探與開發論文集
聯立方程(1)和(2)可以求出初始井筒存儲系數(Ci)為1.54m3/MPa,終止井筒存儲系數(Cf)為1.76m3/MPa。終止井筒存儲系數比初始井筒存儲系數大,主要是由於第二井筒存儲—裂縫存儲效應引起的。
(2)天然裂縫-溶洞滲透率k2
流度比定義公式為:
塔里木盆地北部油氣田勘探與開發論文集
復合油藏內外區流體粘度相等(μ1=μ2),所以外區(天然裂縫-溶洞區)的滲透率由下式計算:
塔里木盆地北部油氣田勘探與開發論文集
由(4)可以計算出天然裂縫-溶洞區的滲透率(k2)為1323×10-3μm2。
(3)天然裂縫-溶洞與人工裂縫(酸壓縫)的孔隙度值
復合油藏內外區擴散系數比定義為:
塔里木盆地北部油氣田勘探與開發論文集
復合油藏內外區流體粘度相等(μ1=μ2),綜合壓縮系數基本相同(Ct1=Ct2),這樣,天然裂縫-溶洞與人工裂縫的孔隙度比值可以由以下公式計算:
塔里木盆地北部油氣田勘探與開發論文集
利用公式(6),可以計算天然裂縫-溶洞與人工裂縫的孔隙度比值(ψ1=ψ2)為1.455。解釋時輸入的孔隙度平均值為5%,利用體積加權平均方法計算油藏平均孔隙度,則有如下公式:
塔里木盆地北部油氣田勘探與開發論文集
聯立(6)式和(7)式,可以計算出人工裂縫平均孔隙度(ψ1)值為:3.45%;天然裂縫-溶洞的平均孔隙度值為:5.02%。
3.3.2特徵直線擬合方法
為了對典型曲線非線性回歸擬合方法進行驗證,由於沙65井測量壓力恢復數據前開井生產時間較長(143.3 h),所以作特徵直線擬合分析時,應該選用MDH曲線(而不是Homer曲線)進行擬合分析,MDH特徵直線擬合如圖5所示。
圖5沙65井壓力恢復數據MDH直線擬合圖Fig.5The MDH characteristic straight-line regression plot of S65
特徵直線擬合結果為:天然裂縫-溶洞滲透率(k2)為1390×10-3μm2,與典型曲線非線性回歸法擬合的結果1323×10-3μm2基本一致,說明所選擇的模型比較適合油藏實際情況。沙65井壓力恢復歷史擬合如圖6所示。
圖6沙65井壓力恢復歷史擬合圖Fig.6The build-up pressure history math plot of S65
綜合以上兩種擬合方法,解釋出的地層參數如表5所示。
表5沙65井壓力恢復數據地層參數解釋結果Table5The reservoir parameters interpreted by build-up pressure of S65
4結論與建議
通過對沙65井壓力恢復測試數據進行解釋,可以得出如下結論:
(1)在具有天然裂縫-溶洞型的碳酸鹽岩儲層中,如果具有兩種滲透性截然不同的儲層介質分布在不同的區域中(儲層非均質)時,可以用復合油藏模型(線性或徑向復合)進行擬合,並能得到比較滿意的解釋結果。
(2)用復合油藏模型擬合非均質的天然裂縫-溶洞型碳酸鹽岩儲層時,可以分別解釋出高滲區和低滲區的滲透率,以及各自的平均孔隙度。
(3)在非均質的天然裂縫-溶洞型碳酸鹽岩儲層的壓力恢復導數曲線上,中期(過渡期)往往出現「下凹」特徵,引起這一現象的原因包括:兩相流引起的變井筒存儲、裂縫引起的雙井筒存儲以及基質流體參與滲流的雙孔或雙滲介質等因素。解釋時應結合實際地質資料、岩心分析資料和流體PVT資料進行具體分析,以便准確選擇解釋模型。
(4)通過對該井的解釋,獲得了人工裂縫和酸壓裂縫的一些基本參數,加深了對酸壓裂縫滲透性的認識。該井酸蝕裂縫的滲透率為291×10-3μm2,孔隙度為3.45%,人工酸壓裂縫半長為44.4m。
(5)酸壓作為塔河奧陶系油藏油井增產上儲的重要措施,為今後類似酸壓井的試井解釋提供了研究方法和研究思路。
(6)本次壓力恢復測試沒有探測到油藏邊界,建議今後在該油藏壓恢測試設計時應盡可能地增加壓力恢復的時間,爭取使壓恢數據出現晚期地層徑向流段,探測到邊界的影響。
參考文獻
[1]吳玉樹,葛家理.裂-隙油藏近井區變滲透率問題.石油勘探與開發,1981(2):55~63
[2]盧德唐.試井分析理論及方法.北京:石油工業出版社,1998.69~70
[3]林加恩.實用試井分析方法.北京:石油工業出版社,1996.48~51
[4]Heber,Cineo-Ley.Well-Test Analysis for Naturally Fractured Reservoirs.JPT.January,1996,51~54
Welllt-est analysis of build-up pressure for the acid-fractured reservoir:well S65
Wang XibinChen Zhihai
(Petroleum Institute CNSPC,Beijing100083)
Abstract::The artificial fractures of S65 by acid fracturing are connected with the natural fractures. According to the well-test software Saphir(Kappa),We developed composite model and interpreted the build-up pressure data by the nonlinear regression method and the MDH characteristic straight-line regression method.The basic parameters interpreted are accorded with those of the reservoirs,which is useful for the interpretation of other similar reservoirs.
Key words:acid fracturing natural fractures well test composite-reservoir build-up pressure
② 井筒儲集效應失效
井筒儲集效應失效意思是通過技術手段無法提高該儲層的儲量和產量。根據查詢相關信息顯示,在壓降或壓力恢復試井中,由於井筒內流體旳壓縮性或其他因素,往往會出目前油井開井和關井時,地面流量和地下流量不相等,浮現了續流和井筒存儲現象,而這兩鋒困派種現銀賀象對壓降試井和壓力恢復尺李試井產生旳影響叫井筒存儲效應。相反就無法提高該儲層的儲量和產量。
③ 石油開采小常識
1. 關於石油的知識(簡單一些的)
石油知識———石油地質名詞解釋 油田------由單一構造控制下的同一面積范圍內的一組含悶油藏的組合。
氣田------單一構造控制幾個或十幾個汽藏的總和。 石油------具有不同結構的碳氫化合物的混和物為主要成份的一種褐色。
暗綠色或黑色液體。 天燃氣----以碳氫化合物為主的各種汽體組成的可燃混和氣體。
生油層----在古代曾經生成過石油的岩層。 油氣運移--在壓力差和濃度差存在的條件下,石油和天然氣在地殼內任意移動的過程。
垂直運移--即油氣運移的方向與地層層面近於垂直的上下移動。 測向運移---即油氣運移的方向與地層層面近於平行的橫向移動。
儲集層-----能使石油和天然氣在其孔隙和裂縫中流動,聚集和儲存的岩層。 含油層-----含有油氣的儲集層。
圈閉----凡是能夠阻止石油和天然氣在儲集層中流動並將其聚集起來的場所。 蓋層----緊鄰儲集層上下阻止油氣擴散的不滲透岩層。
隔層----夾在兩個相鄰儲集層之間阻隔二者串通的不滲透岩層。 遮擋----阻止油氣運移的條件或物體。
含油麵積----由含油內邊界所圈閉的面積。 油水邊界----石油和水的接觸邊界。
儲油麵積-----儲油構造中,含油邊界以內的平面面積。 工業油氣藏-----在目前枝術條件下,有開采價值的油氣藏。
構造油氣藏-----由與構造運動使岩層發生變形和移位而形成的圈閉。 地層油氣藏-----由地層因素造成的遮擋條件的圈閉。
岩性油氣藏-----由於儲集層岩性改變而造成圈閉。 儲油構造-----凡是能夠聚集油,氣的地質構造。
地質構造-----地殼中的岩層地殼運動的作用發生變形與變位而遺留下來的形態。 沉積相----指在一定的沉積環境中形成的沉積特徵的總和。
沉積環境-----指岩石在沉積和成岩過程中所處的自然地理條件、氣候狀況、生物發育狀況、沉積介質的 物理的化學性質和地球化學要條件。 單純介質-----只存在一種孔隙結構的介質稱為單純介質。
如孔隙介質、裂縫介質等。 多重介質----同時存在兩種或兩種以上孔隙結構的介質稱為多重介質。
均質油藏-----整個油藏具有相同的性質。 非均質油藏-----具有不同性質的油藏,包括雙重介質油藏;裂縫西個油藏;多層油藏 彈性趨動-----油井開井後壓力下降,油層中液體會發生彈性膨賬,體積增大,而把原油推向井底。
水壓趨動----靠油藏邊水。底水或注入水的壓力作用把原油推向井底。
地質儲量----在地層原始條件下,具有產油氣能力的儲層中所儲原油總量。 可采儲量----在目前工藝和經濟條件下,能從儲油層中采出的油量。
剩餘可采儲量----油田投入開發後,可采儲量與累計采出量之差。 採收率-----油田采出的油量與地質儲量的百分比。
最終採收率----油田開發解束累計採油量與地質儲量的百分比。 采出程度---油田在某時間的累計採油量與地質儲量的比值。
採油速度----年采出油量與地質儲量之比。 原油密度----指在標准條件下(20度,0.1MPa)每立方米原油質量。
原油相對密度----指在地面標准條件(20度,0.1MPa)下原油密度與4度純水密度的比值。 原油凝固點----在一定條件下失去了流動的最高溫度。
原油粘度----原油流動時,分子間相互產生的摩檫阻力。 原油體積系數----地層條件下單位體積原油與地面標准條件下脫汽體積比值。
原油壓縮系數----單位體積地層原油在壓力改變0。1兆帕時的體積的變化率。
溶解系數----在一定溫度下壓力每爭加0。1兆帕時單位體積原油中溶解天燃汽的多少。
孔隙度----岩石中孔隙的體積與岩石總體積之比。 絕扮老冊對孔隙度----岩石中全部孔隙的體積與岩石總體積之比。
有效孔隙度-----岩石中互相連通的孔隙的體積與岩石總體積之比。 含油飽和度-----在油層中,原油所佔的孔隙的體積與岩石總孔隙體積之比。
含水飽和度-----在油層中,水所佔的孔隙的體積與岩石孔隙體積之比。 穩定滲流-----在滲流過程中,如果各運動要素與(如壓力及流速)時間無關,稱為穩定。
不穩定滲流-----在滲流過程中,若各運動要素與時間有關,則為不穩定滲流廳宏。 等壓線----地層中壓力相等的各個點的連接線稱為等壓線。
流線-----與等壓線正交的線稱為流線。 流場圖----由一組等壓線和一組流線構成的圖形為流場圖。
單相流動-----只有一種流體的流動叫單相流動。 多相流動------兩種或兩種以上的流體同時流動叫兩相或多相流動。
滲透率----在一定壓差下,岩石允許液體通過的能力稱滲透性,滲透率的大小用滲透率表示。 絕對滲透率----用空汽測定的油層滲透率。
有效滲透率----用二種以上流體通過岩石時,所測出的某一相流體的滲透率。 相對滲透率----有效滲透率與絕對滲透率的比值。
水包油----細小的油滴在水介質中存在的形式。 油包水----細小的油滴在水介質中存在的形式。
供油半徑-----把油井供油麵積轉換成圓形面積後的圓形半徑。 地層系數----地層有效厚度與有效滲透率的乘積。
流動系數----地層系數與地下原油粘度的比值,表示流體在岩層中流動的難易程度。 導壓系數-----表示油層傳遞壓力性能好壞的參數。
續流-----油井地面關井後,井下仍有油流從地層中繼續流入井眼,這種現象稱為續流。 井筒儲存效應-----油井剛關井時所出現的現象。
折算半徑----把實際井的各個因素(不完善或超完善)對壓力的影響,變成一個由於某井徑引起對。
2. 石油開采時應注意什麼問題
石油開采是即地震勘探、鑽井完井交井以後,將原油從地層中開采出來進入油氣集輸系統的一個重要的資源能源行業。
在國民經濟中具有舉足輕重的作用。從我國現有油田的情況來看,絕大多數不具備充足的天然能量補給條件,而且油田本身的能量不足以長期維持採油的需要。
在工業高速發展,對能源的需求逐年增加的今天,保持科學的較高的採油速度和較高的原油採收率尤為重要。 石油開采受著區域地質條件的控制,並分布在含油氣盆地之內,含油氣盆地是一定的地質歷史時期內,受同一構造格局控制的,具有共同發展歷史的統一沉降區。
原油開采是集採油、井下作業、注水、集輸為一體的工藝過程。建國前我國僅有以玉門油礦為代表的工藝比較落後的一些小油區。
對石油大規模勘探開發是從建國後六十年代大慶、大港、勝利、遼新等大的油氣田。油氣田遍布全國,已經具有相當大的規模和生產能力,無論是生產工藝和石油開采都具有世界先進水平。
成為國民經濟發展的支柱產業。 但是,由於四十多年的原油開采,造成老油區資源能量的嚴重不足,給地面環境帶來了嚴重污染,這些矛盾制約了生產的發展,引起了我們對石油開采過程中特別的關注。
因此節約和利用資源、能源、降低消耗,在石油開采過程保護好環境是我們亟待解決的問題。 一、簡單的工藝過程 石油開采方式有自噴採油和機械採油,自噴採油是由於地下含油層壓力較高,憑其自身壓力就可以使原油從井口噴出的採油方式。
機械採油則是利用各種類型的泵把原油從井中抽出,目前我國石油開采以機械採油為主。不同的地質情況不同的油品性質採用不同的機械開采方式。
對粘度小於50毫帕斯卡.秒,密度小於0.934的原油(稱為稀油),一般用常規開采。對粘度大於50毫帕斯卡.秒,密度大於0.934的原油(稱為稠油),一般用熱力採油,即採用熱蒸汽吞吐、摻稀油及伴熱的採油方式。
以遼河油田為例,氣候寒冷是北方冬季的特徵。油質除一部分稀油外,大部分油質為稠油和特稠油,由於原油重質成份多,粘度大,相對密度大,在油藏條件下原油幾乎不能流動,無法用常規的方法開采,給生產和環境帶來了一系列的問題。
我們油田採用熱力採油、稀釋、乳化降粘方式開采。 稀釋開采:即將一定量粘度小的稀油加入稠油中,降低粘度。
熱力採油:即蒸汽吞吐、蒸氣驅,就是對油層注入高溫高壓蒸氣,加熱油層里的原油,使原油的升高,粘度降低,增加原油的流動性,推動油層里的原油流向生產井。另外注入蒸氣對油層加熱後,蒸氣變成熱水流動,置換油層里原油滯流空隙。
原油受注入蒸汽加熱,其中輕質成分將氣化,烴體積膨脹也會將原油推流到生產井。 乳化降粘:即將含有表面活性劑的水溶液混入稠油中,並在油管和抽油管表面上形成親水的潤濕表面。
大大降低油流時的阻力,使油能夠正常開采出來。 二、塬油開采過程中的環境因素分析 由於石油開采是一個從地下獲取資源的過程,地質條件及地下的情況是石油開采中的決定因素。
雖然石油開采是最終獲取資源的活動,但是各種相關工藝如鑽井。各種井下作業等對石油開採的地下地質情況。
地面有直接的聯系的影響。因此在考慮環境時也應做為石油開採的環境因素一並考慮。
同時考慮了三種狀態,三種時態和六個方面。 1. 石油開采生產過程中的環境因素(包括正常異常緊急情況)。
2. 資源能源的使用在工藝的各個環節中都會涉及到,為方便分析,作為總的環境因素來考慮。 3. 原油做為石油開採的特徵污染物在每個工藝中也都會涉及到,因而也作為總的環境因素來考慮。
三、主要生產過程的一些說明 1. 石油開采企業應對採油生產之前的鑽井和採油生產中的各種油井作業的相關方提出的管理要求,在各種設計中應了解施工中的基本環境因素和環境影響,國家對它的法律法規要求。並在預以充分的注意,採取事先預防。
由於石油開采涉及地面環境和地下地質情況,從鑽井到採油,井下作業,外輸都存在泥漿處理、油品泄漏、原油落地。原油脫後水回注、烴類揮發,化學品葯劑使用,有害固廢處理、井噴、火災等重要環境因素,如果逢值訊期控制不好,一旦事故發生就會導致大氣、水體、土地、養殖業等的污染,伴隨而來的就是環保糾紛經濟賠償,影響了企業正常生產,給企業帶來巨大的經濟損失。
因此在石油開采過程中應特別強調安全生產,環境保護,遵守法律法規等。 2. 在原輔材料的選擇上、施工的設計上,都要求符合清潔生產,盡一切努力考慮清潔的工藝技術,使用無毒無害的清潔原材料,清潔的工藝流程、清潔的節能設備,以避免在生產過程中,運輸過程中對環境的污染,對人體的損害。
應該預防在先,作為污染預防不能只採用末端治理,應在生產的源頭考慮預防污染的問題,並在生產過程中,各種工藝、各個環節都應考慮清潔生產的要求,這樣才能保證全過程式控制制。 3. 對有毒有害化學品等,在鑽井、採油、井下、集輸過程中都有不同程度的使用,要求按照MSDS的要求分類存放,對人員進行安全教育,盡量採用危害小的化學品,以免造成對人員損害和環境的污染。
4. 工藝及生產過程中的環境因素。在石油開采中,由於特定的地。
3. 石油基礎知識
石油,也稱原油,是一種粘稠的、深褐色液體。
地殼上層部分地區有石油儲存。石油的性質因產地而異,密度為0.8 ~ 1.0 克/厘米3,粘度范圍很寬,凝固點差別很大(30 ~ -60°C),沸點范圍為常溫到500°C以上,可溶於多種有機溶劑,不溶於水,但可與水形成乳狀液。
它由不同的碳氫化合物混合組成,組成石油的化學元素主要是碳 (83% ~ 87%)、氫(11% ~ 14%),其餘為硫(0.06% ~ 0.8%)、氮(0.02% ~ 1.7%)、氧(0.08% ~ 1.82%)及微量金屬元素(鎳、釩、鐵、銻等)。由碳和氫 化合而形成的烴類構成石油的主要組成部分,約佔95% ~ 99%,含硫、氧、氮的化合物對石油產品有害,在石油加工中應盡量除去。
不過不同的油田的石油的成分和外貌可以區分很大。石油主要被用作燃油和汽油,燃料油和汽油組成目前世界上最重要的一次能源之一。
石油也是許多化學工業產品如溶劑、化肥、殺蟲劑和塑料等的原料。今天88%開採的石油被用作燃料,其它的12%作為化工業的原料。
由於石油是一種不可更新原料,許多人擔心石油用盡會對人類帶來的後果。 生成生成生成生成 研究表明,石油的生成至少需要200萬年的時間,在現今已發現的油藏中,時間最老的可達到5億年之久。
在地球不斷演化的漫長歷史過程中,有一些「特殊」時期,如古生代和中生代,大量的植物和動物死亡後,構成其身體的有機物質不斷分解,與泥沙或碳酸質沉澱物等物質混合組成沉積層。由於沉積物不斷地堆積加厚,導致溫度和壓力上升,隨著這種過程的不斷進行,沉積層變為沉積岩,進而形成沉積盆地,這就為石油的生成提供了基本的地質環境。
伴隨各種地質作用,沉積盆地中的沉積物持續不斷地堆積。當溫度和壓力達到一定程度後,沉積物中動植物的有機物質轉化為碳氧化合物分子,最終生成石油和天然氣。
歷史起源歷史起源歷史起源歷史起源 現代石油歷史始於1846年,當時生活在加拿大大西洋省區 的亞布拉罕·季斯納發明了從煤中提取煤油的方法。1852年波蘭人依格納茨·盧卡西維茨發明了使用更易獲得的石油提取煤油的方法。
次年波蘭南部克洛斯諾附近開辟了第一座現代的油礦。這些發明很快就在全世界普及開來了。
1861年在巴庫建立了世界上第一座煉油廠。當時巴庫出產世界上90%的石油。
後來斯大林格勒戰役就是為奪取巴庫油田而展開的。 19世紀石油工業的發展緩慢,提煉的石油主要是用來作為油燈的燃料。
20世紀初隨著內燃機的發明情況驟變,至今為止石油是最重要的內燃機燃料。尤其在美國在德克薩斯州、俄克拉何馬州和加利福尼亞州的油田發現導致「淘金熱」一般的形勢。
1910年在加拿大(尤其是在艾伯塔)、荷屬東印度、波斯、秘魯、委內瑞拉和墨西哥發現了新的油田。這些油田全部被工業化開發。
直到1950年代中為止,煤依然是世界上最重要的燃料,但石油的消耗量增長迅速。1973年能源危機和1979年能源危機爆發後媒介開始注重對石油提供程度進行報道。
這也使人們意識到石油是一種有限的原料,最後會耗盡。不過至今為止所有預言石油即將用盡的試圖都沒有實現,所以也有人對這個討論表示不以為然。
石油的未來至今還無定論。2004年一份《今日美國》的新聞報道說地下的石油還夠用40年。
有些人認為,由於石油的總量是有限的,因此1970年代預言的耗盡今 天雖然沒有發生,但是這不過是被遲緩而已。也有人認為隨著技術的發展人類總是能夠找到足夠的便宜的碳氫化合物的來源的。
地球上還有大量焦油砂、瀝青和油母頁岩等石油儲藏,它們足以提供未來的石油來源。目前已經發現的加拿大的焦油砂和美國的油母頁岩就含有相當於所有目前已知的油田的石油。
今天90%的運輸能量是依靠石油獲得的。石油運輸方便、能量密度高,因此是最重要的運輸驅動能源。
此外它是許多工業化學產品的原料,因此它是目前世界上最重要的商品之一。在許多軍事沖突(包括第二次世界大戰和海灣戰爭)中占據石油來源是一個重要因素。
今天約80%可以開採的石油儲藏位於中東,其中62.5%位於沙特 *** (12.5%)、 *** 聯合酋長國、伊拉克、卡達和科威特。
4. 石油怎麼開采
1、用鑽井機鑽個井眼到儲藏有石油的地層(也叫目的層)。
2、鑽到目的層後,下一層套管(直徑較大的鋼管),通過在管外與井壁之間注入水泥封固,防止不同深度的地層之間的液體互相流竄,也是防止油氣從其他地方泄漏,以上兩個步驟叫作鑽井。 3、在目的層下射孔槍,將套管射穿,並射進地層內,形成通道,使地層中的原油流入套管內(也就是油井內)。
4、如果井底的石油壓力夠大,石油就會從地下直接噴出井口,這種井叫做自噴井;如果壓力不足以使石油流到地面,就下深井泵將石油從井底抽出地面。