當前位置:首頁 » 服務存儲 » 存儲服務商發展
擴展閱讀
webinf下怎麼引入js 2023-08-31 21:54:13
堡壘機怎麼打開web 2023-08-31 21:54:11

存儲服務商發展

發布時間: 2023-04-22 03:30:52

❶ 浪潮信息在存儲領域的發展怎麼樣

根據對Gartner2021年TOP廠商多個關鍵能力平均得分分析,我們發現存儲產品關鍵能力中性能居首,生態與互操作性、管理易用性持續提升成為客戶關注前三,而存儲系統的計算、內存、盤介質、連接、軟體棧技術發展不平衡。基於以上洞察和浪潮存儲在存算解耦分離、近數計算、數內計算(PIM)等方向的研究,以及從對象到文件的元數據可定義、可編輯、可查詢方面的探索,浪潮存儲踐行了存儲即平台的產品理念,以具備橫向互聯互通性、縱向兼容性、互操作性、和自身健壯性、伸縮性、集約性等特點的平台型存儲產品,提供算力、介質、網路的多樣化能力,橫向組合的模塊化能力,上層應用數據訪問的歸一化能力,讓數據基礎設施建設、信息基礎設施的建設更容易。

目前,浪潮信息通過分布式、集中式、備份、歸檔四類存儲平台,獨立或者組合搭建數據基礎設施,為數據基礎設施提供四個核心價值「安全、可靠、經濟、高效」,更好地解決數據存儲面臨的「服務永遠在線、數據永不丟失、性能永無止境、容量永遠充足」的四大挑戰。

在未來,浪潮信息將繼續秉承「雲存智用,運籌新數據」理念,與產學研全行業一起營造新數字生態,助力客戶致勝新數據時代。

❷ 分布式存儲產業鏈發展概況

作者 | 焦仕可

來源|《2020分布式存儲產業鏈研究報告》

數字化世界不可逆,分布式存儲產業鏈,是承載數據洪流的數據水庫。

分布式存儲產業鏈概況摘要:

1、市場需求旺盛,定製化伺服器迎來高光時刻。 從需求角度看:存儲行業的發展是技術與需求相互促進的過程。人工智慧、物聯網、區塊鏈、5G等技術的快速發展和應用,數據呈指數級增長趨勢,成為創新的基礎。流量、帶寬、數據的計算、存儲、檢索需求長期穩定向上;從技術角度,演算法、算力、算量的增長,分布式存儲在雲計算、虛擬化、IPFS等技術支持下,硬體或將在軟體及演算法的迭代和融合中突破硬體物理限制,下遊客戶將參與晶元及伺服器標准制定,定製化伺服器成為未來新趨勢。

2、產業鏈上游技術及製造卡脖子,多維競爭局面展開,行業格局或重新洗牌。 從產業鏈供應鏈角度看:分布式存儲重要的基礎設施是數據中心,伺服器是數據中心的心臟,晶元是伺服器的核心組成部分。伺服器硬體升級的核心是數據處理,即對數據的採集、存儲、檢索、加工、變換和傳輸,國產化能力長期偏弱,供應鏈集中在歐美日韓台地區。受中美摩擦及疫情影響,上游原材料供應受阻,整體市場成本或將增加。但中國巨大的市場需求及技術迭代,國產的技術、產品、及組織形式上的創新,將有可能帶領硬體端突破重圍,創新帶來行業格局變化。

3、未來十年,國產替代將成主流。 從行業周期看:伺服器軟硬體持續升級周期僅為 2-3 年,當前已處於升級換代階段。過去,伺服器已經實現了從OEM(代工生產)向ODM(設計製造)再到JDM(由互聯網/雲計算企業,與伺服器生產商一起研發伺服器)模式演化,國內浪潮就是典型聯合設計製造商。中美摩擦,反向加速了國內數字領域的發展,加速推進數據基礎設施建設,在IPFS新技術的支持下,行業參與門檻降低,多方競爭下及政策支持下,國產替代趨勢明顯,未來十年或成主流。

4、新一輪行業機遇誕生,新的財富格局或在web3.0中被刷新。 從市場空間來看:中國無論是數據中心規模還是伺服器等上游佔有率,與歐美相比相差巨大,加之公有雲、私有雲的爆發,行業未來增長空間巨大。在政策支持、技術迭代、資本角逐三重利好驅動下,存儲市場迎來新機遇,新一輪的財富大分配已經展開!

❸ 奇跡!美國三大存儲巨頭收入大幅下滑,華為逆勢猛增劍指全球第一

科技 先生頻道∣公眾號:zgkjsir

文/中國 科技 先生 胖猴

近日,美國疾控中心副主任舒查特博士對媒體直言, "由於新冠病毒傳播速度太快、范圍太廣,目前美國疫情正呈失控狀態"。

從發展態勢來看,確實如此。據美國約翰斯·霍普金斯大學統計數字顯示,截止當地時間6月30日上午,美國新冠肺炎確診病例超過268萬,死亡病例為12.95萬。 過去一個星期,全美每天新增的新冠病例數量同比猛增42%,達到約38200例。

形勢如此嚴峻,經濟重啟因而變得艱難。美國媒體6月30日程,由於新冠肺炎疫情再攀高峰, 包括得克薩斯州和佛羅里達州在內的至少16個州已經暫停重啟經濟的計劃。

疫情的影響,已然涉及整個 社會 的方方面面,連美國三大存儲巨頭Dell EMC、NetApp和HPE也大受沖擊。

近日,全球權威分析師機構Gartner發布2020年第一季度的外部存儲市場份額報告,報告顯示,Dell EMC、NetApp和HPE收入都出現大幅下滑,分別下滑11%,16%和19%。

美國存儲巨頭迎來至暗時刻,來自中國的 科技 公司華為,卻展現出逆勢進擊的彪悍。

2020年第一季度,盡管同樣受到疫情影響,華為依然實現了24.7%的高速增長,增長率排名第一。

具體到不同區域,在第一季度受疫情影響最嚴重的中國區,華為仍然保持15.4%的收入增長,增長率中國區第一。海外市場方面,華為實現了38.5%的增長率,增長率排海外市場第一。

不難看出,華為干翻了一眾海外巨頭,成為全球存儲市場唯一的一抹亮色。在華為這里,疫情也好,巨頭林立也罷,都不是戰斗停歇的理由,恰恰相反,困難越多,越要能轉危為機。

要知道,此前,美國三大存儲巨頭"制霸"全球存儲市場,風頭最勁的當屬Dell EMC。

在911事件中,Dell EMC幫助摩根斯坦利24小時恢復全部業務,從而名聲大噪。隨後,Dell EMC完成一系列收購,"迅速完成了從高端存儲廠商到存儲巨頭的角色轉換,開啟了長達十五年的存儲霸主生涯"。

權威分析機構IDC發布的報告數據顯示,2020年第一季度,Dell EMC依舊是最大的企業外部存儲系統廠商,佔全球收入的33.2%,NetApp則以11.0%的收入份額位列第二,其次是HPE/新華三,份額為9.9%。

面對美國巨頭,華為無可倚靠,只能仰仗技術研發,不斷深耕。你可能想像不到,征途之初,可以用"篳路藍縷"來形容。

2002年,華為開始對存儲業務進行投入,"團隊加起來也就十來個人",但必須在一年之內把預研的產品研發出來。

怎麼辦?華為存儲首先想到與高校科研機構合作。於是,華為存儲與華中理工大學(後來改名為華中 科技 大學)謝長生教授團隊展開合作,開始基於標准伺服器+商用FC卡+開源RAID代碼+Cache/SCSI組件打造預研的存儲系統。

經過一年努力,存儲原型機終於研發成功,通過了管理層驗收。第二年,也就是2003年,華為存儲正式啟動研發。

到2005年,華為又完成對雙控存儲系統的研發工作,這意味著華為存儲研發實現了階段性勝利。

此後,技術研發的實力日積月累,越發雄厚。 目前,華為在全球布局了12個研發中心,有超過4000名工程師從事存儲研發,存儲專利超過800項,華為OceanStor存儲Dorado系列全快閃記憶體更在日本年度最大規模ICT展會Interop Tokyo 2020上再次獲得Best of Show Award金獎。

得益於研發投入,華為存儲爆發出驚人能量,不僅受到海內外眾多用戶青睞,市場份額也節節攀升。2019年,華為存儲在全球市場份額殺進前四,而在中國市場,華為存儲已經連續19個季度排名第一。

對此,華為雲與計算BG副總裁、數據存儲與機器視覺產品線總裁周躍峰當仁不讓地坦承: "華為公司成為全球第一的存儲廠商指日可待。"

按照華為長期的技術研發,尤其是現在這樣迅猛的增長速度,加上美國三大巨頭發展變得疲軟,華為存儲將會趁勝追擊,最終屹立於全球存儲市場之巔。

這一天,正在加速到來。

❹ 雲存儲的發展趨勢

雲存儲已經成為未來存儲發展的一種趨勢。但隨著雲存儲技術的發展,各類搜索、應用技術和雲存儲相結合的應用,還需從安全性、便攜性及數據訪問等角度進行改進。(1)安全性從雲計算誕生,安全性一直是企業實施雲計算首要考慮的問題之一。同樣在雲存儲方面,安全仍是首要考慮的問題,對於想要進行雲存儲的客戶來說,安全性通常是首要的商業考慮和技術考慮。但是許多用戶對雲存儲的安全要求甚至高於它們自己的架構所能提供的安全水平。即便如此,面對如此高的不現實的安全要求,許多大型、可信賴的雲存儲廠商也在努力滿足它們的要求,構建比多數企業數據中心安全得多的數據中心。用戶可以發現,雲存儲具有更少的安全漏洞和更高的安全環節,雲存儲所能提供的安全性水平要比用戶自己的數據中心所能提供的安全水平還要高。(2)便攜性一些用戶在託管存儲的時候還要考慮數據的便攜性。一般情況下這是有保證的,一些大型服務提供商所提供的解決方案承諾其數據便攜性可媲美最好的傳統本地存儲。有的雲存儲結合了強大的便攜功能,可以將整個數據集傳送到你所選擇的任何媒介,甚至是專門的存儲設備。(3)性能和可用性過去的一些託管存儲和遠程存儲總是存在著延遲時間過長的問題。同樣地,互聯網本身的特性就嚴重威脅服務的可用性。最新一代雲存儲有突破性的成就,體現在客戶端或本地設備高速緩存上,將經常使用的數據保持在本地,從而有效地緩解互聯網延遲問題。通過本地高速緩存,即使面臨最嚴重的網路中斷,這些設備也可以緩解延遲性問題。這些設備還可以讓經常使用的數據像本地存儲那樣快速反應。通過一個本地NAS網關,雲存儲甚至可以模仿終端NAS設備的可用性、性能和可視性,同時將數據予以遠程保護。隨著雲存儲技術的不斷發展,各廠商仍將繼續努力實現容量優化和WAN(廣域網)優化,從而盡量減少數據傳輸的延遲性。(4)數據訪問現有對雲存儲技術的疑慮還在於,如果執行大規模數據請求或數據恢復操作,那麼雲存儲是否可提供足夠的訪問性。在未來的技術條件下,此點大可不必擔心,現有的廠商可以將大量數據傳輸到任何類型的媒介,可將數據直接傳送給企業,且其速度之快相當於復制、粘貼操作。另外,雲存儲廠商還可以提供一套組件,在完全本地化的系統上模仿雲地址,讓本地NAS網關設備繼續正常運行而無需重新設置。未來,如果大型廠商構建了更多的地區性設施,那麼數據傳輸將更加迅捷。如此一來,即便是客戶本地數據發生了災難性的損失,雲存儲廠商也可以將數據重新快速傳輸給客戶數據中心。 雲計算和物聯網之間的關系可以用一個形象的比喻來說明:「雲計算」是「互聯網中的神經系統的雛形,「物聯網」是「互聯網」正在出現的末梢神經系統的萌芽。
「物聯網就是物物相連的互聯網」。這有兩層意思:第一,物聯網的核心和基礎仍然是互聯網,是在互聯網基礎上的延伸和擴展的網路;第二,其用戶端延伸和擴展到了任何物品與物品之間,進行信息交換和通信。
物聯網的兩種業務模式:
1.MAI(M2M Application Integration), 內部MaaS;
2.MaaS(M2M As A Service), MMO, Multi-Tenants(多租戶模型)。
隨著物聯網業務量的增加,對數據存儲和計算量的需求將帶來對「雲計算」能力的要求:
1.雲計算:從計算中心到數據中心在物聯網的初級階段,PoP即可滿足需求;
2.在物聯網高級階段,可能出現MVNO/MMO營運商(國外已存在多年),需要虛擬化雲計算技術,SOA等技術的結合實現互聯網的泛在服務:TaaS (everyTHING As A Service)。 雲安全(Cloud Security)是一個從「雲計算」演變而來的新名詞。雲安全的策略構想是:使用者越多,每個使用者就越安全,因為如此龐大的用戶群,足以覆蓋互聯網的每個角落,只要某個網站被掛馬或某個新木馬病毒出現,就會立刻被截獲。
「雲安全」通過網狀的大量客戶端對網路中軟體行為的異常監測,獲取互聯網中木馬、惡意程序的最新信息,推送到Server端進行自動分析和處理,再把病毒和木馬的解決方案分發到每一個客戶端。 私有雲(Private Cloud)是將雲基礎設施與軟硬體資源創建在防火牆內,以供機構或企業內各部門共享數據中心內的資源。 創建私有雲,除了硬體資源外,一般還有雲設備(IaaS)軟體;現時商業軟體有VMware的 vSphere 和Platform Computing 的ISF, 開放源代碼的雲設備軟體主要有Eucalyptus和OpenStack。至2013年可以提供私有雲的平台有:Eucalyptus、3A Cloud、minicloud安全辦公私有雲、聯想網盤和OATOS企業網盤等。
雲創存儲推出minicloud安全辦公私有雲,用最少的成本為企業部署雲存儲以及企業辦公應用軟體,為企業打造安全的辦公環境。在滿足企業辦公需求的基礎上,大幅度降低了企業IT建設的門檻與風險,並同時全面保障企業數據安全。
私有雲計算同樣包含雲硬體、雲平台、雲服務三個層次。不同的是,雲硬體是用戶自己的個人電腦或伺服器,而非雲計算廠商的數據中心。雲計算廠商構建數據中心的目的是為千百萬用戶提供公共雲服務,因此需要擁有幾十上百萬台伺服器。私有雲計算,對個人來說只服務於親朋好友,對企業來說只服務於本企業員工以及本企業的客戶和供應商,因此個人或企業自己的個人電腦或伺服器已經足夠用來提供雲服務。 雲會議是基於雲計算技術的一種高效、便捷、低成本的會議形式。使用者只需要通過互聯網界面,進行簡單易用的操作,便可快速高效地與全球各地團隊及客戶同步分享語音、數據文件及視頻,而會議中數據的傳輸、處理等復雜技術由雲會議服務商幫助使用者進行操作。
目前國內雲會議主要集中在以SAAS(軟體即服務)模式為主體的服務內容,包括電話、網路、視頻等服務形式,基於雲計算的視頻會議就叫雲會議。雲會議是視頻會議與雲計算的完美結合,帶來了最便捷的遠程會議體驗。及時語移動雲電話會議,是雲計算技術與移動互聯網技術的完美融合,通過移動終端進行簡單的操作,提供隨時隨地高效地召集和管理會議。 雲社交(CloudSocial)是一種物聯網、雲計算和移動互聯網交互應用的虛擬社交應用模式,以建立著名的「資源分享關系圖譜」為目的,進而開展網路社交,雲社交的主要特徵,就是把大量的社會資源統一整合和評測,構成一個資源有效池向用戶按需提供服務。參與分享的用戶越多,能夠創造的利用價值就越大。
雲計算系統

❺ 存儲器的發展史

存儲器設備發展

1.存儲器設備發展之汞延遲線

汞延遲線是基於汞在室溫時是液體,同時又是導體,每比特數據用機械波的波峰(1)和波谷(0)表示。機械波從汞柱的一端開始,一定厚度的熔融態金屬汞通過一振動膜片沿著縱向從一端傳到另一端,這樣就得名「汞延遲線」。在管的另一端,一感測器得到每一比特的信息,並反饋到起點。設想是汞獲取並延遲這些數據,這樣它們便能存儲了。這個過程是機械和電子的奇妙結合。缺點是由於環境條件的限制,這種存儲器方式會受各種環境因素影響而不精確。

1950年,世界上第一台具有存儲程序功能的計算機EDVAC由馮.諾依曼博士領導設計。它的主要特點是採用二進制,使用汞延遲線作存儲器,指令和程序可存入計算機中。

1951年3月,由ENIAC的主要設計者莫克利和埃克特設計的第一台通用自動計算機UNIVAC-I交付使用。它不僅能作科學計算,而且能作數據處理。

2.存儲器設備發展之磁帶

UNIVAC-I第一次採用磁帶機作外存儲器,首先用奇偶校驗方法和雙重運算線路來提高系統的可靠性,並最先進行了自動編程的試驗。

磁帶是所有存儲器設備發展中單位存儲信息成本最低、容量最大、標准化程度最高的常用存儲介質之一。它互換性好、易於保存,近年來,由於採用了具有高糾錯能力的編碼技術和即寫即讀的通道技術,大大提高了磁帶存儲的可靠性和讀寫速度。根據讀寫磁帶的工作原理可分為螺旋掃描技術、線性記錄(數據流)技術、DLT技術以及比較先進的LTO技術。

根據讀寫磁帶的工作原理,磁帶機可以分為六種規格。其中兩種採用螺旋掃描讀寫方式的是面向工作組級的DAT(4mm)磁帶機和面向部門級的8mm磁帶機,另外四種則是選用數據流存儲技術設計的設備,它們分別是採用單磁頭讀寫方式、磁帶寬度為1/4英寸、面向低端應用的Travan和DC系列,以及採用多磁頭讀寫方式、磁帶寬度均為1/2英寸、面向高端應用的DLT和IBM的3480/3490/3590系列等。

磁帶庫是基於磁帶的備份系統,它能夠提供同樣的基本自動備份和數據恢復功能,但同時具有更先進的技術特點。它的存儲容量可達到數百PB,可以實現連續備份、自動搜索磁帶,也可以在驅動管理軟體控制下實現智能恢復、實時監控和統計,整個數據存儲備份過程完全擺脫了人工干涉。

磁帶庫不僅數據存儲量大得多,而且在備份效率和人工佔用方面擁有無可比擬的優勢。在網路系統中,磁帶庫通過SAN(Storage Area Network,存儲區域網路)系統可形成網路存儲系統,為企業存儲提供有力保障,很容易完成遠程數據訪問、數據存儲備份或通過磁帶鏡像技術實現多磁帶庫備份,無疑是數據倉庫、ERP等大型網路應用的良好存儲設備。

3.存儲器設備發展之磁鼓

1953年,隨著存儲器設備發展,第一台磁鼓應用於IBM 701,它是作為內存儲器使用的。磁鼓是利用鋁鼓筒表面塗覆的磁性材料來存儲數據的。鼓筒旋轉速度很高,因此存取速度快。它採用飽和磁記錄,從固定式磁頭發展到浮動式磁頭,從採用磁膠發展到採用電鍍的連續磁介質。這些都為後來的磁碟存儲器打下了基礎。

磁鼓最大的缺點是利用率不高, 一個大圓柱體只有表面一層用於存儲,而磁碟的兩面都利用來存儲,顯然利用率要高得多。 因此,當磁碟出現後,磁鼓就被淘汰了。

4.存儲器設備發展之磁芯

美國物理學家王安1950年提出了利用磁性材料製造存儲器的思想。福雷斯特則將這一思想變成了現實。

為了實現磁芯存儲,福雷斯特需要一種物質,這種物質應該有一個非常明確的磁化閾值。他找到在新澤西生產電視機用鐵氧體變換器的一家公司的德國老陶瓷專家,利用熔化鐵礦和氧化物獲取了特定的磁性質。

對磁化有明確閾值是設計的關鍵。這種電線的網格和芯子織在電線網上,被人稱為芯子存儲,它的有關專利對發展計算機非常關鍵。這個方案可靠並且穩定。磁化相對來說是永久的,所以在系統的電源關閉後,存儲的數據仍然保留著。既然磁場能以電子的速度來閱讀,這使互動式計算有了可能。更進一步,因為是電線網格,存儲陣列的任何部分都能訪問,也就是說,不同的數據可以存儲在電線網的不同位置,並且閱讀所在位置的一束比特就能立即存取。這稱為隨機存取存儲器(RAM),在存儲器設備發展歷程中它是互動式計算的革新概念。福雷斯特把這些專利轉讓給麻省理工學院,學院每年靠這些專利收到1500萬~2000萬美元。

最先獲得這些專利許可證的是IBM,IBM最終獲得了在北美防衛軍事基地安裝「旋風」的商業合同。更重要的是,自20世紀50年代以來,所有大型和中型計算機也採用了這一系統。磁芯存儲從20世紀50年代、60年代,直至70年代初,一直是計算機主存的標准方式。

5.存儲器設備發展之磁碟

世界第一台硬碟存儲器是由IBM公司在1956年發明的,其型號為IBM 350 RAMAC(Random Access Method of Accounting and Control)。這套系統的總容量只有5MB,共使用了50個直徑為24英寸的磁碟。1968年,IBM公司提出「溫徹斯特/Winchester」技術,其要點是將高速旋轉的磁碟、磁頭及其尋道機構等全部密封在一個無塵的封閉體中,形成一個頭盤組合件(HDA),與外界環境隔絕,避免了灰塵的污染,並採用小型化輕浮力的磁頭浮動塊,碟片表面塗潤滑劑,實行接觸起停,這是現代絕大多數硬碟的原型。1979年,IBM發明了薄膜磁頭,進一步減輕了磁頭重量,使更快的存取速度、更高的存儲密度成為可能。20世紀80年代末期,IBM公司又對存儲器設備發展作出一項重大貢獻,發明了MR(Magneto Resistive)磁阻磁頭,這種磁頭在讀取數據時對信號變化相當敏感,使得碟片的存儲密度比以往提高了數十倍。1991年,IBM生產的3.5英寸硬碟使用了MR磁頭,使硬碟的容量首次達到了1GB,從此,硬碟容量開始進入了GB數量級。IBM還發明了PRML(Partial Response Maximum Likelihood)的信號讀取技術,使信號檢測的靈敏度大幅度提高,從而可以大幅度提高記錄密度。

目前,硬碟的面密度已經達到每平方英寸100Gb以上,是容量、性價比最大的一種存儲設備。因而,在計算機的外存儲設備中,還沒有一種其他的存儲設備能夠在最近幾年中對其統治地位產生挑戰。硬碟不僅用於各種計算機和伺服器中,在磁碟陣列和各種網路存儲系統中,它也是基本的存儲單元。值得注意的是,近年來微硬碟的出現和快速發展為移動存儲提供了一種較為理想的存儲介質。在快閃記憶體晶元難以承擔的大容量移動存儲領域,微硬碟可大顯身手。目前尺寸為1英寸的硬碟,存儲容量已達4GB,10GB容量的1英寸硬碟不久也會面世。微硬碟廣泛應用於數碼相機、MP3設備和各種手持電子類設備。

另一種磁碟存儲設備是軟盤,從早期的8英寸軟盤、5.25英寸軟盤到3.5英寸軟盤,主要為數據交換和小容量備份之用。其中,3.5英寸1.44MB軟盤占據計算機的標准配置地位近20年之久,之後出現過24MB、100MB、200MB的高密度過渡性軟盤和軟碟機產品。然而,由於USB介面的快閃記憶體出現,軟盤作為數據交換和小容量備份的統治地位已經動搖,不久會退出存儲器設備發展歷史舞台。

6. 存儲器設備發展之光碟

光碟主要分為只讀型光碟和讀寫型光碟。只讀型指光碟上的內容是固定的,不能寫入、修改,只能讀取其中的內容。讀寫型則允許人們對光碟內容進行修改,可以抹去原來的內容,寫入新的內容。用於微型計算機的光碟主要有CD-ROM、CD-R/W和DVD-ROM等幾種。

上世紀60年代,荷蘭飛利浦公司的研究人員開始使用激光光束進行記錄和重放信息的研究。1972年,他們的研究獲得了成功,1978年投放市場。最初的產品就是大家所熟知的激光視盤(LD,Laser Vision Disc)系統。

從LD的誕生至計算機用的CD-ROM,經歷了三個階段,即LD-激光視盤、CD-DA激光唱盤、CD-ROM。下面簡單介紹這三個存儲器設備發展階段性的產品特點。

LD-激光視盤,就是通常所說的LCD,直徑較大,為12英寸,兩面都可以記錄信息,但是它記錄的信號是模擬信號。模擬信號的處理機制是指,模擬的電視圖像信號和模擬的聲音信號都要經過FM(Frequency Molation)頻率調制、線性疊加,然後進行限幅放大。限幅後的信號以0.5微米寬的凹坑長短來表示。

CD-DA激光唱盤 LD雖然取得了成功,但由於事先沒有制定統一的標准,使它的開發和製作一開始就陷入昂貴的資金投入中。1982年,由飛利浦公司和索尼公司制定了CD-DA激光唱盤的紅皮書(Red Book)標准。由此,一種新型的激光唱盤誕生了。CD-DA激光唱盤記錄音響的方法與LD系統不同,CD-DA激光唱盤系統首先把模擬的音響信號進行PCM(脈沖編碼調制)數字化處理,再經過EMF(8~14位調制)編碼之後記錄到盤上。數字記錄代替模擬記錄的好處是,對干擾和雜訊不敏感,由於盤本身的缺陷、劃傷或沾污而引起的錯誤可以校正。

CD-DA系統取得成功以後,使飛利浦公司和索尼公司很自然地想到利用CD-DA作為計算機的大容量只讀存儲器。但要把CD-DA作為計算機的存儲器,還必須解決兩個重要問題,即建立適合於計算機讀寫的盤的數據結構,以及CD-DA誤碼率必須從現有的10-9降低到10-12以下,由此就產生了CD-ROM的黃皮書(Yellow Book)標准。這個標準的核心思想是,盤上的數據以數據塊的形式來組織,每塊都要有地址,這樣一來,盤上的數據就能從幾百兆位元組的存儲空間上被迅速找到。為了降低誤碼率,採用增加一種錯誤檢測和錯誤校正的方案。錯誤檢測採用了循環冗餘檢測碼,即所謂CRC,錯誤校正採用里德-索洛蒙(Reed Solomon)碼。黃皮書確立了CD-ROM的物理結構,而為了使其能在計算機上完全兼容,後來又制定了CD-ROM的文件系統標准,即ISO 9660。

在上世紀80年代中期,光碟存儲器設備發展速度非常快,先後推出了WORM光碟、磁光碟(MO)、相變光碟(Phase Change Disk,PCD)等新品種。20世紀90年代,DVD-ROM、CD-R、CD-R/W等開始出現和普及,目前已成為計算機的標准存儲設備。

光碟技術進一步向高密度發展,藍光光碟是不久將推出的下一代高密度光碟。多層多階光碟和全息存儲光碟正在實驗室研究之中,可望在5年之內推向市場。

7.存儲器設備發展之納米存儲

納米是一種長度單位,符號為nm。1納米=1毫微米,約為10個原子的長度。假設一根頭發的直徑為0.05毫米,把它徑向平均剖成5萬根,每根的厚度即約為1納米。與納米存儲有關的主要進展有如下內容。

1998年,美國明尼蘇達大學和普林斯頓大學制備成功量子磁碟,這種磁碟是由磁性納米棒組成的納米陣列體系。一個量子磁碟相當於我們現在的10萬~100萬個磁碟,而能源消耗卻降低了1萬倍。

1988年,法國人首先發現了巨磁電阻效應,到1997年,採用巨磁電阻原理的納米結構器件已在美國問世,它在磁存儲、磁記憶和計算機讀寫磁頭等方面均有廣闊的應用前景。

2002年9月,美國威斯康星州大學的科研小組宣布,他們在室溫條件下通過操縱單個原子,研製出原子級的硅記憶材料,其存儲信息的密度是目前光碟的100萬倍。這是納米存儲材料技術研究的一大進展。該小組發表在《納米技術》雜志上的研究報告稱,新的記憶材料構建在硅材料表面上。研究人員首先使金元素在硅材料表面升華,形成精確的原子軌道;然後再使硅元素升華,使其按上述原子軌道進行排列;最後,藉助於掃瞄隧道顯微鏡的探針,從這些排列整齊的硅原子中間隔抽出硅原子,被抽空的部分代表「0」,餘下的硅原子則代表「1」,這就形成了相當於計算機晶體管功能的原子級記憶材料。整個試驗研究在室溫條件下進行。研究小組負責人赫姆薩爾教授說,在室溫條件下,一次操縱一批原子進行排列並不容易。更為重要的是,記憶材料中硅原子排列線內的間隔是一個原子大小。這保證了記憶材料的原子級水平。赫姆薩爾教授說,新的硅記憶材料與目前硅存儲材料存儲功能相同,而不同之處在於,前者為原子級體積,利用其製造的計算機存儲材料體積更小、密度更大。這可使未來計算機微型化,且存儲信息的功能更為強大。

以上就是本文向大家介紹的存儲器設備發展歷程的7個關鍵時期