『壹』 在存儲管理中,地址重i定位的目的是什麼
源程序時,由於程序沒有裝入內存,沒有地址,因此使用變數名替代地址。如上圖所示,load a data1指令是將data1中的3456送寄存器a。
當編譯鏈接後生產目標代碼,此時,程序仍然沒有裝入內存,沒有地址。而目標代碼中無法再使用變數。編譯器生成邏輯地址,以程序頭為0地址進行編址。
在程序運行時,程序裝入內存,但由於地胡檔址為0的舉清地方被操作系統使用。程序中的邏輯地址與實際褲答亂的物理地址不一致。而地址重定位就是將程序中的邏輯地址調整為物理地址。
『貳』 內存管理
在一段時間內,程序的執行僅限於某個部分,相應地,它所訪問的存儲空間也局限於某個區域。
局部性原理的 分類 :
將編譯後的目標模塊裝配成一個可執行程序。
可執行程序以 二進制可執行文件 的形式存儲在磁碟上。
鏈接程序的 任務 :
程序的鏈接,可劃分為:
重定位 :將邏輯地址(相對地址)轉換為物理地址(絕對地址)的過程。
物理地址 = 邏輯地址 + 程序在內存中的起始地址
程序的裝入,可劃分為:
任何時刻主存儲器 最多隻有一個作業 。
每個分區 大小固定不變 :分區大小相等、分區大小不等。
每個分區可以且 僅可以裝入一個作業 。
使用 下限寄存器 和 上限寄存器 來保存當前作業的起始位置和結束位置。
使用 固定分區說明表 區分各分區的狀態。
分區 大小不是預先固定的 ,而是按作業(進程)的實際需求來劃分的。
分區 個數也不是預先固定的 ,而是由裝入的作業數決定的。
使用 空閑分區表 說明空閑分區的位置。
使用 空閑分區鏈 說明空閑分區的位置。
首次適應演算法的 過程 :
外部碎片:空閑內存 沒有在 分配的 進程 中。
內部碎片:空閑內存 在 分配的 進程 中。
從 上次找到的 空閑分區的 下一個 空閑分區開始查找。
優點:空閑區分布均勻、查找開銷較小。
缺點:缺乏大空閑區。
最佳適應演算法的 過程 :
優點:提高內存利用率。
注意點:每次在進行空閑區的修改前,需要先進行 分區大小遞增 的排序。
頁 :將一個 進程 的 邏輯地址空間 分成若干個 大小相等 的 片 。
頁框 :將 物理內存空間 分成與頁大小相同的若干個 存儲塊 。
分頁存儲 :將進程的若干 頁 分別裝入多個 可以不相鄰 的 頁框 中。
頁內碎片 :進程 最後一頁 一般裝不滿一個頁框,形成 頁內碎片 。
頁表 :記錄描述頁的各種數據,實現從 頁號 到 頁框號 的映射。
注意: 頁內偏移量 的單位是 位元組 。
分頁地址變換指是: 邏輯地址 通過 地址變換機構 變換為 物理地址 。
分頁地址變換的 過程 :
操作系統在修改或裝入頁表寄存器的值時,使用的是 特權級 指令。
頁大小:512B ~ 4KB,目前的計算機系統中,大多選擇 4KB 大小的頁。
頁大小的 選擇因素 :
快表也稱為「轉換後援緩沖」,是為了提高CPU訪問速度而採用的專用緩存,用來存放 最近被訪問過的頁表項 。
英文縮寫:TLB。
組成: 鍵和值 。
在TLB中找到某一個頁號對應的頁表項的百分比稱為 TLB命中率 。
當 能 在TLB中找到所需要的頁表項時:
有效訪問時間 = 一次訪問TLB 的時間 + 一次訪問內存 的時間(訪問內存讀寫數據或指令)
當 不能 在TLB中找到所需要的頁表項時:
有效訪問時間 = 一次訪問TLB 的時間 + 兩次訪問內存 的時間(一次訪問內存頁表,一次訪問內存讀寫數據或指令)
將頁表再分頁,形成兩級或多級頁表,將頁表離散地存放在物理內存中。
在進程切換時,要運行的進程的頁目錄表歧視地址被寫入 頁表寄存器 。
在二級分頁系統中,為頁表再建立一個頁目錄表的目的是為了能在地址映射時得到頁表在物理內存中的地址,在頁目錄表的表項中存放了每一個 頁表 在物理內存中所在的 頁框號 。
虛擬存儲器 :是指具有 請求調入功能 和 置換功能 ,能 從邏輯上對內存容量進行擴充 的一種存儲系統。
請求調入 :就是說,先將進程一部分裝入內存,其餘的部分什麼時候需要,什麼時候請求系統裝入。
置換 :如果請求調入時,沒有足夠的內存,則由操作系統選擇一部分內存中的進程內容移到外存,以騰出空間把當前需要裝入的內存調入。
為了實現請求分頁,需要:
保證進程正常運行的所需要的最小頁框數。
最小頁框數與進程的大小沒有關系,它與計算機的 硬體結構 有關,取決於 指令的格式、功能和定址方式 。
內存不夠時,從進程本身選擇淘汰頁,還是從系統中所有進程中選擇?:
採用什麼樣的演算法為不同進程分配頁框?:
常用的兩種 置換策略 : 局部置換 和 全局置換 。
從分配給進程的頁框數量上看,常使用的兩種 分配策略 : 固定分配 和 可變分配 。
用新調入的頁替換 最長時間沒有訪問 的頁面。
找到 未來最晚被訪問 的那個頁換出。
,P為缺頁率。
有效訪問時間與缺頁率成 正比 ,缺頁率越高,有效訪問時間越長,訪問效率越低。
工作集 :某段時間間隔里,進程實際要訪問的頁的集合。
引入工作集的 目的 :降低缺頁率,提高訪問內存效率。
抖動 :運行進程的大部分時間都用於頁的換入換出,幾乎不能完成任何有效果工作的狀態。
抖動的 產生原因 :
抖動的 預防方法 :
在分段存儲管理的系統中,程序使用 二維 的邏輯地址,一個數用來表示 段 ,另一個數用來表示 段內偏移量 。
引入分段的 目的 :
引入分段的 優點 :
進程的地址空間被劃分成 若干個段 。
每個段定義了一組邏輯信息,每個段的大小由相應的邏輯信息組的長度確定, 段的大小不一樣 ,每個段的邏輯地址從0開始,採用一段 連續的地址空間 。
系統為每個段分配一個 連續的物理內存區域 ,各個 不同的段可以離散 地放入物理內存不同的區域。
系統為 每個進程建立一張段表 ,段表的每一個表項記錄的信息包括: 段號、段長和該段的基址 ,段表存放在內存中。
分段的 邏輯地址結構 :
段表是由操作系統維護的用於支持分段存儲管理 地址映射 的數據結構。
每個進程有一個段表,段表由段表項構成。每個段表項包括: 段號、段長(段的大小)和該段的基址(段的起始地址) 。
若已知邏輯單元的地址為 S:D (段號:段內偏移量),求相應物理地址的步驟如下:
相同點 :分頁和分段都屬於 離散 分配方式,都要通過數據結構與硬體的配合來實現 邏輯地址到物理地址 的映射。
不同點 :
將用戶進程的邏輯空間 先劃分為若干個段 , 每個段再劃分成若干個頁 。
進程以頁為單位在物理內存中 離散 存放,每個段中被離散存放的頁具有 邏輯相關性 。
為了實現地址映射,操作系統為 每個進程建立一個段表 ,再為 每個段建立一個頁表 。
進程段表的段表項組成:
滿足以下條件的兩個塊稱為 夥伴 :
『叄』 基本分頁存儲管理
假設是按位元組編址
考慮支持多道程序的兩種連續分配方式
原因:連續分配要求進程佔有的必須是一塊連續的內存區域
能否講一個進程分散地裝入到許多不相鄰的分區,便可充分利用內存
基本分頁存儲管理的思想:把內存分為一個個相等的小分區,再按照分區大小把進程拆分成一個個小部分
頁框/頁幀:內存空間分成的一個個大小相等的分區(比如4KB)
頁框號:頁框的編號,從0開始,從低地址開始
頁/頁面:用戶進程的地址空間分為和頁框大小相等的一個個區域
頁號:頁/頁面的編號,從0開始
進程的最後一個頁面可能沒有一個頁框那麼大,頁框不能太大,否則可能產生過大的內部碎片
操作系統以頁框為單位為各個進程分配內存空間。進程的每個頁面分別放入一個頁框中,也就是說,進程的頁面與內存的頁框有一一對應的關系
每個頁面不必連續存放,也不必按照先後順序,可以放到不相鄰的各個頁框中
進程在內存中連續存放時,通過動態重定位實現邏輯地址到物理地址的轉換。在裝入模塊之後,內存中指令使用的依然是邏輯地址,直到指令執行的時候才會進行地址轉換。系統會設置一個重定位寄存器,用來存放裝入模塊存放的起始位置,重定位寄存器中的值加上邏輯地址就是該邏輯地址實際對應的物理地址
如果採用分頁技術
頁框大小為4KB,地址空間為4GB的系統
頁號為前20位,頁內偏移量為後12位
頁表:為了能知道進程的每個頁面在內存中存放的位置,操作系統要為每個進程建立一張頁表
一個進程對應一張頁表
進程的每一頁對應一個頁表項
每個頁表項由頁號和頁框號組成
頁表記錄進程頁面和實際存放的頁框之間的對應關系
每個頁表項的長度是相同的,頁號是隱含的
各頁表項會按順序連續存放在內存中,如果該頁表在內存中的起始地址是X,4GB/4KB系統的頁框有
用於實現邏輯地址到物理地址轉換的一組硬體機構
通常會在系統中設置一個頁表寄存器(PTR),存放頁表在內存中的起始地址F和頁表長度M(M個頁表項)
進程未執行時,頁表的起始地址和頁表長度放在進程式控制制塊(PCB)中,當進程被調度時,操作系統內核會把他們放到頁表寄存器中
基本分頁存儲管理中地址是一維的,即只要給出一個邏輯地址,系統就可以自動計算出頁號、偏移量,不需要顯式告訴系統偏移量是多少
理論上,頁表項長度為3即可表示內存塊號的范圍,但是為了方便頁表查詢,會讓頁面恰好能裝得下整數個頁表項,令每個頁表項佔4位元組
4KB頁面,可以放4096/3 =1365個頁表項,有4096%3 =1B的碎片,訪問1365及之後的頁表項時,還要考慮前面的頁框中的碎片,才能得到頁表項的物理地址,比較麻煩
進程頁表通常存放在連續的頁框中,這樣就能用統一的計算方式得到想要得到的頁表項存儲的位置
地址變換過程中有兩次訪存操作:查詢頁表、訪問目標內存單元
局部性原理
如果這個程序將程序對應的指令存放在10號內存塊,將程序中定義的變數存放在23號內存塊,當這個程序執行時,會很頻繁地反問10、23號內存塊
時間局部性:如果執行了程序中的某條指令,那麼不久後這條指令很有可能被再次執行;如果某個數據被訪問過,不久之後該數據很有可能再次被訪問(因為程序存在大量循環)
空間局部性:一旦程序訪問了某個存儲單元,在不久之後,其附近的存儲單元也很有可能被訪問(因為很多數據在內存中連續存放)
基本地址變換機構中,每次要訪問一個邏輯地址,都要查詢頁表,由於局部性原理,可能連續多次查詢同一個頁表項
快表:又稱聯想寄存器(TLB),是一種訪問速度比內存塊很多的高速緩存,用來存放當前訪問的若干頁表項,以加速地址變換的過程。內存中的頁表常稱為慢表
引入快表後地址的變換過程
一般來說,快表的命中率可以達到90%以上
單級頁表存在的問題
對問題1
可將頁表進行分組,使每個內存塊剛好可以放入一個分組。為離散分配的頁表再建立一張頁表,稱為頁目錄表,或外層頁表
各級頁表的大小不能超過一個頁面
針對兩級頁表
對問題2
可以在需要訪問頁面時,才把頁面調入內存(虛擬存儲技術),可以在頁表項中增加一個標志位,用於表示該頁面是否已經調入內存
若想訪問的頁面不在內存中,會產生缺頁中斷(內中斷),然後將目標頁面從外存調入內存
之後的文章會有展開
兩級頁表訪存次數分析:如果沒有TLB,第一次訪存是訪問內存中的頁目錄表,第二次訪存是訪問內存中的二級頁表,第三次訪存是訪問目標內存單元
『肆』 分區存儲管理中常用哪些分配策略
1、固定分區存儲管理
其基本思想是將內存劃分成若干固定大小的分區,每個分區中最多隻能裝入一個作業。當作業申請內存時,系統按一定的演算法為其選擇一個適當的分區,並裝入內存運行。由於分區大小是事先固定的,因而可容納作業的大小受到限制,而且當用戶作業的地址空間小於分區的存儲空間時,造成存儲空間浪費。
一、空間的分配與回收
系統設置一張「分區分配表」來描述各分區的使用情況,登記的內容應包括:分區號、起始地址、長度和佔用標志。其中佔用標志為「0」時,表示目前該分區空閑;否則登記佔用作業名(或作業號)。有了「分區分配表」,空間分配與回收工作是比較簡單的。
二、地址轉換和存儲保護
固定分區管理可以採用靜態重定位方式進行地址映射。
為了實現存儲保護,處理器設置了一對「下限寄存器」和「上限寄存器」。當一個已經被裝入主存儲器的作業能夠得到處理器運行時,進程調度應記錄當前運行作業所在的分區號,且把該分區的下限地址和上限地址分別送入下限寄存器和上限寄存器中。處理器執行該作業的指令時必須核對其要訪問的絕對地址是否越界。
三、多作業隊列的固定分區管理
為避免小作業被分配到大的分區中造成空間的浪費,可採用多作業隊列的方法。即系統按分區數設置多個作業隊列,將作業按其大小排到不同的隊列中,一個隊列對應某一個分區,以提高內存利用率。
2、可變分區存儲管理
可變分區存儲管理不是預先將內存劃分分區,而是在作業裝入內存時建立分區,使分區的大小正好與作業要求的存儲空間相等。這種處理方式使內存分配有較大的靈活性,也提高了內存利用率。但是隨著對內存不斷地分配、釋放操作會引起存儲碎片的產生。
一、空間的分配與回收
採用可變分區存儲管理,系統中的分區個數與分區的大小都在不斷地變化,系統利用「空閑區表」來管理內存中的空閑分區,其中登記空閑區的起始地址、長度和狀態。當有作業要進入內存時,在「空閑區表」中查找狀態為「未分配」且長度大於或等於作業的空閑分區分配給作業,並做適當調整;當一個作業運行完成時,應將該作業佔用的空間作為空閑區歸還給系統。
可以採用首先適應演算法、最佳(優)適應演算法和最壞適應演算法三種分配策略之一進行內存分配。
二、地址轉換和存儲保護
可變分區存儲管理一般採用動態重定位的方式,為實現地址重定位和存儲保護,系統設置相應的硬體:基址/限長寄存器(或上界/下界寄存器)、加法器、比較線路等。
基址寄存器用來存放程序在內存的起始地址,限長寄存器用來存放程序的長度。處理機在執行時,用程序中的相對地址加上基址寄存器中的基地址,形成一個絕對地址,並將相對地址與限長寄存器進行計算比較,檢查是否發生地址越界。
三、存儲碎片與程序的移動
所謂碎片是指內存中出現的一些零散的小空閑區域。由於碎片都很小,無法再利用。如果內存中碎片很多,將會造成嚴重的存儲資源浪費。解決碎片的方法是移動所有的佔用區域,使所有的空閑區合並成一片連續區域,這一技術稱為移動技術(緊湊技術)。移動技術除了可解決碎片問題還使內存中的作業進行擴充。顯然,移動帶來系統開銷加大,並且當一個作業如果正與外設進行I/O時,該作業是無法移動的。
3、頁式存儲管理
基本原理
1.等分內存
頁式存儲管理將內存空間劃分成等長的若干區域,每個區域的大小一般取2的整數冪,稱為一個物理頁面有時稱為塊。內存的所有物理頁面從0開始編號,稱作物理頁號。
2.邏輯地址
系統將程序的邏輯空間按照同樣大小也劃分成若干頁面,稱為邏輯頁面也稱為頁。程序的各個邏輯頁面從0開始依次編號,稱作邏輯頁號或相對頁號。每個頁面內從0開始編址,稱為頁內地址。程序中的邏輯地址由兩部分組成:
邏輯地址
頁號p
頁內地址 d
3.內存分配
系統可用一張「位示圖」來登記內存中各塊的分配情況,存儲分配時以頁面(塊)為單位,並按程序的頁數多少進行分配。相鄰的頁面在內存中不一定相鄰,即分配給程序的內存塊之間不一定連續。
對程序地址空間的分頁是系統自動進行的,即對用戶是透明的。由於頁面尺寸為2的整數次冪,故相對地址中的高位部分即為頁號,低位部分為頁內地址。
3.5.2實現原理
1.頁表
系統為每個進程建立一張頁表,用於記錄進程邏輯頁面與內存物理頁面之間的對應關系。地址空間有多少頁,該頁表裡就登記多少行,且按邏輯頁的順序排列,形如:
邏輯頁號
主存塊號
0
B0
1
B1
2
B2
3
B3
2.地址映射過程
頁式存儲管理採用動態重定位,即在程序的執行過程中完成地址轉換。處理器每執行一條指令,就將指令中的邏輯地址(p,d)取來從中得到邏輯頁號(p),硬體機構按此頁號查頁表,得到內存的塊號B』,便形成絕對地址(B』,d),處理器即按此地址訪問主存。
3.頁面的共享與保護
當多個不同進程中需要有相同頁面信息時,可以在主存中只保留一個副本,只要讓這些進程各自的有關項中指向內存同一塊號即可。同時在頁表中設置相應的「存取許可權」,對不同進程的訪問許可權進行各種必要的限制。
4、段式存儲管理
基本原理
1.邏輯地址空間
程序按邏輯上有完整意義的段來劃分,稱為邏輯段。例如主程序、子程序、數據等都可各成一段。將一個程序的所有邏輯段從0開始編號,稱為段號。每一個邏輯段都是從0開始編址,稱為段內地址。
2.邏輯地址
程序中的邏輯地址由段號和段內地址(s,d)兩部分組成。
3.內存分配
系統不進行預先劃分,而是以段為單位進行內存分配,為每一個邏輯段分配一個連續的內存區(物理段)。邏輯上連續的段在內存不一定連續存放。
3.6.2實現方法
1.段表
系統為每個進程建立一張段表,用於記錄進程的邏輯段與內存物理段之間的對應關系,至少應包括邏輯段號、物理段首地址和該段長度三項內容。
2.建立空閑區表
系統中設立一張內存空閑區表,記錄內存中空閑區域情況,用於段的分配和回收內存。
3.地址映射過程
段式存儲管理採用動態重定位,處理器每執行一條指令,就將指令中的邏輯地址(s,d)取來從中得到邏輯段號(s),硬體機構按此段號查段表,得到該段在內存的首地址S』, 該段在內存的首地址S』加上段內地址d,便形成絕對地址(S』+d),處理器即按此地址訪問主存。
5、段頁式存儲管理
頁式存儲管理的特徵是等分內存,解決了碎片問題;段式存儲管理的特徵是邏輯分段,便於實現共享。為了保持頁式和段式上的優點,結合兩種存儲管理方案,形成了段頁式存儲管理。
段頁式存儲管理的基本思想是:把內存劃分為大小相等的頁面;將程序按其邏輯關系劃分為若干段;再按照頁面的大小,把每一段劃分成若干頁面。程序的邏輯地址由三部分組成,形式如下:
邏輯地址
段號s
頁號p
頁內地址d
內存是以頁為基本單位分配給每個程序的,在邏輯上相鄰的頁面內存不一定相鄰。
系統為每個進程建立一張段表,為進程的每一段各建立一張頁表。地址轉換過程,要經過查段表、頁表後才能得到最終的物理地址。
『伍』 操作系統中 存儲器對什麼進行管理
存儲管理即是對主存的管理,它是操作系統的重要功能之一。主存儲器是計算機系統中的一種寶貴資源,對主存的管理和有效使用是操作系統中十分重要的內容。為了便於對主存進行有效的管理,應該將主存分成若干個區域,以便同時存放多個用戶程序和系統軟體。因此,存儲管理應具有如下功能:主存的分配和回收、提高主存的利用率、「擴充」主存容量和存儲保護。存儲分配主要解決多道作業之間劃分主存空間的問題,存儲分配有三種主要方式:直接分配方式、靜態分配方式和動態分配方式。絕大多數計算機系統都採用靜態分配方式或動態分配方式。為了實現靜態和動態兩種存儲分配策略,需要採用將邏輯地址與物理地址分開,並對邏輯地址實施地址重定位技術。所謂重定位是由於一個作業裝入到與其地址空間不一致的存儲空間時所引起的有關地址調整過程,實質上,這是一個地址變換過程,地址變換也稱為地址映射。根據地址變換進行的時間及採用的技術手段不同,可以把重定位分為兩類:靜態重定位和動態重定位。所謂靜態重定位是在程序運行之前,由鏈接裝配程序進行的重定位。靜態重定位的特點是無需增加硬體地址變換機構,但要求為每個程序分配一個連續的存儲區,且在程序執行期間不能移動,故難於做到程序和數據的共享;動態重定位是在程序的執行過程中,每當訪問到指令或數據時,將要訪問的程序或數據的邏輯地址轉換成物理地址。動態重定位的實現需要依靠硬體地址變換機構。最簡單的實現方法是利用一個重定位寄存器。動態重定位的特點是需要附加硬體的支持,優點是可以將程序分配到不連續的存儲區中,在程序運行之前可以只裝入部分代碼即可運行,然後在程序運行期間,根據需要動態地申請分配內存,所以,便以程序段的共享,並且可向用戶提供一個比主存的存儲空間大得多的地址空間,該地址空間也稱為虛擬存儲器。
『陸』 存儲管理的目的
存儲管理的目的如下:
1、確保計算機有足夠的內存處理數據。
2、確保程序可以從可用內存中獲取一部分內存使用。
3、確保程序可以歸還使用後的內存以供其他程序使用。
存儲器管理
存儲器管理的對象是主存,也稱內存。它的主要功能包括分配和回收主存空間、提高主存利用率、擴充主存、對主存信息實現有效保護。存儲管理方案的主要目的是解決多個用戶使用主存的問題。
其存返世儲管理方案主要包括分區存儲管理、分頁存儲管理、分段存儲管理、段頁式存儲管理以及虛擬存儲管理。分區存儲管理又有三種不同的方式:靜態分區、可變分區、可重定位分區 。靜態分區存儲管理是預先把可分配的主存儲器空間分割成若干個連禪世友續區域。
每個區域的大小可以相同,也可以不同。為了說明各分區的分配和使用情況,存儲管理需設置一張「主存分配表」。主存分配表指出各分區的起始地址和長度,表中的佔用標志位用來指示該分區是否被佔用了,當佔用的標志位為「0」時,表示該分區尚未被佔用。
進行主存分配時總是選擇那些標志為「0」的分區,當某一賀槐分區分配給一個作業後,則在佔用標志欄填上佔用該分區的作業名。採用靜態分區存儲管理,主存空間的利用不高。
『柒』 重定位寄存器主要用於哪種存儲管理方式
段頁式存儲管理方式。重定位胡喚寄存器的儲存方式與其他的儲存方式不同,它屬於段頁式存儲管理方式,使儲存的文件更佳御舉的安全鎮做碧可靠。
『捌』 (存儲管理)01.分頁式存儲管理
將內存劃分為若干個大小相等的分區,叫做塊;將邏輯空間劃分出與塊大小一致的分區,叫做頁。作業運行時,通過地址重定位技術,實現頁與塊的對應。這樣就以頁的方式來管理存儲塊,就叫分頁式存儲管理。
在分配存儲塊時,會根據作業的邏輯地址的大小計算所需要多少個存儲塊,然後查找空閑塊並更新空閑塊的狀態為佔用;回收存儲塊時,會將作業關聯的所有空閑塊的狀態設置為空閑。記錄空閑塊狀態的方法有兩種:點陣圖法和鏈表法。
在分配存儲塊之後,就在頁表中,增加頁和塊對應關系的記錄;同理,回收存儲塊時,就會刪除對應記錄。
訪問存儲塊時,就會根據邏輯地址的頁號,在頁表找到對應的塊號,然後再通過塊號計算出物理地址,找到對應的存儲塊。如下圖:
補充
頁表:記錄頁號與塊號對應關系的表,包含頁號和塊號兩個欄位。
邏輯地址:由 「頁號」 和 「頁內地址」 組成。其中頁內地址是通過頁大小來決定。
例如:邏輯地址長度為 16 位,頁大小是 1kb (二的十次冪),那麼頁內地址占低十位,高六位是頁號。如下:
在重定位存儲塊時,需要訪問頁表。為了加快重定位,就會通過快表(聯想存儲器,記錄常用的頁號和塊號的對應關系)來快速通過頁號找到對應的塊號。但是如果不能通過快表找到對應的塊號,那麼就會按照查找頁表的方式來完成重定位。
『玖』 在存儲器管理中,經常使用哪一種數據結構管理內存的使用情況
使用靜態重定位數據結構管理內存。
又稱可重定位裝入。編譯鏈接後的裝入模塊的地址都是從0開始的,指令中使用的地址、數據存放的地址都是相對於起始地址而言的邏輯地址。
內存是用於存放數據的硬體,程序執行前需要先放到內存中才能被CPU處理。