當前位置:首頁 » 服務存儲 » 磁表面存儲器的讀寫原理是什麼
擴展閱讀
webinf下怎麼引入js 2023-08-31 21:54:13
堡壘機怎麼打開web 2023-08-31 21:54:11

磁表面存儲器的讀寫原理是什麼

發布時間: 2023-05-14 01:17:36

1. 為什麼設置磁表面存儲器的六種記錄方式,以及它們的不同

、所謂磁表面存儲,是用某些磁性材料薄薄地塗在金屬鋁或塑料表面作載磁體來存儲信息。
在磁表面存儲器中,利用一種稱為磁頭的裝置來形成和判別磁層中的不同磁化狀態。磁頭實際上是由軟磁材料做鐵芯繞有讀寫線圈的電磁鐵。
寫操作:當寫線圈中通過一定方向的脈沖電流時,鐵芯內就產生一定方向的磁通。
讀操作:當磁頭經過載磁體的磁化元時,由於磁頭鐵芯是良好的導磁材料,磁化元的磁力線很容易通過磁頭而形成閉合磁通迴路。不同極性的磁化元在鐵芯里的方向是不同的。
通過電磁變換,利用磁頭寫線圈中的脈沖電流,可把一位二進制代碼轉換成載磁體存儲元的不同剩磁狀態;反之,通過磁電變換,利用磁頭讀出線圈,可將由存儲元的不同剩磁狀態表示的二進制代碼轉換成電信號輸出。這就是磁表面存儲器存取信息的原理。
磁層上的存儲元被磁化後,它可以供多次讀出而不被破壞。當不需要這批信息時,可通過磁頭把磁層上所記錄的信息全部抹去,稱之為寫「0」。通常,寫入和讀出是合用一個磁頭,故稱之為讀寫磁頭。每個讀寫磁頭對應著一個信息記錄磁軌。
磁表面存儲器的優點:
①存儲容量大,位價格低;
②記錄介質可以重復使用;
③記錄信息可以長期保存而不丟失,甚至可以離線存檔;
④非破壞性讀出,讀出時不需要再生信息。
磁表面存儲器的缺點
存取速度較慢,機械結構復雜,對工作環境要求較高。
2、光碟存儲器是一種採用光存儲技術存儲信息的存儲器,它採用聚焦激光束在盤式介質上非接觸地記錄高密度信息,以介質材料的光學性質(如反射率、偏振方向)的變化來表示所存儲信息的「1」或「0」

2. 外存儲器-磁表面存儲器

磁碟是依靠由一個個同心圓組成的磁軌上的具有不同磁化方向的磁化元來存儲0、1信息的。對這些磁化元的讀寫是通過一個磁頭來進行的。磁頭是由磁性材料製作而成,形狀如同一個矩形環,靠近磁軌方向上開有一個小間隙,在磁頭上還分別繞有一組寫線圈和讀線圈。磁頭在對一個磁軌進行讀寫操作時,磁頭固定不動,而磁軌運動。如圖所示。

進碧孫核行寫操作時,在寫線圈中通過一定方向的脈沖電流時,磁鐵芯內就產生一定方向的磁通,並在磁頭間隙處產生很強的磁場。 在這個磁場作用下,位於磁頭下的磁軌上的某個固定單元就被磁化成相應極性的磁化元。每個磁化元記錄一位二進制位,當磁碟相對於磁頭運動時,就可以連續寫入一連串的二進制信息。

進行讀操作時,經過磁頭的磁化元會使磁鐵芯內產生磁通的變化,從而使讀線圈中產生一定的感應電勢,經轉換變成一定方向的脈沖電流,由此脈沖電流即可判定所讀出的是0還是1。

傳統的磁碟是將讀和寫操作共用一個磁頭完成,而新一代的硬碟系統則採用了不同的讀寫機制,它將讀寫操作分別在兩個不同的磁頭上完成,寫機制與傳統方式相同,而讀機制則有所不同。讀磁頭是由一個磁阻(magnetoresistive,MR)式感應器組成,MR的電阻大小取決於在它下面運動的介質的磁化方向。讓電流通過MR感應器,電阻的變化作為電壓信號被檢測出來,從而檢測出讀出的是0還是1。採用這種新的讀機制,允許有更高的讀操作頻度,從而使磁碟可以達到更高的存儲密度和讀操作速度。

題型:

假設某硬碟由5個盤悔掘片構成(共有8個記錄面),盤面有效記錄區域的外直徑為凱搜30cm, 內直徑為10cm,記錄位密度為250位/mm,磁軌密度為16道/mm,每磁軌分16個扇區,每扇區512位元組,則該硬碟的格式化容量約為 __B__ MB。

3. 磁表面存儲器讀寫原理的介紹

磁表面存儲器是目前使用最廣泛的外存儲器。所謂磁表面存儲,是用某些磁性材料薄薄地塗在金屬鋁或塑料表面作載磁體來存儲信息。根據記錄載體的外形,磁表面存儲器有磁鼓、磁帶、磁碟、磁卡等。而在計算機系統中廣泛使用的是磁碟和磁帶;特別是磁碟,幾乎是稍具規模系統的基本配置。為了寫入不同的信息,磁化電流按一定編碼方法呈變化波形,隨時間而變。在寫入或讀出過程中,記錄介質與磁頭之間相對運動,一般是記錄介質運動而磁頭不動。對此,採用分解的方法進行分析,不同時刻的電流變化、磁化狀態、留下的剩磁狀況、讀出時的感應電勢等。

4. 磁帶存儲器的讀寫原理

在磁帶存儲器中,利用一種稱為磁頭的裝置來形成和判別磁層中的不同磁化狀態。磁頭實際上是由軟磁材料做鐵芯繞有讀寫線圈的電磁鐵 當磁頭經過載磁體的磁化元時,由於磁頭鐵芯是良好的導磁材料,磁化元的磁力線很容易通過磁頭而形成閉合磁通迴路。不同極性的磁化元在鐵芯里的方向是不同的。當磁頭對載磁體作相對運動時,由於磁頭鐵芯中磁通的變化,使讀出線圈中感應出相應的電動勢e。負號表示感應電勢的方向與磁通的變化方向相反。不同的磁化狀態,所產生的感應電勢方向不同。這樣,不同方向的感應電勢經讀出放大器放大鑒別,就可判知讀出的信息是1還是0。

5. 各種存儲器的工作原理是什麼

1.按用途分類 ⑴內部存儲器 內部存儲器又叫內存,是主存儲器。用來存儲當前正在使用的或經常使用的程序和數據。CPU可以對他直接訪問,存取速度較快。 ⑵外部存儲器 外部存儲器又叫外存,是輔助寄存器。外存的特點是容量大,所存的信息既可以修改也可以保存。存取速度較慢,要用專用的設備來管理。 計算機工作時,一般由內存ROM中的引導程序啟動程序,再從外存中讀取系統程序和應用程序,送到內存的RAM中,程序運行的中間結果放在RAM中,(內存不夠是也可以放在外存中)程序的最終結果存入外部存儲器。
2.按存儲器的性質分類 ⑴RAM隨機存取存儲器(Random Access Memory) CPU根據RAM的地址將數據隨機的寫入或讀出。電源切斷後,所存數據全部丟失。按照集成電路內部結構不同,RAM又分為兩類: ①SRAM靜態RAM(Static RAM) 靜態RAM速度非常快,只要電源存在內容就不會消失。但他的基本存儲電路是由6個MOS管組成1位。集成度較低,功耗也較大。一般高速緩沖存儲器(Cache memory)用它組成。 ②DRAM動態RAM(Dynamic RAM) DRAM內容在 或 秒之後自動消失,因此必須周期性的在內容消失之前進行刷新(Refresh)。由於他的基本存儲電路由一個晶體管及一個電容組成,因此他的集成成本較低,另外耗電也少,但是需要刷新電路。⑵ROM只讀存儲器(Read Only Memory) ROM存儲器將程序及數據固化在晶元中,數據只能讀出不能寫入。電源關掉,數據也不會丟失。ROM按集成電路的內部結構可以分為:①PROM可編程ROM(Programable ROM )將設計的程序固化進去,ROM內容不可更改。②EPROM可擦除、可編程(Erasable PROM)可編程固化程序,且在程序固化後可通過紫外線光照擦除,以便重新固化新數據。③EEPROM電可擦除可編程(Electrically Erasable PROM) 可編程固化程序,並可利用電壓來擦除晶元內容,以便重新固化新數據。 3、按存儲介質分
(1)半導體存儲器。 存儲元件由半導體器件組成的叫半導體存儲器。其優點是體積小、功耗低、存取時間短。其缺點是當電源消失時,所存信息也隨即丟失,是一種易失性存儲器。
半導體存儲器又可按其材料的不同, 分為雙極型(TTL)半導體存儲器和MOS半導體存儲器兩種。 前者具有高速的特點,而後者具有高集成度的特點,並且製造簡單、成本低廉, 功耗小、故MOS半導體存儲器被廣泛應用。 (2)磁表面存儲器。 磁表面存儲器是在金屬或塑料基體的表面上塗一層磁性材料作為記錄介質,工作時磁層隨載磁體高速運轉,用磁頭在磁層上進行讀寫操作,故稱為磁表面存儲器。
按載磁體形狀的不同,可分為磁碟、磁帶和磁鼓。現代計算機已很少採用磁鼓。由於用具有矩形磁滯回線特性的材料作磁表面物質,它們按其剩磁狀態的不同而區分「0」或「1」,而且剩磁狀態不會輕易丟失,故這類存儲器具有非易失性的特點。
(3)光碟存儲器。 光碟存儲器是應用激光在記錄介質(磁光材料)上進行讀寫的存儲器,具有非易失性的特點。光碟記錄密度高、耐用性好、可靠性高和可互換性強等。 4、按存取方式分類
按存取方式可把存儲器分為隨機存儲器、只讀存儲器、順序存儲器和直接存取存儲器四類。
(1)隨機存儲器RAM RAM是一種可讀寫存儲器, 其特點是存儲器的任何一個存儲單元的內容都可以隨機存取,而且存取時間與存儲單元的物理位置無關。計算機系統中的主存都採用這種隨機存儲器。由於存儲信息原理的不同, RAM又分為靜態RAM (以觸發器原理寄存信息)和動態RAM(以電容充放電原理寄存信息)。
(2)只讀存儲器 只讀存儲器是能對其存儲的內容讀出,而不能對其重新寫入的存儲器。這種存儲器一旦存入了原始信息後,在程序執行過程中,只能將內部信息讀出,而不能隨意重新寫入新的信息去改變原始信息。因此,通常用它存放固定不變的程序、常數以及漢字字型檔,甚至用於操作系統的固化。它與隨機存儲器可共同作為主存的一部分,統一構成主存的地址域。
只讀存儲器分為掩膜型只讀存儲器MROM(Masked ROM)、可編程只讀存儲器PROM(Programmable ROM)、可擦除可編程只讀存儲器EPROM(Erasable Programmable ROM)、用電可擦除可編程的只讀存儲器EEPROM(Electrically Erasable Programmable ROM)。以及近年來出現了的快擦型存儲器Flash Memory,它具有EEPROM的特點,而速度比EEPROM快得多。
(3)串列訪問存儲器 如果對存儲單元進行讀寫操作時,需按其物理位置的先後順序尋找地址,則這種存儲器叫做串列訪問存儲器。顯然這種存儲器由於信息所在位置不同,使得讀寫時間均不相同。如磁帶存儲器,不論信息處在哪個位置,讀寫時必須從其介質的始端開始按順序尋找,故這類串列訪問的存儲器又叫順序存取存儲器。還有一種屬於部分串列訪問的存儲器,如磁碟。在對磁碟讀寫時,首先直接指出該存儲器中的某個小區域(磁軌),然後再順序尋訪,直至找到位置。故其前段是直接訪問,後段是串列訪問,也稱其為半順序存取存儲器。

6. 磁表面存儲器讀寫原理的讀寫原理

在t→t1 時線圈中流過正向電流 ,則磁頭下方將出現一個與此對應的磁化區。磁通進入磁層的一側為S極,離開磁層的一側為N極。如果磁化電流足夠大,S極與N極之間被磁化到正向磁飽和,以後將留下剩磁 ,用箭頭 表示。由於磁層是距磁材料,剩磁 的大小與飽和磁感應強度 相差無幾。
從t=t1 (電流方向變化前),由於記錄磁層向左運動,而磁化電流維持 不變,相應地出現(b)所示磁化狀態。即S極左移一段距離 ,而N極仍位於磁頭作用區右側不變。
當t→t2 時,磁化電流改變方向, ,相應地磁層中的磁化狀態也出現翻轉,如(c)所示。移離磁頭作用區的S極以及一段 區,維持原來磁化狀態不變(剩磁)。而磁頭作用區下出現新的磁化區,左側為N極,右側為S極,N-S之間是負向磁飽和區 ,用箭頭 表示。
圖3-2 讀/寫過程示意圖
於是,在記錄磁層中留下一個對應於 的位單元,它的起始處與結束處兩側各有一個磁化狀態的轉變區。根據轉變區的存在及其性質(位置、方向、頻率等),體現所存儲的信息。 讀出時,磁頭線圈不加磁化電流,作為讀出線圈使用。當已經磁化的記錄磁層位於磁頭下方時,由於鐵芯部分的磁阻遠小於頭隙磁阻,則記錄磁層與磁頭鐵芯形成一個閉合磁路。大部分磁通將流經鐵芯再回到磁層。如果記錄磁層在磁頭下方運動,則各位單元將依次經過磁頭下方。每當轉變區經過磁頭下方時,鐵芯中的磁通方向也將隨之改變,於是在讀出線圈產生相應的感應電勢。
感應電勢e即讀出信號,它的方向取決於記錄磁層轉變區方向(由 變為 ,或者由 變為 ),其幅值大小則與 值有關(最大變化量 )。
如果記錄磁層中沒有轉變區,維持一種剩磁狀態( 或 ),則磁層經過磁頭下方時,鐵芯中磁通沒有變化,也就沒有讀出信號。
根據上述讀/寫原理,歸納磁表面存儲器具有如下特點:
①記錄信息可以長期保存,屬於非易失性存儲器(原則上允許記錄介質離線保存,但要注意防止外界強磁場破壞其剩磁狀態);
②非破壞性讀出,讀出不影響所存信息;
③記錄介質可以重復使用;
④由於是連續記錄,所以存取方式基本上是順序存取方式,不能如RAM那樣隨機訪問;
⑤由於是連續記錄,需要比較復雜的定址定位系統;
⑥由於在相對運動中進行讀寫,可靠性低於半導體存儲器,需要比較復雜的校驗技術。

7. 磁表面存儲器讀寫原理的記錄介質與磁頭

磁表面存儲器是目前使用最廣泛的外存儲器。所謂磁表面存儲,是用某些磁性材料薄薄地塗在金屬鋁或塑料表面作載磁體來存儲信息。根據記錄載體的外形,磁表面存儲器有磁鼓、磁帶、磁碟、磁卡等。而在計算機系統中廣泛使用的是磁碟和磁帶;特別是磁碟,幾乎是稍具規模系統的基本配置。 1. 基體與磁層
在磁表面存儲器中,記錄信息的介質是一層很薄的磁層,它需要依附於具有一定機械強度的基體之上。根據不同磁表面存儲器的需要,基體分為軟質基體與硬質基體兩大類,它們所要求的磁層材料與製造工藝也相應不同。
(1)軟質基體與磁層
磁帶的運行方式要求採用軟質基體,如聚酯薄膜帶。軟盤的碟片在工作時與磁頭接觸,為了減少磁頭磨損,也要求用軟質基體,如聚酯薄片。
將具有距磁特性的氧化鐵微粒,滲入少量鈷,用樹脂粘合劑混合後,塗敷在基本
體之上加工形成約1微米厚的均勻磁層。這就是記錄信息用介質,屬於顆粒型材料。
(2)硬質基體與磁層
硬碟的運行方式對基體與磁層要求更高,一般採用鋁合金硬質碟片作為基體。為了進一步提高片光潔度與硬度,一些新型硬碟採用工程塑料、陶瓷、玻璃作為基體。
硬碟一般採用電鍍工藝在碟片上形成一個很薄的磁層,所用材料為具有矩磁特性的鐵鎳鈷合金。電鍍形成的磁層屬於連續型非顆粒型材料,又稱薄膜介質,其均勻性與性能大為提高。磁層厚度大約只有0.1-0.2微米
,上面再鍍一層保護膜,增加抗磨性和抗腐蝕性。 在更新的硬碟中,採用濺射工藝形成薄膜磁層,即用粒子撞擊陰極,使陰極處的磁性材料原子淀積為磁性薄膜。其性能優於鍍膜。
為了增加讀出信號的幅度,希望選用材料的剩磁感應強度 比較大。但 過大,磁化狀態翻轉時間增加,因而影響記錄密度。為了提高激勵密度,要求磁層盡量薄。以減少磁化所需時間;磁層薄又使磁通變化量 減少,將影響讀出信號幅度。這就要求改進讀出放大的電子技術,以降低對磁層製造工藝的要求,或在相同工藝水平條件下,提高密度與可靠性。
此外,要求磁層內部無缺陷,表面組織緻密、光滑、平整,磁層厚薄均勻,無污染,對環境溫度不敏感,性能穩定。 磁頭是實現讀/寫的關鍵元件。寫入時,將脈沖代碼以磁化電流形式加入磁頭線圈,使記錄介質產生相應的磁化狀態,即電磁轉換。讀出時,磁層中的磁化翻轉使磁頭的讀出線圈產生感應信號,即磁電轉換。
圖3-1 磁頭原理圖
圖3-1是磁頭的原理性示意圖。磁頭由高導磁材料構成,上面繞有線圈,有一個線圈兼做寫入磁化與讀出,或分設讀磁頭與寫磁頭。磁頭面向記錄介質的部分開有間隙,稱作磁頭間隙,簡稱頭隙。如果沒有這個間隙,磁化電流產生的磁通將只在閉合磁路中流過,對記錄介質沒有作用。開了間隙後,大部分磁通將流經頭隙所對應的記錄介質局部區域,使該作用區留下某種磁化狀態。讀出時,記錄信息的介質經過磁頭,由於對著磁頭的區域中存在磁化狀態翻轉,若由正向飽和變為負向飽和,或由負向飽和變為正向飽和,使磁頭的磁路中發生磁通變化 。讀出線圈產生感應電勢,即讀出信號。因此頭曦部分的形狀與尺寸至關重要,又稱工作間隙。磁頭的磁路其餘部分既可做成環狀,也可做成馬蹄形,影響不大。
在磁碟或磁帶進行讀/寫時,記錄介質運動而磁頭不動,磁頭在記錄介質上的磁化區形成磁軌。磁化後,磁軌中心部分達到磁飽和,而磁軌兩側的邊緣部分磁化不足。在寫入後,常將兩側進行清洗,稱為夾縫清除。
從磁頭的任務來看,在磁碟中,每個記錄面有一個磁頭,兼做讀磁頭與寫磁頭,又稱復合磁頭。在磁帶機中,經常一次並行地讀/寫幾個磁軌。每個磁軌中有一對磁頭:一個讀磁頭和一個寫磁頭,可以實現寫後讀出檢查。將幾個磁軌的讀磁頭與寫磁頭裝配為一體,道間加屏蔽,稱為組合頭快。
從製造工藝方面來看,分為早期的傳統工藝磁頭與近期的薄膜磁頭。
在早期的製造工藝中,或是用高導磁率鐵淦氧材料熱壓成形,或用高導磁率鐵鎳合金(坡莫合金)疊片組裝成形。通常是先製成幾部分其中一段繞有線圈,然後將他們粘接起來。用於軟盤的磁頭,將上述鐵芯封裝在特種塑料外殼里,外殼做成球面形或平面扣子形,便於安裝和定位,並使磁頭與盤面接觸良好,工作時磨損小。用於硬碟的磁頭,將鐵芯封裝在一個陶瓷塊內,該陶瓷塊稱為浮動塊,工作時可由氣墊使其浮空於盤面上;後來又將鐵芯和浮動塊改為用同樣的材料製成。
近期的硬碟採用薄膜磁頭,用類似於半導體工藝的淀積和成形技術,在基板上形成坡莫合金的鐵芯,和具有一定匝數的線圈,如平面螺旋式導體線圈。由於製造成型過程中使用掩模光刻技術,精度很高,可以獲得比較理想的極尖形狀和工作間隙;然後在基板上燒固一層氧化鋁和碳化鈦,再切割加工成浮動塊。相比之下,薄膜磁頭在各方面的性能均優於傳統工藝磁頭。

8. 硬碟、U盤、軟盤的存儲原理是什麼

硬碟和軟盤都屬於磁表面存儲器,其原理是採用金屬塌孝(硬碟團茄稿)或塑料(軟盤)基體表納慧面上的磁性材料作為記錄介質;
U盤屬於半導體存儲器,超大規模半導體集成電路。

9. 硬碟磁頭讀寫碟片原理

前面1、2、3已經說的很詳細了。
至於 「剩有磁1無磁0」 那隻是一個表面上的描述。實際上 "從磁頭到碟片" 之間的讀寫並不是 「有磁1無磁0」 那麼簡單。照這么講,連續寫入0或1怎麼辦,誰能分清究竟有幾個0或幾個1?再說,假設連續的0或1就是連續有磁或無磁(沒有變化的磁場了),那還怎麼讀取?
實際上寫入到碟片上的信號是一個經過調制的信號,無論 0 還是1,都是一個跳變,才能夠分辨出來,這個過於復雜,在這里難於詳述,可以參考一下光碟是如何記錄信息的,一通百通。

10. 磁儲存原理

磁存儲技術的工作原理

是通過改變磁粒子的極性來在磁性介質上記錄數據。在讀取數據時,磁頭將存儲介質上的磁粒子極性轉換成相應的電脈沖信號,並轉換成計算機可以識別的數據形式。進行寫操作的原理也是如此。要使用硬碟等介質上的數據文件,通常需要依靠操作系統所提供的文件系統功能,文件系統維護著存儲介質上所有文件的索引。因為效率等諸多方面的考慮,在我們利用操作系統提供的指令刪除數據文件的時候,磁介質上的磁粒子極性並不會被清除。操作系統只是對文件系統的索引部分進行了修改,將刪除文件的相應段落標識進行了刪除標記。同樣的,目前主流操作系統對存儲介質進行格式化操作時,也不會抹除介質上的實際數據信號。正是操作系統在處理存儲時的這種設定,為我們進行數據恢復提供了可能。

值得注意的是,這種恢復通常只能在數據文件刪除之後相應存儲位置沒有寫入新數據的情況下進行。因為一旦新的數據寫入,磁粒子極性將無可挽回的被改變從而使得舊有的數據真正意義上被清除。另外,除了磁存儲介質之外,其它一些類型存儲介質的數據恢復也遵循同樣的原理,例如U盤、CF卡、SD卡等等。因為這些存儲設備也和磁碟一樣使用類似扇區、簇這樣的方式來對數據進行管理。舉個例子來說,目前幾乎所有的數碼相機都遵循DCIM標准,該標准規定了設備以FAT形式來對存儲器上的相片文件進行處理。