Ⅰ 作業調度的演算法都有哪些
作業調度的演算法有:演算法有先來先服務、最短作業優先演算法、最高響應比優先演算法、基於優先數調度演算法。
1、演算法有先來先服務
最簡單的調度演算法,按作業的先後順序進行調度,只考慮每個作業的等待時間而未考慮執行時間的帆凱長短。
2、最短作業優先演算法
最短作業優先演算法是對先來先服務演算法的改進,其目標是減少平均周轉時間。對預計執行時間短的作業優先分派處理機。通常後來的短作業不搶先正在執行的作業。 只考慮執行時間而未考慮等待時間的長短。
3、最高響應比優先演算法
最高響應比優先演算法是對先來先服務方式和最短作業優先演算法方式的一種綜合平衡。最高響應比優先法調度策略同時考慮每個作業的等待時間的長短和估計需要的執行時間長短,從中選出相應比最高的作業投入執行。
4、基於優先數調度演算法
優先數調度演算法常用於批處理系統中。在進程調度中,每次調度弊轎嫌時,系統把處理機分配給就緒隊列中優先數最高的進程。它又分為兩種:非搶占式優先數演算法和搶占式優先數演算法。
(1)存儲調度演算法擴展閱讀:
作業調度是指按照時間周期(年、月、日、時、分、秒等)對作業進行分割,並根據業務需求、作業長度、存儲管理及依賴性關系對作業的執行方式加以調度。主要任務是從作業後備隊列中選擇作業進入主存運行。作業調度的功能主要有以下幾方面:
1、記錄各作業在系統中的狀態;
2、從後備隊列中挑選一部分作業投入運行;
3、從被選中的作業做好執行前的准備工作;
4、在作業執行結束時,租手做善後處理工作。
進行作業調度有很多作業調度演算法,這些作業調度演算法要實現的目標是:
1、調度對所有作業都是公平合理的;
2、應使設備有較高的利用率(提供系統利用率);
3、每次運行盡可能多的作業(提高系統吞吐量);
4、較快的相應時間。
Ⅱ linux環境下的進程調度演算法有哪些
第一部分: 實時調度演算法介紹
對於什麼是實時系統,POSIX 1003.b作了這樣的定義:指系統能夠在限定的響應時間內提供所需水平的服務。而一個由Donald Gillies提出的更加為大家接受的定義是:一個實時系統是指計算的正確性不僅取決於程序的邏輯正確性,也取決於結果產生的時間,如果系統的時間約束條件得不到滿足,將會發生系統出錯。
實時系統根據其對於實時性要求的不同,可以分為軟實時和硬實時兩種類型。硬實時系統指系統要有確保的最壞情況下的服務時間,即對於事件的響應時間的截止期限是無論如何都必須得到滿足。比如航天中的宇宙飛船的控制等就是現實中這樣的系統。其他的所有有實時特性的系統都可以稱之為軟實時系統。如果明確地來說,軟實時系統就是那些從統計的角度來說,一個任務(在下面的論述中,我們將對任務和進程不作區分)能夠得到有確保的處理時間,到達系統的事件也能夠在截止期限到來之前得到處理,但違反截止期限並不會帶來致命的錯誤,像實時多媒體系統就是一種軟實時系統。
一個計算機系統為了提供對於實時性的支持,它的操作系統必須對於CPU和其他資源進行有效的調度和管理。在多任務實時系統中,資源的調度和管理更加復雜。本文下面將先從分類的角度對各種實時任務調度演算法進行討論,然後研究普通的 Linux操作系統的進程調度以及各種實時Linux系統為了支持實時特性對普通Linux系統所做的改進。最後分析了將雹檔鉛Linux操作系統應用於實時領域中時所出現的一些問題,並總結了各種實時Linux是如何解決這些問題的。
1. 實時CPU調度演算法分類
各種實時操作系統的實時調度演算法可以分為如下三種類別[Wang99][Gopalan01]:基於優先順序的調度演算法(Priority-driven scheling-PD)、基於CPU使用比例的共享式的調度演算法(Share-driven scheling-SD)、以及基於時間的進程調度演算法(Time-driven scheling-TD),下面對這三種調度演算法逐一進行介紹。
1.1. 基於優先順序的調度演算法
基於優先順序的調度演算法給每個進程分配一個優先順序,在每次進程調度時,調度器總是調度那個具有最高優先順序的任務來執行。根據不同的優先順序分配方法,基於優先順序的調度演算法可以分為如下兩種類型[Krishna01][Wang99]:
靜態優先順序調度演算法:
這種調度演算法給那些系統中得到運行的所有進程都靜態地分配一個優先順序。靜態優先順序的分配可以根據應用的屬性來進行,比如任務的周期,用戶優先順序,或者其它的預先確定的策略。RM(Rate-Monotonic)調度演算法是一種典型的靜態優先順序調度演算法,它根據任務的執行周期的長短來決定調度優先順序,那些具有小的執行周期的源好任務具有較高的優先順序。
動態優先順序調度演算法:
這種調度演算法根據任務的資源需求來動態地分配任務的優先順序,其目的就是在資源分配和調度時有更大的靈活性。非實時系統中就有很多這種調度演算法,比如短作業優先的調度演算法。在實時調度演算法中蠢掘, EDF演算法是使用最多的一種動態優先順序調度演算法,該演算法給就緒隊列中的各個任務根據它們的截止期限(Deadline)來分配優先順序,具有最近的截止期限的任務具有最高的優先順序。
1.2. 基於比例共享調度演算法
雖然基於優先順序的調度演算法簡單而有效,但這種調度演算法提供的是一種硬實時的調度,在很多情況下並不適合使用這種調度演算法:比如象實時多媒體會議系統這樣的軟實時應用。對於這種軟實時應用,使用一種比例共享式的資源調度演算法(SD演算法)更為適合。
比例共享調度演算法指基於CPU使用比例的共享式的調度演算法,其基本思想就是按照一定的權重(比例)對一組需要調度的任務進行調度,讓它們的執行時間與它們的權重完全成正比。
我們可以通過兩種方法來實現比例共享調度演算法[Nieh01]:第一種方法是調節各個就緒進程出現在調度隊列隊首的頻率,並調度隊首的進程執行;第二種做法就是逐次調度就緒隊列中的各個進程投入運行,但根據分配的權重調節分配個每個進程的運行時間片。
比例共享調度演算法可以分為以下幾個類別:輪轉法、公平共享、公平隊列、彩票調度法(Lottery)等。
比例共享調度演算法的一個問題就是它沒有定義任何優先順序的概念;所有的任務都根據它們申請的比例共享CPU資源,當系統處於過載狀態時,所有的任務的執行都會按比例地變慢。所以為了保證系統中實時進程能夠獲得一定的CPU處理時間,一般採用一種動態調節進程權重的方法。
1.3. 基於時間的進程調度演算法
對於那些具有穩定、已知輸入的簡單系統,可以使用時間驅動(Time-driven:TD)的調度演算法,它能夠為數據處理提供很好的預測性。這種調度演算法本質上是一種設計時就確定下來的離線的靜態調度方法。在系統的設計階段,在明確系統中所有的處理情況下,對於各個任務的開始、切換、以及結束時間等就事先做出明確的安排和設計。這種調度演算法適合於那些很小的嵌入式系統、自控系統、感測器等應用環境。
這種調度演算法的優點是任務的執行有很好的可預測性,但最大的缺點是缺乏靈活性,並且會出現有任務需要被執行而CPU卻保持空閑的情況。
2. 通用Linux系統中的CPU調度
通用Linux系統支持實時和非實時兩種進程,實時進程相對於普通進程具有絕對的優先順序。對應地,實時進程採用SCHED_FIFO或者SCHED_RR調度策略,普通的進程採用SCHED_OTHER調度策略。
在調度演算法的實現上,Linux中的每個任務有四個與調度相關的參數,它們是rt_priority、policy、priority(nice)、counter。調度程序根據這四個參數進行進程調度。
在SCHED_OTHER 調度策略中,調度器總是選擇那個priority+counter值最大的進程來調度執行。從邏輯上分析,SCHED_OTHER調度策略存在著調度周期(epoch),在每一個調度周期中,一個進程的priority和counter值的大小影響了當前時刻應該調度哪一個進程來執行,其中 priority是一個固定不變的值,在進程創建時就已經確定,它代表了該進程的優先順序,也代表這該進程在每一個調度周期中能夠得到的時間片的多少; counter是一個動態變化的值,它反映了一個進程在當前的調度周期中還剩下的時間片。在每一個調度周期的開始,priority的值被賦給 counter,然後每次該進程被調度執行時,counter值都減少。當counter值為零時,該進程用完自己在本調度周期中的時間片,不再參與本調度周期的進程調度。當所有進程的時間片都用完時,一個調度周期結束,然後周而復始。另外可以看出Linux系統中的調度周期不是靜態的,它是一個動態變化的量,比如處於可運行狀態的進程的多少和它們priority值都可以影響一個epoch的長短。值得注意的一點是,在2.4以上的內核中, priority被nice所取代,但二者作用類似。
可見SCHED_OTHER調度策略本質上是一種比例共享的調度策略,它的這種設計方法能夠保證進程調度時的公平性--一個低優先順序的進程在每一個epoch中也會得到自己應得的那些CPU執行時間,另外它也提供了不同進程的優先順序區分,具有高priority值的進程能夠獲得更多的執行時間。
對於實時進程來說,它們使用的是基於實時優先順序rt_priority的優先順序調度策略,但根據不同的調度策略,同一實時優先順序的進程之間的調度方法有所不同:
SCHED_FIFO:不同的進程根據靜態優先順序進行排隊,然後在同一優先順序的隊列中,誰先准備好運行就先調度誰,並且正在運行的進程不會被終止直到以下情況發生:1.被有更高優先順序的進程所強佔CPU;2.自己因為資源請求而阻塞;3.自己主動放棄CPU(調用sched_yield);
SCHED_RR:這種調度策略跟上面的SCHED_FIFO一模一樣,除了它給每個進程分配一個時間片,時間片到了正在執行的進程就放棄執行;時間片的長度可以通過sched_rr_get_interval調用得到;
由於Linux系統本身是一個面向桌面的系統,所以將它應用於實時應用中時存在如下的一些問題:
Linux系統中的調度單位為10ms,所以它不能夠提供精確的定時;
當一個進程調用系統調用進入內核態運行時,它是不可被搶占的;
Linux內核實現中使用了大量的封中斷操作會造成中斷的丟失;
由於使用虛擬內存技術,當發生頁出錯時,需要從硬碟中讀取交換數據,但硬碟讀寫由於存儲位置的隨機性會導致隨機的讀寫時間,這在某些情況下會影響一些實時任務的截止期限;
雖然Linux進程調度也支持實時優先順序,但缺乏有效的實時任務的調度機制和調度演算法;它的網路子系統的協議處理和其它設備的中斷處理都沒有與它對應的進程的調度關聯起來,並且它們自身也沒有明確的調度機制;
3. 各種實時Linux系統
3.1. RT-Linux和RTAI
RT -Linux是新墨西哥科技大學(New Mexico Institute of Technology)的研究成果[RTLinuxWeb][Barabanov97]。它的基本思想是,為了在Linux系統中提供對於硬實時的支持,它實現了一個微內核的小的實時操作系統(我們也稱之為RT-Linux的實時子系統),而將普通Linux系統作為一個該操作系統中的一個低優先順序的任務來運行。另外普通Linux系統中的任務可以通過FIFO和實時任務進行通信。RT-Linux的框架如圖 1所示:
圖 1 RT-Linux結構
RT -Linux的關鍵技術是通過軟體來模擬硬體的中斷控制器。當Linux系統要封鎖CPU的中斷時時,RT-Linux中的實時子系統會截取到這個請求,把它記錄下來,而實際上並不真正封鎖硬體中斷,這樣就避免了由於封中斷所造成的系統在一段時間沒有響應的情況,從而提高了實時性。當有硬體中斷到來時, RT-Linux截取該中斷,並判斷是否有實時子系統中的中斷常式來處理還是傳遞給普通的Linux內核進行處理。另外,普通Linux系統中的最小定時精度由系統中的實時時鍾的頻率決定,一般Linux系統將該時鍾設置為每秒來100個時鍾中斷,所以Linux系統中一般的定時精度為 10ms,即時鍾周期是10ms,而RT-Linux通過將系統的實時時鍾設置為單次觸發狀態,可以提供十幾個微秒級的調度粒度。
RT-Linux實時子系統中的任務調度可以採用RM、EDF等優先順序驅動的演算法,也可以採用其他調度演算法。
RT -Linux對於那些在重負荷下工作的專有系統來說,確實是一個不錯的選擇,但他僅僅提供了對於CPU資源的調度;並且實時系統和普通Linux系統關系不是十分密切,這樣的話,開發人員不能充分利用Linux系統中已經實現的功能,如協議棧等。所以RT-Linux適合與工業控制等實時任務功能簡單,並且有硬實時要求的環境中,但如果要應用與多媒體處理中還需要做大量的工作。
義大利的RTAI( Real-Time Application Interface )源於RT-Linux,它在設計思想上和RT-Linux完全相同。它當初設計目的是為了解決RT-Linux難於在不同Linux版本之間難於移植的問題,為此,RTAI在 Linux 上定義了一個實時硬體抽象層,實時任務通過這個抽象層提供的介面和Linux系統進行交互,這樣在給Linux內核中增加實時支持時可以盡可能少地修改 Linux的內核源代碼。
3.2. Kurt-Linux
Kurt -Linux由Kansas大學開發,它可以提供微秒級的實時精度[KurtWeb] [Srinivasan]。不同於RT-Linux單獨實現一個實時內核的做法,Kurt -Linux是在通用Linux系統的基礎上實現的,它也是第一個可以使用普通Linux系統調用的基於Linux的實時系統。
Kurt-Linux將系統分為三種狀態:正常態、實時態和混合態,在正常態時它採用普通的Linux的調度策略,在實時態只運行實時任務,在混合態實時和非實時任務都可以執行;實時態可以用於對於實時性要求比較嚴格的情況。
為了提高Linux系統的實時特性,必須提高系統所支持的時鍾精度。但如果僅僅簡單地提高時鍾頻率,會引起調度負載的增加,從而嚴重降低系統的性能。為了解決這個矛盾, Kurt-Linux採用UTIME所使用的提高Linux系統中的時鍾精度的方法[UTIMEWeb]:它將時鍾晶元設置為單次觸發狀態(One shot mode),即每次給時鍾晶元設置一個超時時間,然後到該超時事件發生時在時鍾中斷處理程序中再次根據需要給時鍾晶元設置一個超時時間。它的基本思想是一個精確的定時意味著我們需要時鍾中斷在我們需要的一個比較精確的時間發生,但並非一定需要系統時鍾頻率達到此精度。它利用CPU的時鍾計數器TSC (Time Stamp Counter)來提供精度可達CPU主頻的時間精度。
對於實時任務的調度,Kurt-Linux採用基於時間(TD)的靜態的實時CPU調度演算法。實時任務在設計階段就需要明確地說明它們實時事件要發生的時間。這種調度演算法對於那些循環執行的任務能夠取得較好的調度效果。
Kurt -Linux相對於RT-Linux的一個優點就是可以使用Linux系統自身的系統調用,它本來被設計用於提供對硬實時的支持,但由於它在實現上只是簡單的將Linux調度器用一個簡單的時間驅動的調度器所取代,所以它的實時進程的調度很容易受到其它非實時任務的影響,從而在有的情況下會發生實時任務的截止期限不能滿足的情況,所以也被稱作嚴格實時系統(Firm Real-time)。目前基於Kurt-Linux的應用有:ARTS(ATM Reference Traffic System)、多媒體播放軟體等。另外Kurt-Linux所採用的這種方法需要頻繁地對時鍾晶元進行編程設置。
3.3. RED-Linux
RED -Linux是加州大學Irvine分校開發的實時Linux系統[REDWeb][ Wang99],它將對實時調度的支持和Linux很好地實現在同一個操作系統內核中。它同時支持三種類型的調度演算法,即:Time-Driven、 Priority-Dirven、Share-Driven。
為了提高系統的調度粒度,RED-Linux從RT-Linux那兒借鑒了軟體模擬中斷管理器的機制,並且提高了時鍾中斷頻率。當有硬體中斷到來時,RED-Linux的中斷模擬程序僅僅是簡單地將到來的中斷放到一個隊列中進行排隊,並不執行真正的中斷處理程序。
另外為了解決Linux進程在內核態不能被搶占的問題, RED-Linux在Linux內核的很多函數中插入了搶占點原語,使得進程在內核態時,也可以在一定程度上被搶占。通過這種方法提高了內核的實時特性。
RED-Linux的設計目標就是提供一個可以支持各種調度演算法的通用的調度框架,該系統給每個任務增加了如下幾項屬性,並將它們作為進程調度的依據:
Priority:作業的優先順序;
Start-Time:作業的開始時間;
Finish-Time:作業的結束時間;
Budget:作業在運行期間所要使用的資源的多少;
通過調整這些屬性的取值及調度程序按照什麼樣的優先順序來使用這些屬性值,幾乎可以實現所有的調度演算法。這樣的話,可以將三種不同的調度演算法無縫、統一地結合到了一起。
Ⅲ 什麼是進程調度常用的進程調度演算法有哪些試比較他們之間的性能。 什麼是進程調度
進程調度,用戶進程數進程調度一般都多於處理機數、這將導致它們互相爭奪處理機。另外,系統進程也同樣需要使用處理機。無論是在批處理系統還是分時系統中,用戶進程數 進程調度 一般都多於處理機數、這將導致它們互相爭奪處理機。另外,系統進程也同樣早埋需要使用處理機。這就要求進程調度程序按一定的策略,動態地把處理機分配給處於就緒隊列中的某一個進程,以使之執行。 進程調度的的分級 高級、中級和低級調度作業從提交開始直到完成,往往要經歷下述三級調度: 高級調度:(High-Level Scheling)又稱為作業調度,它決定把後備作業調入內存運行; 低級調度:(Low-Level Scheling)又稱為進程調度,它決定把就緒隊列的某進程獲得CPU; 中級調度:(Intermediate-Level Scheling)又稱為鍵睜塵在虛擬存儲器中引入,在內、外存對換區進行進程對換。先進先出演算法 進程調度 演算法總是把處理機分配給最先進入就緒隊列的進程,一個進程一旦分得處理機,便一直執行下去,直到該進程完成或阻塞時,才釋放處理機。 例如,有三個進程P1、P2和P3先後進入就緒隊列,它們的執行期分別是21、6和3個單位時間, 執行情況如下圖: 對於P1、P2、P3的周轉時間為21、27、30,平均周轉時間為26。 可見,FIFO演算法服務質量不佳,容易引起作業用戶不滿,常作為一種輔助調度演算法。 最短CPU運行期優先調度演算法(SCBF--Shortest CPU Burst First) 該演算法從就稿禪緒隊列中選出「下一個CPU執行期」最短的進程,為之分配處理機。 例如,在就緒隊列中有四個進程P1、P2、P3和P4,它們的下一個執行期分別是16、12、4和3個單位時間,執行情況如下圖: P1、P2、P3和P4的周轉時間分別為35、19、7、3,平均周轉時間為16。 該演算法雖可獲得較好的調度性能,但難以准確地知道下一個CPU執行期,而只能根據每一個進程的執行歷史來預測。 輪轉法 前幾種演算法主要用於批處理系統中,不能作為分時系統中的主調度演算法,在分時系統中,都採用時間片輪轉法。 簡單輪轉法:系統將所有就緒進程按FIFO規則排隊,按一定的時間間隔把處理機分配給隊列中的進程。這樣,就緒隊列中所有進程均可獲得一個時間片的處理機而運行。 多級隊列方法:將系統中所有進程分成若干類,每類為一級。 多級反饋隊列 多級反饋隊列方式是在系統中設置多個就緒隊列,並賦予各隊列以不同的優先權
Ⅳ ssd優先採用哪種io調度演算法
ssd優先採用noopio調度演算法。根據查詢相關資料信息,沒有磁頭移動,ssd一般採用noop的io調度策略。固態硬碟(SolidStateDisk),簡稱固盤,固悉褲虧態硬碟用固態電子存儲晶元陣列而製成的硬碟,由控制單元和存儲純羨單元睜神(FLASH晶元、DRAM晶元)組成。
Ⅳ 判斷題:虛擬存儲器採用的頁面調度演算法是「先進先出」(FIFO)演算法。
離開笑明空白H1,H2中輸入公式
= OR(E2> E1,E2> E3)
數據>過濾器>高級過濾器>
列表區咐升蘆域中的衡帶一個:G復制區I1
條件H1:H2
Ⅵ 在選擇調度方式和調度演算法時,應遵循哪些准則
在選擇調度方式和調度演算法時,應遵循的准滾搭則如下:
面向用戶應遵循的准則是:周轉時間短、響應時間快、截止時間的保證、 優先權准則。面向系統則陵應遵循的准則是:系統吞吐量高、處置機利用率好、各類資源的平衡利用。
以上這些原則不能兼顧。在設計計算機系統時,應根據系統的設計目標來決定調度原則。不同的計算機系統採用不同的調度原則和調度演算法,但都必須遵循一個必要條件,即系統的現有的尚來分配的資源可以滿足被選作業的資源要求。
作業調度是指按照時間周期(年、月、日、時、分、秒等)對作業進行分割,並根據業務需求、作業長度、存儲管理及依賴性關系對作業的執行方式孫備戚加以調度。主要任務是從作業後備隊列中選擇作業進入主存運行。
Ⅶ 虛擬存儲器採用的頁面調度演算法是「先進先出」(FIFO)演算法嗎
頁式虛擬存儲器的頁面置換演算法一般有:
最佳置換演算法(OPT),先進先出置換演算法(FIFO),最近最久未使用置換演算法(LRU),Clock置換演算法,最少使用置換演算法(LFU),頁面緩存演算法(PBA)等。
先進先出(FIFO)置換演算法是最直觀的置換演算法,由於它可能是性能最差的演算法,故實際應用極少。(摘錄自湯的教材)
Ⅷ Windows98/XP的虛擬存儲器採用的頁面調度演算法是什麼
1 隨機演算法
用軟體或硬體隨祥困機數產生器確定替換的頁面。
2 先進先慎銷出
先調入主存的頁面先替換。
3 近期最少使用演算法
替換最長時間不用的謹孝念頁面。
4 最優演算法
替換最長時間以後才使用的頁面。這是理想化的演算法,只能作為衡量其他各種演算法優劣的標准。
Ⅸ 存儲管理的方式
分區存儲管理又有三種不同的方式:靜態分區、可變分區、可重定位分區 。
靜態分區
靜態分區存儲管理是預先把可分配的主存儲器空間分割成若干個連續區域,每個區域的大小可以相同,也可以不同。為了說明各分區的分配和使用情況,存儲管理需設置一張「主存分配表」。主存分配表指出各分區的起始地址和長度,表中的佔用標志位用來指示該分區是否被佔用了,當佔用的標志位為「0」時,表示該分區尚未被佔用。進行主存分配時總是選擇那些標志為「0」的分區,當某一分區分配給一個作業後,則在佔用標志欄填上佔用該分區的作業名。採用靜態分區存儲管理,主存空間的利用不高。
可變分區
可變分區方式是按作業的大小來劃分分區。當要裝入一個作業時,根據作業需要的主存量查看主存中是否有足夠的空間,若有,則按需要量分割一個分區分配給該作業;若無,則令該作業等待主存空間。由於分區的大小是按作業的實際需要量來定的,且分區的個數也是隨機的,所以可以克服固定分區方式中的主存空間的浪費。
隨著作業的裝入、撤離,主存空間被分成許多個分區,有的分區被作業佔用,而有的分區是空閑的。當一個新的作業要求裝入時,必須找一個足夠大的空閑區,把作業裝入該區,如果找到的空閑區大於作業需要量,則作業裝入後又把原來的空閑區分成兩部分,一部分給作業佔用了;另一部分又分成為一個較小的空閑區。當一作主行結束撤離時,它歸還的區域如果與其它空閑區相鄰,則可合成一個較大的空閑區,以利大作業的裝入。
可變分區調度演算法
1)首次適應演算法。每次分配時,總是順序查找未分配表,找到第一個能滿足長度要求的空閑區為止。分割這個找到的未分配區,一部分分配給作業,另一部分仍為空閑區。這種分配演算法可能將大的空間分割成小區,造成較多的主存「碎片」。
2)最佳適應演算法。從空閑區中挑選一個能滿足作業要求的最小分區,這樣可保證不去分割一個更大的區域,使裝入大作業時比較容易得到滿足。採用這種分配演算法時可把空閑區按大小以遞增順利排列,查找時總是從最小的一個區開始,直到找到一個滿足要求的區為止。
3)最壞適應演算法。挑選一個最大的空閑區分割給作業使用,這樣可使剩下的空閑區不至於太小,這種演算法對中、小作業是有利的。採用這種分配演算法時可把空閑區按大小以遞減順利排列,查找時總是從最大的一個區開始。按這種方法,在收回一個分區時也必須對表格重新排列。 盡管虛擬內存允許進程有其獨立的虛擬地址空間,但有時也需要在進程之間共享內存。 例如有可能系統中有幾個進程同時運行BASH命令外殼程序。為了避免在每個進程的虛擬內存空間內都存在BASH程序的拷貝,較好的解決辦法是系統物理內存中只存在一份BASH的拷貝並在多個進程間共享。動態庫則是另外一種進程間共享執行代碼的方式。共享內存可用來作為進程間通訊(IPC)的手段,多個進程通過共享內存來交換信息。 Linux支持SYSTEM V的共享內存IPC機制。