當前位置:首頁 » 服務存儲 » 存儲晶元工作原理
擴展閱讀
webinf下怎麼引入js 2023-08-31 21:54:13
堡壘機怎麼打開web 2023-08-31 21:54:11

存儲晶元工作原理

發布時間: 2023-05-18 14:00:55

存儲器的工作原理是什麼

動態讀寫存貯器(DRAM),以其速度快、集成度高、功耗小、價格低在微型計算機中得到極其廣泛地使用。但動態存儲器同靜態存儲器有不同的工作原理。它是靠內部寄生電容充放電來記憶信息,電容充有電荷為邏輯1,不充電為邏輯0。欲深入了解動態RAM的基本原理請點擊。 動態存儲器有多種系列,如61系列、37系列、41系列、21系列等。圖示為2164晶元的引腳圖。將滑鼠指向相應引腳可看到其對引腳功能。它是一個64K 1bit的DRAM晶元,將8片並接起來,可以構成64KB的動態存儲器。
每片只有一條輸入數據線,而地址引腳只有8條。為了形成64K地址,必須在系統地址匯流排和晶元地址引線之間專門設計一個地址形成電路。使系統地址匯流排信號能分時地加到8個地址的引腳上,藉助晶元內部的行鎖存器、列鎖存器和解碼電路選定晶元內的存儲單元,鎖存信號也靠著外部地址電路產生。
當要從DRAM晶元中讀出數據時,CPU 首先將行地址加在A0-A7上,而後送出RAS 鎖存信號,該信號的下降沿將地址鎖存在晶元內部。接著將列地址加到晶元的A0-A7上,再送CAS鎖存信號,也是在信號的下降沿將列地址鎖存在晶元內部。然後保持WE=1,則在CAS有效期間數據輸出並保持。
當需要把數據寫入晶元時,行列地址先後將RAS和CAS鎖存在晶元內部,然後,WE有效,加上要寫入的數據,則將該數據寫入選中的存貯單元。
由於電容不可能長期保持電荷不變,必須定時對動態存儲電路的各存儲單元執行重讀操作,以保持電荷穩定,這個過程稱為動態存儲器刷新。PC/XT機中DRAM的刷新是利用DMA實現的。首先應用可編程定時器8253的計數器1,每隔1⒌12μs產生一次DMA請求,該請求加在DMA控制器的0通道上。當DMA控制器0通道的請求得到響應時,DMA控制 器送出到刷新地址信號,對動態存儲器執行讀操作,每讀一次刷新一行。
只讀存貯器(ROM)有多種類型。由於EPROM和EEPROM存貯容量大,可多次擦除後重新對它進行編程而寫入新的內容,使用十分方便。尤其是廠家為用戶提供了單獨地擦除器、編程器或插在各種微型機上的編程卡,大大方便了用戶。因此,這種類型的只讀存貯器得到了極其廣泛的應用。7. RAM的工作時序
為保證存儲器准確無誤地工作,加到存儲器上的地址、數據和控制信號必須遵守幾個時間邊界條件。
圖7.1—3示出了RAM讀出過程的定時關系。讀出操作過程如下:
欲讀出單元的地址加到存儲器的地址輸入端;
加入有效的選片信號CS;
在 線上加高電平,經過一段延時後,所選擇單元的內容出現在I/O端;
讓選片信號CS無效,I/O端呈高阻態,本次讀出過程結束。
由於地址緩沖器、解碼器及輸入/輸出電路存在延時,在地址信號加到存儲器上之後,必須等待一段時間tAA,數據才能穩定地傳輸到數據輸出端,這段時間稱為地址存取時間。如果在RAM的地址輸入端已經有穩定地址的條件下,加入選片信號,從選片信號有效到數據穩定輸出,這段時間間隔記為tACS。顯然在進行存儲器讀操作時,只有在地址和選片信號加入,且分別等待tAA和tACS以後,被讀單元的內容才能穩定地出現在數據輸出端,這兩個條件必須同時滿足。圖中tRC為讀周期,他表示該晶元連續進行兩次讀操作必須的時間間隔。
寫操作的定時波形如圖7.1—4所示。寫操作過程如下:
將欲寫入單元的地址加到存儲器的地址輸入端;
在選片信號CS端加上有效電平,使RAM選通;
將待寫入的數據加到數據輸入端;
在 線上加入低電平,進入寫工作狀態;
使選片信號無效,數據輸入線回到高阻狀態。
由於地址改變時,新地址的穩定需要經過一段時間,如果在這段時間內加入寫控制信號(即 變低),就可能將數據錯誤地寫入其他單元。為防止這種情況出現,在寫控制信號有效前,地址必須穩定一段時間tAS,這段時間稱為地址建立時間。同時在寫信號失效後,地址信號至少還要維持一段寫恢復時間tWR。為了保證速度最慢的存儲器晶元的寫入,寫信號有效的時間不得小於寫脈沖寬度tWP。此外,對於寫入的數據,應在寫信號tDW時間內保持穩定,且在寫信號失效後繼續保持tDH時間。在時序圖中還給出了寫周期tWC,它反應了連續進行兩次寫操作所需要的最小時間間隔。對大多數靜態半導體存儲器來說,讀周期和寫周期是相等的,一般為十幾到幾十ns。
ddr一個時鍾周期內穿2次數據
ddr2一個時鍾周期傳4次
所以相同頻率下ddr2的帶寬是ddr的2倍

⑵ 半導體存儲器的工作原理與分類


半導體存儲器是一種以半導體電路作為存儲媒體的存儲器,內存儲器就是由稱為存儲器晶元的半導體集成電路組成。下面小編為大家詳細介紹半導體存儲器的相關知識。
半導體存儲器內存的工作原理:
內存是用來存放當前正在使用的(即執行中)的數據和程序,我們平常所提到的計算機的內存指的是動態內存(即DRAM),動態內存中所謂的「動態」,指的是當我們將數據寫入DRAM後,經過一段時間,數據會丟失,因此需要一個額外設電路進行內存刷新操作。
具體的工作過程是這樣的:
一個DRAM的存儲單元存儲的是0還是1取決於電容是否有電荷,有電荷代表1,無電荷代表0。但時間一長,代表1的電容會放電,代表0的電容會吸收電荷,這就是數據丟失的原因;刷新操作定期對電容進行檢查,若電量大於滿電量的1/2,則認為其代表1,並把電容充滿電;若電量小於1/2,則認為其代表0,並把電容放電,藉此來保持數據的連續性。
半導體存儲器的分類:
半導體存儲器是一種以半導體電路作為存儲媒體的存儲器,內存儲器就是由稱為存儲器晶元的則滲半導體集成電路組成。
按其功能可分為:隨機存取存儲器(簡稱RAM)和只讀存儲器(只讀ROM)
RAM包括DRAM(動態隨機存取存儲器)和SRAM(靜態隨機存取存儲器),當關機或斷電時,其中的碧猛信息都會隨之丟失。DRAM主要用於主存(內存的主體部分),SRAM主悔盯橋要用於高速緩存存儲器。
ROM主要用於BIOS存儲器。按其製造工藝可分為:雙極晶體管存儲器和MOS晶體管存儲器。按其存儲原理可分為:靜態和動態兩種。
半導體存儲器的主要性能指標:
有兩個主要技術指標;存儲容量和存取速度
1、存儲容量
存儲容量是半導體存儲器存儲信息量大小的指標。半導體存儲器的容量越大,存放程序和數據的能力就越強。
2、存取速度
存儲器的存取速度是用存取時間來衡量的,它是指存儲器從接收CPU發來的有效地址到存儲器給出的數據穩定地出現在數據匯流排上所需要的時間。存取速度對CPU與存儲器的時間配合是至關重要的。如果存儲器的存取速度太慢,與CPU不能匹配,則CPU讀取的信息就可能有誤。
3、存儲器功耗
存儲器功耗是指它在正常工作時所消耗的電功率。通常,半導體存儲器的功耗和存取速度有關,存取速度越快,功耗也越大。因此,在保證存取速度前提下,存儲器的功耗越小越好。
4、可靠性和工作壽命
半導體存儲器的可靠性是指它對周圍電磁場、溫度和濕度等的抗干擾能力。由於半導體存儲器常採用VLSI工藝製造,可靠性較高,壽命也較長,平均無故障時間可達數千小時。
5、集成度
半導體存儲器的集成度是指它在一塊數平方毫米晶元上能夠集成的晶體管數目,有時也可以每塊晶元上集成的「基本存儲電路」個數來表徵。
通過以上介紹,對半導體存儲器也是有著很好認識,感謝你停下寶貴的時間來欣賞小編的文章,想了解更多相關知識請繼續關注日隆資訊哦。

⑶ 硅晶元存儲數據的原理是什麼

硅晶元存儲數據的原理是sram裡面的單位是若干個開關組成一個觸發器,形成可以穩定存儲0, 1信號,同時可以通過時序和輸入信號改變存儲的值。dram,主要是根據電容上的電量,電量大時,電壓高表示1反之表示0晶元就是有大量的這些單元組成的,所以能存儲數據。

硅材料具有耐高溫和抗輻射性能較好,特別適宜製作大功率器件的特性而成為應用最多的一種半導體材料,集成電路半導體器件大多數是用硅材料製造的。硅在室溫的化學性質很穩定,且現在的矽片加工工藝,很容易制備大尺寸平整度在納米級水平的矽片,使得該方法有望用於信息存儲技術。

相關資料

單晶硅:熔融的單質硅在凝固時硅原子以金剛石晶格排列成許多晶核,如果這些晶核長成晶面取向相同的晶粒,則這些晶粒平行結合起來便結晶成單晶硅。單晶硅具有準金屬的物理性質,有較弱的導電性,其電導率隨溫度的升高而增加,有顯著的半導電性。

超純的單晶硅是本徵半導體。在超純單晶硅中摻入微量的ⅢA族元素,如硼可提高其導電的程度,而形成p型硅半導體;如摻入微量的ⅤA族元素,如磷或砷也可提高導電程度,形成n型硅半導體。

以上內容參考:網路-硅晶片

⑷ 內存,晶元為什麼可以儲存信息和數據

晶元儲存信息的原理為:

對動態存儲器進行寫入操作時,行地址首先將RAS鎖存於晶元中,然後列地址將CAS鎖存於晶元中,WE有效,寫入數據,則寫入的數據被存儲於指定的單元中。

對動態存儲器進行讀出操作時,CPU首先輸出RAS鎖存信號,獲得數據存儲單元的行地址,然後輸出CAS鎖埋帆嫌存信號,獲得數據存儲單元的列地址,保持WE=1,便可將已知行列地址的存儲單元中數據讀取出來。

內存的工作原理為:

1、只讀存儲器

在製造時,信息(數據或程序)就被存入並永久保存。這些信息只能讀出,一般不能寫入,即使機器停電,這些轎稿數據也不會丟失。

2、隨機存儲器

隨機存儲器表示既可以從中讀取數據,也可以寫入數據。當機器電源關閉時,存於其中的數據就會丟失。

3、高速緩沖存儲器

當CPU向內存中寫入或讀出數據時,這個數據就被存儲進高速緩沖存儲器中。

(4)存儲晶元工作原理擴展閱讀:

內存DDR2與DDR的區別

1、最高標准頻率不同。

DDR2內存起始頻率從DDR內存最高標准頻率400Mhz開始,現已定義可以生產的頻率支持到533Mhz到667Mhz,標准工作頻彎手率工作頻率分別是200/266/333MHz,工作電壓為1.8V。DDR2採用全新定義的240 PIN DIMM介面標准,完全不兼容於DDR的184PIN DIMM介面標准。

2、數據傳輸方式不同。

DDR2和DDR一樣,採用了在時鍾的上升延和下降延同時進行數據傳輸的基本方式,但是最大的區別在於,DDR2內存可進行4bit預讀取。兩倍於標准DDR內存的2BIT預讀取,這就意味著,DDR2擁有兩倍於DDR的預讀系統命令數據的能力,因此,DDR2則簡單的獲得兩倍於DDR的完整的數據傳輸能力。

⑸ 儲存卡的儲存內部原理是什麼

將存儲卡看做網狀結構,也就是矩陣結構,這叫作Flash存貯矩陣,由網格中的小存貯單元構成,靠的是儲存晶元Flash,儲存的都是二進制信息,具體的情況可以參考下面的內容。

⑹ 電腦儲存器儲存信息的原理是什麼

U盤是晶元.
硬碟是碟片.
u盤是半導體材料製作的,記錄的加電的信號
硬碟是磁碟,就象磁帶一樣的東西,不過它有扇區,柱面,磁軌,磁頭==

一、U盤基本工作原理
U盤是採用Flash晶元存儲的,Flash晶元屬於電擦寫電門。在通電以後改變狀態,不通電就固定狀態。所以斷電以後資料能夠保存。
Flash晶元的擦寫次數在10萬次以上,而且你要是沒有用到後面的空間,後面的就不會通電

通用串列匯流排(Universal serial Bus)是一種快速靈活的介面,

當一個USB設備插入主機時,由於USB設備硬體本身的原因,它會使USB匯流排的數據信號線的電平發生變化,而主機會經常掃描USB匯流排。當發現電平有變化時,它即知道有設備插入。

當USB設備剛插入主機時,USB設備它本身會初始化,並認為地址是0。也就是沒有分配地址,這有點象剛進校的大學生沒有學號一樣。

正如有一個陌生人闖入時我們會問「你是什麼人」一樣,當一個USB設備插入主機時,,它也會問:「你是什麼設備」。並接著會問,你使用什麼通信協議等等。當這一些信息都被主機知道後,主機與USB設備之間就可以根據它們之間的約定進行通信。

USB的這些信息是通過描述符實現的,USB描述符主要包括:設備描述符,配置描述符,

介面描述符,端點描述符等。當一個U盤括入主機時,你立即會發現你的資源管理器里多了一個可移動磁碟,在Win2000下你還可以進一步從主機上知道它是愛國者或是朗科的。這里就有兩個問題,首先主機為什麼知道插入的是移動磁碟,而不是鍵盤或列印機等等呢?另外在Win2000下為什麼還知道是哪個公司生產的呢?其實這很簡單,當USB設備插入主機時,主機首先就會要求對方把它的設備描述符傳回來,這些設備描述符中就包含了設備類型及製造商信息。又如傳輸所採用的協議是由介面描述符確定,而傳輸的方式則包含在端點描述符中。

USB設備分很多類:顯示類,通信設備類,音頻設備類,人機介面類,海量存儲類.特定類的設備又可分為若乾子類,每一個設備可以有一個或多個配置,配置用於定義設備的功能。配置是介面的集合,介面是指設備中哪些硬體與USB交換信息。每個與USB交換信息的硬體是一個端點。因些,介面是端點的集合。

U盤應屬於海量存儲類。

USB海量存儲設備又包括通用海量存儲子類,CDROM,Tape等,U盤實際上屬於海量存儲類中通用海量存儲子類。通用海量存儲設備實現上是基於塊/扇區存儲的設備。

USB組織定義了海量存儲設備類的規范,這個類規范包括4個獨立的子類規范。主要是指USB匯流排上的傳輸方法與存儲介質的操作命令。

海量存儲設備只支持一個介面,即數據介面,此介面有三個端點Bulk input ,Bulk output,中斷端點

這種設備的介面採用SCSI-2的直接存取設備協議,USB設備上的介質使用與SCSI-2以相同的邏輯塊方式定址

二、 Bulk-Only傳輸協議

當一個U盤插入主機以後,主機會要求USB設備傳回它們的描述符,當主機得到這些描述符後,即完成了設備的配置。識別出USB設備是一個支持Bulk-Only傳輸協議的海量存儲設備。這時應可進行Bulk-Only傳輸方式。在此方式下USB與設備之間的數據傳輸都是通過Bulk-In和Bulk-Out來實現的。

硬碟,英文名稱是 Hard disk,發明於1950年。開始的時候,它的直徑長達20英寸;並且只能容納幾MB(兆位元組)的信息。最初的時候它並不稱為Hard disk ,而是叫做「fixed disk"或者"Winchester"(IBM產品流行的代碼名稱);如果在某些文獻里提到這些名詞,我們知道它們是硬碟就可以了。隨後,為了把 硬碟的名稱與"floppy disk"(軟盤)區分開來,它的名稱就演變成了"hard disk"。硬碟的內部有磁碟,作為保存信息的磁介質;而磁帶和軟盤裡面則使用柔韌的塑料薄膜作為磁介質。

在簡單的標准上,硬碟與盒式磁帶並沒有太大的區別。所有的硬碟和盒式磁帶都使用相同的磁性技術錄制信息,這點將在「磁帶錄音機是怎麼工作的有介紹」,但這已經不是屬於IT硬體的范疇了。硬碟和磁帶錄音機都從磁存儲技術獲得最大的效益--磁介質可以輕易地進行擦除和復寫,並且信息將記錄在磁軌里,儲存 的信息可以永久保存。
想明白硬碟工作原理的最好途徑是看清楚它的內部結構。注意:打開硬碟會損壞硬體,因此朋友們不要自己嘗試,當然你有一個損壞的硬碟就另當別論了。
硬碟使用了鋁片把表面給密封了起來,而另外的一邊則布滿了控制用的電子元件。電子控制器控制硬碟的讀/寫機制,還有轉動碟片的馬達。電子元件還把硬碟磁區域的信息匯編成byte(讀),並把bytes轉化為磁區域(寫)。這些電子元件被裝配在與硬碟碟片分開的小電路板上。
在電路板下面是連接碟片的馬達,還有採用了高度過濾的通風孔,以便維持硬碟內部和外部的空氣壓力平衡。
移開了硬碟的頂蓋之後,展現在大家眼前的是非常簡單但卻精密的內部結構。
碟片--當硬碟在工作的時候,它可以轉動5,400或者72,00 rpm(通常的情況下,當然最快也有10,000rpm,SCSI硬碟甚至達到了15,000rpm)。這些碟片製造的時候有驚人的精確度,並且表面如鏡子般光滑。(你甚至還在碟片里看到了作者的肖像)
臂--位於左上角,是用來保持磁頭的讀/寫 控制機制,能夠把磁頭從碟片的中心移動到硬碟的邊緣。臂和它的移動機制相當的輕,並且速度飛快。普通的硬碟每秒可以在碟片中心和邊緣之間來會移動50次,如果用肉眼看的話,速度真的是非常驚人。
為了增加硬碟儲存的信息量,很多硬碟都使用了多碟片的設計。我們打開的硬碟有三個碟片和6個讀/寫的磁頭。
硬碟裡面保持臂的移動速度和精確度都達到了不可置信的地步,它使用了高速的線性馬達。
很多硬碟使用了音圈(Voice coil)的方法來移動臂部--與你的立體聲系統中揚聲器使用的技術類似。

數據的儲存
數據儲存在碟片表面的扇區(Sector)和磁軌(track)里,磁軌是一系列的同心圓,而扇區則是磁軌組成的圓狀表面,如下:
上圖黃色部分展示的就是典型的磁軌,而藍色部分則是扇區。扇區包括了固定數量的byte---例如,256或者512byte。無論是在硬碟還是在操作系統水平,扇區都通常組成群集(cluster)。
硬碟的低級格式化過程在碟片上建立了扇區和磁軌,每個扇區的開始和結束部分都被寫到了碟片上,這個處理使硬碟准備開始以byte的形式保持數據。高級格式化則寫入文件儲存的結構,例如把文件分配表寫入到扇區,這個過程使硬碟准備保持文件。

⑺ 存儲器的基本結構原理

存儲器單元實際上是時序邏輯電路的一種。按存儲器的使用類型可分為只讀存儲器(ROM)和隨機存取存儲器(RAM),兩者的功能有較大的區別,因此在描述上也有所不同
存儲器是許多存儲單元的集合,按單元號順序排列。每個單元由若干三進制位構成,以表示存儲單元中存放的數值,這種結構和數組的結構非常相似,故在VHDL語言中,通常由數組描述存儲器

結構
存儲器結構在MCS - 51系列單片機中,程序存儲器和數據存儲器互相獨立,物理結構也不相同。程序存儲器為只讀存儲器,數據存儲器為隨機存取存儲器。從物理地址空間看,共有4個存儲地址空間,即片內程序存儲器、片外程序存儲器、片內數據存儲器和片外數據存儲器,I/O介面與外部數據存儲器統一編址

存儲器是用來存儲程序和各種數據信息的記憶部件。存儲器可分為主存儲器(簡稱主存或內存)和輔助存儲器(簡稱輔存或外存)兩大類。和CPU直接交換信息的是主存。
主存的工作方式是按存儲單元的地址存放或讀取各類信息,統稱訪問存儲器。主存中匯集存儲單元的載體稱為存儲體,存儲體中每個單元能夠存放一串二進制碼表示的信息,該信息的總位數稱為一個存儲單元的字長。存儲單元的地址與存儲在其中的信息是一一對應的,單元地址只有一個,固定不變,而存儲在其中的信息是可以更換的。
指示每個單元的二進制編碼稱為地址碼。尋找某個單元時,先要給出它的地址碼。暫存這個地址碼的寄存器叫存儲器地址寄存器(MAR)。為可存放從主存的存儲單元內取出的信息或准備存入某存儲單元的信息,還要設置一個存儲器數據寄存器(MDR)

⑻ 為什麼選擇矽片做做晶元它的信息存儲原理是什麼

硅材料具有耐高溫和抗輻射性能較好,特別適宜製作大功率器件的特性而成為應用最多的一種半導體材料,集成電路半導體器件大多數是用硅材料製造的。硅在室溫的化學性質很穩定,且現在的矽片加工工藝,很容易制備大尺寸平整度在納米級水平的矽片,使得該方法有望用於信息存儲技術。

單晶硅:熔融的單質硅在凝固時硅原子以金剛石晶格排列成許多晶核,如果這些晶核長成晶面取向相同的晶粒,則這些晶粒平行結合起來便結晶成單晶硅。單晶硅具有準金屬的物理性質,有較弱的導電性,其電導率隨溫度的升高而增加,有顯著的半導電性。

超純的單晶硅是本徵半導體。在超純單晶硅中摻入微量的ⅢA族元素,如硼可提高其導電的程度,而形成p型硅半導體;如摻入微量的ⅤA族元素,如磷或砷也可提高導電程度,形成n型硅半導體。

(8)存儲晶元工作原理擴展閱讀:

硅有明顯的非金屬特性,可以溶於鹼金屬氫氧化物溶液中,產生(偏)硅酸鹽和氫氣。

硅原子位於元素周期表第IV主族,它的原子序數為Z=14,核外有14個電子。電子在原子核外,按能級由低硅原子到高,由里到外,層層環繞,這稱為電子的殼層結構。硅原子的核外電子第一層有2個電子,第二層有8個電子,達到穩定態。

最外層有4個電子即為價電子,它對硅原子的導電性等方面起著主導作用。

正因為硅原子有如此結構,所以有其一些特殊的性質:最外層的4個價電子讓硅原子處於亞穩定結構,這些價電子使硅原子相互之間以共價鍵結合,由於共價鍵比較結實,硅具有較高的熔點和密度;

化學性質比較穩定,常溫下很難與其他物質(除氟化氫和鹼液以外)發生反應;硅晶體中沒有明顯的自由電子,能導電,但導電率不及金屬,且隨溫度升高而增加,具有半導體性質。

⑼ 各種存儲器的工作原理是什麼

1.按用途分類 ⑴內部存儲器 內部存儲器又叫內存,是主存儲器。用來存儲當前正在使用的或經常使用的程序和數據。CPU可以對他直接訪問,存取速度較快。 ⑵外部存儲器 外部存儲器又叫外存,是輔助寄存器。外存的特點是容量大,所存的信息既可以修改也可以保存。存取速度較慢,要用專用的設備來管理。 計算機工作時,一般由內存ROM中的引導程序啟動程序,再從外存中讀取系統程序和應用程序,送到內存的RAM中,程序運行的中間結果放在RAM中,(內存不夠是也可以放在外存中)程序的最終結果存入外部存儲器。
2.按存儲器的性質分類 ⑴RAM隨機存取存儲器(Random Access Memory) CPU根據RAM的地址將數據隨機的寫入或讀出。電源切斷後,所存數據全部丟失。按照集成電路內部結構不同,RAM又分為兩類: ①SRAM靜態RAM(Static RAM) 靜態RAM速度非常快,只要電源存在內容就不會消失。但他的基本存儲電路是由6個MOS管組成1位。集成度較低,功耗也較大。一般高速緩沖存儲器(Cache memory)用它組成。 ②DRAM動態RAM(Dynamic RAM) DRAM內容在 或 秒之後自動消失,因此必須周期性的在內容消失之前進行刷新(Refresh)。由於他的基本存儲電路由一個晶體管及一個電容組成,因此他的集成成本較低,另外耗電也少,但是需要刷新電路。⑵ROM只讀存儲器(Read Only Memory) ROM存儲器將程序及數據固化在晶元中,數據只能讀出不能寫入。電源關掉,數據也不會丟失。ROM按集成電路的內部結構可以分為:①PROM可編程ROM(Programable ROM )將設計的程序固化進去,ROM內容不可更改。②EPROM可擦除、可編程(Erasable PROM)可編程固化程序,且在程序固化後可通過紫外線光照擦除,以便重新固化新數據。③EEPROM電可擦除可編程(Electrically Erasable PROM) 可編程固化程序,並可利用電壓來擦除晶元內容,以便重新固化新數據。 3、按存儲介質分
(1)半導體存儲器。 存儲元件由半導體器件組成的叫半導體存儲器。其優點是體積小、功耗低、存取時間短。其缺點是當電源消失時,所存信息也隨即丟失,是一種易失性存儲器。
半導體存儲器又可按其材料的不同, 分為雙極型(TTL)半導體存儲器和MOS半導體存儲器兩種。 前者具有高速的特點,而後者具有高集成度的特點,並且製造簡單、成本低廉, 功耗小、故MOS半導體存儲器被廣泛應用。 (2)磁表面存儲器。 磁表面存儲器是在金屬或塑料基體的表面上塗一層磁性材料作為記錄介質,工作時磁層隨載磁體高速運轉,用磁頭在磁層上進行讀寫操作,故稱為磁表面存儲器。
按載磁體形狀的不同,可分為磁碟、磁帶和磁鼓。現代計算機已很少採用磁鼓。由於用具有矩形磁滯回線特性的材料作磁表面物質,它們按其剩磁狀態的不同而區分「0」或「1」,而且剩磁狀態不會輕易丟失,故這類存儲器具有非易失性的特點。
(3)光碟存儲器。 光碟存儲器是應用激光在記錄介質(磁光材料)上進行讀寫的存儲器,具有非易失性的特點。光碟記錄密度高、耐用性好、可靠性高和可互換性強等。 4、按存取方式分類
按存取方式可把存儲器分為隨機存儲器、只讀存儲器、順序存儲器和直接存取存儲器四類。
(1)隨機存儲器RAM RAM是一種可讀寫存儲器, 其特點是存儲器的任何一個存儲單元的內容都可以隨機存取,而且存取時間與存儲單元的物理位置無關。計算機系統中的主存都採用這種隨機存儲器。由於存儲信息原理的不同, RAM又分為靜態RAM (以觸發器原理寄存信息)和動態RAM(以電容充放電原理寄存信息)。
(2)只讀存儲器 只讀存儲器是能對其存儲的內容讀出,而不能對其重新寫入的存儲器。這種存儲器一旦存入了原始信息後,在程序執行過程中,只能將內部信息讀出,而不能隨意重新寫入新的信息去改變原始信息。因此,通常用它存放固定不變的程序、常數以及漢字字型檔,甚至用於操作系統的固化。它與隨機存儲器可共同作為主存的一部分,統一構成主存的地址域。
只讀存儲器分為掩膜型只讀存儲器MROM(Masked ROM)、可編程只讀存儲器PROM(Programmable ROM)、可擦除可編程只讀存儲器EPROM(Erasable Programmable ROM)、用電可擦除可編程的只讀存儲器EEPROM(Electrically Erasable Programmable ROM)。以及近年來出現了的快擦型存儲器Flash Memory,它具有EEPROM的特點,而速度比EEPROM快得多。
(3)串列訪問存儲器 如果對存儲單元進行讀寫操作時,需按其物理位置的先後順序尋找地址,則這種存儲器叫做串列訪問存儲器。顯然這種存儲器由於信息所在位置不同,使得讀寫時間均不相同。如磁帶存儲器,不論信息處在哪個位置,讀寫時必須從其介質的始端開始按順序尋找,故這類串列訪問的存儲器又叫順序存取存儲器。還有一種屬於部分串列訪問的存儲器,如磁碟。在對磁碟讀寫時,首先直接指出該存儲器中的某個小區域(磁軌),然後再順序尋訪,直至找到位置。故其前段是直接訪問,後段是串列訪問,也稱其為半順序存取存儲器。

⑽ 存儲器工作原理 DRAM晶元和CPU

1、這里只介紹動態存儲器(DRAM)的工作原理。動態存儲器每片只有一條輸入數據線,而地址引腳只有舉祥卜8條正穗。為了形成64K地址,必須在系統地址匯流排和晶元地址引線之間專門設計一個地址形成電路。

使系統地址匯流排信號能宴芹分時地加到8個地址的引腳上,藉助晶元內部的行鎖存器、列鎖存器和解碼電路選定晶元內的存儲單元,鎖存信號也靠著外部地址電路產生。

2、當要從DRAM晶元中讀出數據時,CPU首先將行地址加在A0-A7上,而後送出RAS鎖存信號,該信號的下降沿將地址鎖存在晶元內部。

接著將列地址加到晶元的A0-A7上,再送CAS鎖存信號,也是在信號的下降沿將列地址鎖存在晶元內部。然後保持WE=1,則在CAS有效期間數據輸出並保持。

當需要把數據寫入晶元時,行列地址先後將RAS和CAS鎖存在晶元內部,然後,WE有效,加上要寫入的數據,則將該數據寫入選中的存貯單元。

3、由於電容不可能長期保持電荷不變,必須定時對動態存儲電路的各存儲單元執行重讀操作,以保持電荷穩定,這個過程稱為動態存儲器刷新。PC/XT機中DRAM的刷新是利用DMA實現的。

首先應用可編程定時器8253的計數器1,每隔1⒌12μs產生一次DMA請求,該請求加在DMA控制器的0通道上。當DMA控制器0通道的請求得到響應時,DMA控制器送出到刷新地址信號,對動態存儲器執行讀操作,每讀一次刷新一行。