當前位置:首頁 » 服務存儲 » 存儲器的變化說明了什麼
擴展閱讀
webinf下怎麼引入js 2023-08-31 21:54:13
堡壘機怎麼打開web 2023-08-31 21:54:11

存儲器的變化說明了什麼

發布時間: 2023-05-27 03:18:43

存儲器中數據的讀寫會引起存儲單元怎樣的變化

你問的應該是存儲器原理吧!
存儲器:用來存放計算機中的所有信息:包括程序、原始數據、運算的中間結果及最終結果等。
只讀存儲器(ROM):只讀存儲器在使用時,只能讀出而不能寫入,斷電後ROM中的信息不會丟失。因此一般用來存放一些固定程序,如監控程序、子程序、字型檔及數據表等。ROM按存儲信息的方法又可分為以下幾種:
1、掩膜ROM:
掩膜ROM也稱固定ROM,它是由廠家編好程序寫入ROM(稱固化)供用戶使用,用戶不能更改內部程序,其特點是價格便宜。
2、可編程的只讀存儲器(PROM):
它的內容可由用戶根據自已所編程序一次性寫入,一旦寫入,只能讀出,而不能再進行更改,這類存儲器現在也稱為OTP(Only Time Programmable)。
3、可改寫的只讀存儲器EPROM:
前兩種ROM只能進行一次性寫入,因而用戶較少使用,目前較為流行的ROM晶元為EPROM。因為它的內容可以通過紫外線照射而徹底擦除,擦除後又可重新寫入新的程序。
4、可電改寫只讀存儲器(EEPROM):
EEPROM可用電的方法寫入和清除其內容,其編程電壓和清除電壓均與微機CPU的5V工作電壓相同,不需另加電壓。它既有與RAM一樣讀寫操作簡便,又有數據不會因掉電而丟失的優點,因而使用極為方便。現在這種存儲器的使用最為廣泛。
隨機存儲器(RAM):
這種存儲器又叫讀寫存儲器。它不僅能讀取存放在存儲單元中的數據,還能隨時寫入新的數據,寫入後原來的數據就丟失了。斷電後RAM中的信息全部丟失。因些,RAM常用於存放經常要改變的程序或中間計算結果等信息。
RAM按照存儲信息的方式,又可分為靜態和動態兩種。
1、靜態SRAM:其特點是只要有電源加於存儲器,數據就能長期保存。
2、動態DRAM:寫入的信息只能保存若干ms時間,因此,每隔一定時間必須重新寫入一次,以保持原來的信息不變。
可現場改寫的非易失性存儲器:
這種存儲器的特點是:從原理上看,它們屬於ROM型存儲器,從功能上看,它們又可以隨時改寫信息,作用又相當於RAM。所以,ROM、RAM的定義和劃分已逐漸的失去意義。
1、快擦寫存儲器(FLASH)
這種存儲器是在EPROM和EEPROM的製造基礎上產生的一種非易失性存儲器。其集成度高,製造成本低於DRAM,既具有SRAM讀寫的靈活性和較快的訪問速度,又具有ROM在斷電後可不丟失信息的特點,所以發展迅速。
2、鐵電存儲器FRAM
它是利用鐵電材料極化方向來存儲數據的。它的特點是集成度高,讀寫速度快,成本低,讀寫周期短。

㈡ 存儲設備變更什麼意思啊

改變存儲設備。存儲設備是用於儲存信息的設備或設備。通常是將信息數字化後再以利用電、磁或光學等方磨鎮鍵式的媒體加以存儲。常見的存儲設備(電腦數據存貯器)有:具體外部存儲設備(英語:External storage)的例子如:內部存儲器是可以被電腦的中央處理器直接訪問而不需要通過輸入輸出設備的存儲設備。內部存儲器一般用來存儲運算時的數據。內存一般速度很快,例如隨機存儲器(RAM)。RAM也是非永久性存儲器,在斷電的時候,將失去所存儲的內容。只讀存儲器就不是易失去內容的,但不適合用來存儲大量的數據,因為其造價的昂貴。通常,只讀存儲器在寫內容進去之前也必須完全的擦除原來的內容,這使得大規模的使用它不切實際。所以,單獨的輔助存貯器或者叫外部存儲器通常被用來保存長期的穩定的數據。有時候,主存儲器這個術語被混淆的使用在在線存儲和硬碟上,而這些都通常應歸類為輔助存儲器。主存儲器可能包括幾種不同的設備,例如CPU緩存,以及特殊的處理器寄存器,這些都能直接被處理器訪問,主存儲器可以被隨機的訪問,那就是在任何時間訪問任何瞎巧位置都用相同的時間。典型的位置信息使用內存的物理地址。無論存儲的內容怎麼變化,物理地址是不變的。所有能與計算機配合使用,方便進行信息儲存的對象都屬於此類設備。不一定帶有轉動的部分,或位置於計算機外部旅衫。如以下各例:硬碟ZIP存儲器光碟刻錄機

㈢ 電腦中的內存是什麼為什麼會不停變化

在計算機的組成結構中,有一個很重要的部分,就是存儲器。存儲器是用來存儲程序和數據的部件,對於計算機來說,有了存儲器,才有記憶功能,才能保證正常工作。存儲器的種類很多,按其用途可分為主存儲器和輔助存儲器,主存儲器又稱內存儲器(簡稱內存).內存在電腦中起著舉足輕重的作用。內存一般採用半導體存儲單元,包括隨機存儲器(RAM),只讀存儲器(ROM),以及高速緩存(CACHE)。只不過因為RAM是其中最重要的存儲器。S(SYSNECRONOUS)DRAM 同步動態隨機存取存儲器:SDRAM為168腳,這是目前PENTIUM及以上機型使用的內存。SDRAM將CPU與RAM通過一個相同的時鍾鎖在一起,使CPU和RAM能夠共享一個時鍾周期,以相同的速度同步工作,每一個時鍾脈沖的上升沿便開始傳遞數據,速度比EDO內存提高50%。DDR(DOUBLE DATA RAGE)RAM :SDRAM的更新換代產品,他允許在時鍾脈沖的上升沿和下降沿傳輸數據,這樣不需要提高時鍾的頻率就能加倍提高SDRAM的速度。

●內存

內存就是存儲程序以及數據的地方,比如當我們在使用WPS處理文稿時,當你在鍵盤上敲入字元時,它就被存入內存中,當你選擇存檔時,內存中的數據才會被存入硬(磁)盤。在進一步理解它之前,還應認識一下它的物理概念。

●只讀存儲器(ROM)

ROM表示只讀存儲器(Read Only Memory),在製造ROM的時候,信息(數據或程序)就被存入並永久保存。這些信息只能讀出,一般不能寫入,即使機器掉電,這些數據也不會丟失。ROM一般用於存放計算機的基本程序和數據,如BIOS ROM。其物理外形一般是雙列直插式(DIP)的集成塊。

●隨機存儲器(RAM)

隨機存儲器(Random Access Memory)表示既可以從中讀取數據,也可以寫入數據。當機器電源關閉時,存於其中的數據就會丟失。我們通常購買或升級的內存條就是用作電腦的內存,內存條(SIMM)就是將RAM集成塊集中在一起的一小塊電路板,它插在計算機中的內存插槽上,以減少RAM集成塊佔用的空間。目前市場上常見的內存條有128M/條、256M/條、512M/條等。

●高速緩沖存儲器(Cache)

Cache也是我們經常遇到的概念,它位於CPU與內存之間,是一個讀寫速度比內存更快的存儲器。當CPU向內存中寫入或讀出數據時,這個數據也被存儲進高速緩沖存儲器中。當CPU再次需要這些數據時,CPU就從高速緩沖存儲器讀取數據,而不是訪問較慢的內存,當然,如需要的數據在Cache中沒有,CPU會再去讀取內存中的數據。

當你理解了上述概念後,也許你會問,內存就是內存,為什麼又會出現各種內存名詞,這到底又是怎麼回事呢?

在回答這個問題之前,我們再來看看下面這一段。

物理存儲器和地址空間

物理存儲器和存儲地址空間是兩個不同的概念。但是由於這兩者有十分密切的關系,而且兩者都用B、KB、MB、GB來度量其容量大小,因此容易產生認識上的混淆。初學者弄清這兩個不同的概念,有助於進一步認識內存儲器和用好內存儲器。

物理存儲器是指實際存在的具體存儲器晶元。如主板上裝插的內存條和裝載有系統的BIOS的ROM晶元,顯示卡上的顯示RAM晶元和裝載顯示BIOS的ROM晶元,以及各種適配卡上的RAM晶元和ROM晶元都是物理存儲器。

存儲地址空間是指對存儲器編碼(編碼地址)的范圍。所謂編碼就是對每一個物理存儲單元(一個位元組)分配一個號碼,通常叫作「編址」。分配一個號碼給一個存儲單元的目的是為了便於找到它,完成數據的讀寫,這就是所謂的「定址」(所以,有人也把地址空間稱為定址空間)。

地址空間的大小和物理存儲器的大小並不一定相等。舉個例子來說明這個問題:某層樓共有17個房間,其編號為801~817。這17個房間是物理的,而其地址空間採用了三位編碼,其范圍是800~899共100個地址,可見地址空間是大於實際房間數量的。

對於386以上檔次的微機,其地址匯流排為32位,因此地址空間可達232即4GB。但實際上我們所配置的物理存儲器通常只有1MB、2MB、4MB、8MB、16MB、32MB等,遠小於地址空間所允許的范圍。

好了,現在可以解釋為什麼會產生諸如:常規內存、保留內存、上位內存、高端內存、擴充內存和擴展內存等不同內存類型。

各種內存概念

這里需要明確的是,我們討論的不同內存的概念是建立在定址空間上的。

IBM推出的第一台PC機採用的CPU是8088晶元,它只有20根地址線,也就是說,它的地址空間是1MB。

PC機的設計師將1MB中的低端640KB用作RAM,供DOS及應用程序使用,高端的384KB則保留給ROM、視頻適配卡等系統使用。從此,這個界限便被確定了下來並且沿用至今。低端的640KB就被稱為常規內存即PC機的基本RAM區。保留內存中的低128KB是顯示緩沖區,高64KB是系統BIOS(基本輸入/輸出系統)空間,其餘192KB空間留用。從對應的物理存儲器來看,基本內存區只使用了512KB晶元,佔用0000至80000這512KB地址。顯示內存區雖有128KB空間,但對單色顯示器(MDA卡)只需4KB就足夠了,因此只安裝4KB的物理存儲器晶元,佔用了B0000至B10000這4KB的空間,如果使用彩色顯示器(CGA卡)需要安裝16KB的物理存儲器,佔用B8000至BC000這16KB的空間,可見實際使用的地址范圍都小於允許使用的地址空間。

在當時(1980年末至1981年初)這么「大」容量的內存對PC機使用者來說似乎已經足夠了,但是隨著程序的不斷增大,圖象和聲音的不斷豐富,以及能訪問更大內存空間的新型CPU相繼出現,最初的PC機和MS-DOS設計的局限性變得越來越明顯。

1.什麼是擴充內存?

EMS工作原理

到1984年,即286被普遍接受不久,人們越來越認識到640KB的限制已成為大型程序的障礙,這時,Intel和Lotus,這兩家硬、軟體的傑出代表,聯手制定了一個由硬體和軟體相結合的方案,此方法使所有PC機存取640KB以上RAM成為可能。而Microsoft剛推出Windows不久,對內存空間的要求也很高,因此它也及時加入了該行列。

在1985年初,Lotus、Intel和Microsoft三家共同定義了LIM-EMS,即擴充內存規范,通常稱EMS為擴充內存。當時,EMS需要一個安裝在I/O槽口的內存擴充卡和一個稱為EMS的擴充內存管理程序方可使用。但是I/O插槽的地址線只有24位(ISA匯流排),這對於386以上檔次的32位機是不能適應的。所以,現在已很少使用內存擴充卡。現在微機中的擴充內存通常是用軟體如DOS中的EMM386把擴展內存模擬或擴充內存來使用。所以,擴充內存和擴展內存的區別並不在於其物理存儲器的位置,而在於使用什麼方法來讀寫它。下面將作進一步介紹。

前面已經說過擴充存儲器也可以由擴展存儲器模擬轉換而成。EMS的原理和XMS不同,它採用了頁幀方式。頁幀是在1MB空間中指定一塊64KB空間(通常在保留內存區內,但其物理存儲器來自擴展存儲器),分為4頁,每頁16KB。EMS存儲器也按16KB分頁,每次可交換4頁內容,以此方式可訪問全部EMS存儲器。符合EMS的驅動程序很多,常用的有EMM386.EXE、QEMM、TurboEMS、386MAX等。DOS和Windows中都提供了EMM386.EXE。

2.什麼是擴展內存?

我們知道,286有24位地址線,它可定址16MB的地址空間,而386有32位地址線,它可定址高達4GB的地址空間,為了區別起見,我們把1MB以上的地址空間稱為擴展內存XMS(eXtend memory)。

在386以上檔次的微機中,有兩種存儲器工作方式,一種稱為實地址方式或實方式,另一種稱為保護方式。在實方式下,物理地址仍使用20位,所以最大定址空間為1MB,以便與8086兼容。保護方式採用32位物理地址,定址范圍可達4GB。DOS系統在實方式下工作,它管理的內存空間仍為1MB,因此它不能直接使用擴展存儲器。為此,Lotus、Intel、AST及Microsoft公司建立了MS-DOS下擴展內存的使用標准,即擴展內存規范XMS。我們常在Config.sys文件中看到的Himem.sys就是管理擴展內存的驅動程序。

擴展內存管理規范的出現遲於擴充內存管理規范。

3.什麼是高端內存區?

在實方式下,內存單元的地址可記為:

段地址:段內偏移

通常用十六進制寫為XXXX:XXXX。實際的物理地址由段地址左移4位再和段內偏移相加而成。若地址各位均為1時,即為FFFF:FFFF。其實際物理地址為:FFF0+FFFF=10FFEF,約為1088KB(少16位元組),這已超過1MB范圍進入擴展內存了。這個進入擴展內存的區域約為64KB,是1MB以上空間的第一個64KB。我們把它稱為高端內存區HMA(High Memory Area)。HMA的物理存儲器是由擴展存儲器取得的。因此要使用HMA,必須要有物理的擴展存儲器存在。此外HMA的建立和使用還需要XMS驅動程序HIMEM.SYS的支持,因此只有裝入了HIMEM.SYS之後才能使用HMA。

4.什麼是上位內存?

為了解釋上位內存的概念,我們還得回過頭看看保留內存區。保留內存區是指640KB~1024KB(共384KB)區域。這部分區域在PC誕生之初就明確是保留給系統使用的,用戶程序無法插足。但這部分空間並沒有充分使用,因此大家都想對剩餘的部分打主意,分一塊地址空間(注意:是地址空間,而不是物理存儲器)來使用。於是就得到了又一塊內存區域UMB。

UMB(Upper Memory Blocks)稱為上位內存或上位內存塊。它是由擠占保留內存中剩餘未用的空間而產生的,它的物理存儲器仍然取自物理的擴展存儲器,它的管理驅動程序是EMS驅動程序。

5.什麼是SHADOW(影子)內存?

對於細心的讀者,可能還會發現一個問題:即是對於裝有1MB或1MB以上物理存儲器的機器,其640KB~1024KB這部分物理存儲器如何使用的問題。由於這部分地址空間已分配為系統使用,所以不能再重復使用。為了利用這部分物理存儲器,在某些386系統中,提供了一個重定位功能,即把這部分物理存儲器的地址重定位為1024KB~1408KB。這樣,這部分物理存儲器就變成了擴展存儲器,當然可以使用了。但這種重定位功能在當今高檔機器中不再使用,而把這部分物理存儲器保留作為Shadow存儲器。Shadow存儲器可以占據的地址空間與對應的ROM是相同的。Shadow由RAM組成,其速度大大高於ROM。當把ROM中的內容(各種BIOS程序)裝入相同地址的Shadow RAM中,就可以從RAM中訪問BIOS,而不必再訪問ROM。這樣將大大提高系統性能。因此在設置CMOS參數時,應將相應的Shadow區設為允許使用(Enabled)。

6、什麼是奇/偶校驗?

奇/偶校驗(ECC)是數據傳送時採用的一種校正數據錯誤的一種方式,分為奇校驗和偶校驗兩種。

如果是採用奇校驗,在傳送每一個位元組的時候另外附加一位作為校驗位,當實際數據中「1」的個數為偶數的時候,這個校驗位就是「1」,否則這個校驗位就是「0」,這樣就可以保證傳送數據滿足奇校驗的要求。在接收方收到數據時,將按照奇校驗的要求檢測數據中「1」的個數,如果是奇數,表示傳送正確,否則表示傳送錯誤。

同理偶校驗的過程和奇校驗的過程一樣,只是檢測數據中「1」的個數為偶數。

總 結

經過上面分析,內存儲器的劃分可歸納如下:

●基本內存 占據0~640KB地址空間。

●保留內存 占據640KB~1024KB地址空間。分配給顯示緩沖存儲器、各適配卡上的ROM和系統ROM BIOS,剩餘空間可作上位內存UMB。UMB的物理存儲器取自物理擴展存儲器。此范圍的物理RAM可作為Shadow RAM使用。

●上位內存(UMB) 利用保留內存中未分配使用的地址空間建立,其物理存儲器由物理擴展存儲器取得。UMB由EMS管理,其大小可由EMS驅動程序設定。

●高端內存(HMA) 擴展內存中的第一個64KB區域(1024KB~1088KB)。由HIMEM.SYS建立和管理。

●XMS內存 符合XMS規范管理的擴展內存區。其驅動程序為HIMEM.SYS。

●EMS內存 符合EMS規范管理的擴充內存區。其驅動程序為EMM386.EXE等。
開放分類:
硬體、電腦

參考資料:
1.網路知道

貢獻者:
ben_kasim、lewuyang、戰狐、胡呵、luinsoft
回答者:Apexcc - 經理 四級 8-1 13:12

什麼是內存呢?在計算機的組成結構中,有一個很重要的部分,就是存儲器。存儲器是用來存儲程序和數據的部件,對於計算機來說,有了存儲器,才有記憶功能,才能保證正常工作。存儲器的種類很多,按其用途可分為主存儲器和輔助存儲器,主存儲器又稱內存儲器(簡稱內存),輔助存儲器又稱外存儲器(簡稱外存)。外存通常是磁性介質或光碟,像硬碟,軟盤,磁帶,CD等,能長期保存信息,並且不依賴於電來保存信息,但是由機械部件帶動,速度與CPU相比就顯得慢的多。內存指的就是主板上的存儲部件,是CPU直接與之溝通,並用其存儲數據的部件,存放當前正在使用的(即執行中)的數據和程序,它的物理實質就是一組或多組具備數據輸入輸出和數據存儲功能的集成電路,內存只用於暫時存放程序和數據,一旦關閉電源或發生斷電,其中的程序和數據就會丟失。

既然內存是用來存放當前正在使用的(即執行中)的數據和程序,那麼它是怎麼工作的呢?我們平常所提到的計算機的內存指的是動態內存(即DRAM),動態內存中所謂的「動態」,指的是當我們將數據寫入DRAM後,經過一段時間,數據會丟失,因此需要一個額外設電路進行內存刷新操作。具體的工作過程是這樣的:一個DRAM的存儲單元存儲的是0還是1取決於電容是否有電荷,有電荷代表1,無電荷代表0。但時間一長,代表1的電容會放電,代表0的電容會吸收電荷,這就是數據丟失的原因;刷新操作定期對電容進行檢查,若電量大於滿電量的1/2,則認為其代表1,並把電容充滿電;若電量小於1/2,則認為其代表0,並把電容放電,藉此來保持數據的連續性。

從一有計算機開始,就有內存。內存發展到今天也經歷了很多次的技術改進,從最早的DRAM一直到FPMDRAM、EDODRAM、SDRAM等,內存的速度一直在提高且容量也在不斷的增加。今天,伺服器主要使用的是什麼樣的內存呢?目前,IA架構的伺服器普遍使用的是REG�ISTEREDECCSDRAM,下一期我們將詳細介紹這一全新的內存技術及它給伺服器帶來的獨特的技術優勢。

㈣ 求微型計算機原理的期末論文。關於內存或者是CPU的。100分。

淺論計算機內存

[編輯本段]【內存簡介】
在計算機的組成結構中,有一個很重要的部分,就是存儲器。存儲器是用來存儲程序和數據的部件,對於計算機來說,有了存儲器,才有記憶功能,才能保證正常工作。存儲器的種類很多,按其用途可分為主存儲器和輔助存儲器,主存儲器又稱內存儲器(簡稱內存,港台稱之為記憶體)。
內存是電腦中的主要部件,它是相對於外存而言的。我們平常使用的程序,如Windows操作系統、打字軟體、游戲軟體等,一般都是安裝在硬碟等外存上的,但僅此是不能使用其功能的,必須把它們調入內存中運行,才能真正使用其功能,我們平時輸入一段文字,或玩一個游戲,其實都是在內存中進行的。通常我們把要永久保存的、大量的數據存儲在外存上,而把一些臨時的或少量的數據和程序放在內存上,當然內存的好壞會直接影響電腦的運行速度。
[編輯本段]【內存概述】
內存就是存儲程序以及數據的地方,比如當我們在使用WPS處理文稿時,當你在鍵盤上敲入字元時,它就被存入內存中,當你選擇存檔時,內存中的數據才會被存入硬(磁)盤。在進一步理解它之前,還應認識一下它的物理概念。
內存一般採用半導體存儲單元,包括隨機存儲器(RAM),只讀存儲器(ROM),以及高速緩存(CACHE)。只不過因為RAM是其中最重要的存儲器。S(synchronous)DRAM 同步動態隨機存取存儲器:SDRAM為168腳,這是目前PENTIUM及以上機型使用的內存。SDRAM將CPU與RAM通過一個相同的時鍾鎖在一起,使CPU和RAM能夠共享一個時鍾周期,以相同的速度同步工作,每一個時鍾脈沖的上升沿便開宏亂雀始傳遞數據,速度比EDO內存提高50%。DDR(DOUBLE DATA RATE)RAM :SDRAM的更新換代產品,他允許在時鍾脈沖的上升沿和下降沿傳輸數據,這樣不需要提高時鍾的頻率就能加倍提高SDRAM的速度。
●只讀存儲器(ROM)
ROM表示只讀存儲器(Read Only Memory),在製造ROM的時候,信息(數據或程序)就被存入並永久保存。這些信息只能讀出,一般不能寫入,即使機器掉電,這些數據也不會丟失。ROM一般用於存放計算機的基本程序和數據,如BIOS ROM。其物理外形一般是雙列直插式(DIP)的集成塊。
●隨機存儲器(RAM)

隨機存儲器(Random Access Memory)表示既可以從中讀取數據,也可以寫入數據。當機器電源關閉時,存於其中的數據就會丟失。我們通常購買或升級的內存條就是用作電腦的內存,內存條(SIMM)就是將RAM集成塊集中在一起的一小塊電路板,它插在計算機中的內存插槽上,以減少RAM集成塊佔用的空間。目前市場上常見的內存條有1G/條,2G/條,4G/條等。
●高速緩沖存儲器(Cache)

Cache也是我們經常遇到的概念,也就是平常看到的一級緩存(L1 Cache)、二級緩存(L2 Cache)、三級緩存(L3 Cache)這些數據,它位於CPU與內存之間,是一個讀寫速度比內存更快的存儲器。當CPU向內存中寫入或讀出數據時,這個數據也被存儲進高速緩沖存陪鋒儲器中。當CPU再次需要這些數據時,CPU就從高速緩沖存儲器讀取數據,而不是訪問較慢的內存,當然,如需要的數據在Cache中沒有,CPU會再去讀取內存中的數蔽早據。
●物理存儲器和地址空間
物理存儲器和存儲地址空間是兩個不同的概念。但是由於這兩者有十分密切的關系,而且兩者都用B、KB、MB、GB來度量其容量大小,因此容易產生認識上的混淆。初學者弄清這兩個不同的概念,有助於進一步認識內存儲器和用好內存儲器。
物理存儲器是指實際存在的具體存儲器晶元。如主板上裝插的內存條和裝載有系統的BIOS的ROM晶元,顯示卡上的顯示RAM晶元和裝載顯示BIOS的ROM晶元,以及各種適配卡上的RAM晶元和ROM晶元都是物理存儲器。
存儲地址空間是指對存儲器編碼(編碼地址)的范圍。所謂編碼就是對每一個物理存儲單元(一個位元組)分配一個號碼,通常叫作「編址」。分配一個號碼給一個存儲單元的目的是為了便於找到它,完成數據的讀寫,這就是所謂的「定址」(所以,有人也把地址空間稱為定址空間)。
地址空間的大小和物理存儲器的大小並不一定相等。舉個例子來說明這個問題:某層樓共有17個房間,其編號為801~817。這17個房間是物理的,而其地址空間採用了三位編碼,其范圍是800~899共100個地址,可見地址空間是大於實際房間數量的。
對於386以上檔次的微機,其地址匯流排為32位,因此地址空間可達2的32次方,即4GB。(但是我們常見的32位操作系統windows xp卻最多隻能識別或者使用3.25G的內存,即使64位的操作系統vista雖然能識別4G的內存,卻也最多隻能使用3.25G的內存。)
好了,現在可以解釋為什麼會產生諸如:常規內存、保留內存、上位內存、高端內存、擴充內存和擴展內存等不同內存類型。
[編輯本段]【內存概念】
各種內存概念
這里需要明確的是,我們討論的不同內存的概念是建立在定址空間上的。
IBM推出的第一台PC機採用的CPU是8088晶元,它只有20根地址線,也就是說,它的地址空間是1MB。
PC機的設計師將1MB中的低端640KB用作RAM,供DOS及應用程序使用,高端的384KB則保留給ROM、視頻適配卡等系統使用。從此,這個界限便被確定了下來並且沿用至今。低端的640KB就被稱為常規內存即PC機的基本RAM區。保留內存中的低128KB是顯示緩沖區,高64KB是系統BIOS(基本輸入/輸出系統)空間,其餘192KB空間留用。從對應的物理存儲器來看,基本內存區只使用了512KB晶元,佔用0000至7FFFF這512KB地址。顯示內存區雖有128KB空間,但對單色顯示器(MDA卡)只需4KB就足夠了,因此只安裝4KB的物理存儲器晶元,佔用了B0000至B0FFF這4KB的空間,如果使用彩色顯示器(CGA卡)需要安裝16KB的物理存儲器,佔用B8000至BBFFF這16KB的空間,可見實際使用的地址范圍都小於允許使用的地址空間。
在當時(1980年末至1981年初)這么「大」容量的內存對PC機使用者來說似乎已經足夠了,但是隨著程序的不斷增大,圖象和聲音的不斷豐富,以及能訪問更大內存空間的新型CPU相繼出現,最初的PC機和MS-DOS設計的局限性變得越來越明顯。
●1.什麼是擴充內存?
到1984年,即286被普遍接受不久,人們越來越認識到640KB的限制已成為大型程序的障礙,這時,Intel和Lotus,這兩家硬、軟體的傑出代表,聯手制定了一個由硬體和軟體相結合的方案,此方法使所有PC機存取640KB以上RAM成為可能。而Microsoft剛推出Windows不久,對內存空間的要求也很高,因此它也及時加入了該行列。
在1985年初,Lotus、Intel和Microsoft三家共同定義了LIM-EMS,即擴充內存規范,通常稱EMS為擴充內存。當時,EMS需要一個安裝在I/O槽口的內存擴充卡和一個稱為EMS的擴充內存管理程序方可使用。但是I/O插槽的地址線只有24位(ISA匯流排),這對於386以上檔次的32位機是不能適應的。所以,現在已很少使用內存擴充卡。現在微機中的擴充內存通常是用軟體如DOS中的EMM386把擴展內存模擬或擴充內存來使用。所以,擴充內存和擴展內存的區別並不在於其物理存儲器的位置,而在於使用什麼方法來讀寫它。下面將作進一步介紹。
前面已經說過擴充存儲器也可以由擴展存儲器模擬轉換而成。EMS的原理和XMS不同,它採用了頁幀方式。頁幀是在1MB空間中指定一塊64KB空間(通常在保留內存區內,但其物理存儲器來自擴展存儲器),分為4頁,每頁16KB。EMS存儲器也按16KB分頁,每次可交換4頁內容,以此方式可訪問全部EMS存儲器。符合EMS的驅動程序很多,常用的有EMM386.EXE、QEMM、TurboEMS、386MAX等。DOS和Windows中都提供了EMM386.EXE。
●2.什麼是擴展內存?
我們知道,286有24位地址線,它可定址16MB的地址空間,而386有32位地址線,它可定址高達4GB的地址空間,為了區別起見,我們把1MB以上的地址空間稱為擴展內存XMS(eXtend memory)。
在386以上檔次的微機中,有兩種存儲器工作方式,一種稱為實地址方式或實方式,另一種稱為保護方式。在實方式下,物理地址仍使用20位,所以最大定址空間為1MB,以便與8086兼容。保護方式採用32位物理地址,定址范圍可達4GB。DOS系統在實方式下工作,它管理的內存空間仍為1MB,因此它不能直接使用擴展存儲器。為此,Lotus、Intel、AST及Microsoft公司建立了MS-DOS下擴展內存的使用標准,即擴展內存規范XMS。我們常在Config.sys文件中看到的Himem.sys就是管理擴展內存的驅動程序。
擴展內存管理規范的出現遲於擴充內存管理規范。
●3.什麼是高端內存區?
在實方式下,內存單元的地址可記為:
段地址:段內偏移
通常用十六進制寫為XXXX:XXXX。實際的物理地址由段地址左移4位再和段內偏移相加而成。若地址各位均為1時,即為FFFF:FFFF。其實際物理地址為:FFF0+FFFF=10FFEF,約為1088KB(少16位元組),這已超過1MB范圍進入擴展內存了。這個進入擴展內存的區域約為64KB,是1MB以上空間的第一個64KB。我們把它稱為高端內存區HMA(High Memory Area)。HMA的物理存儲器是由擴展存儲器取得的。因此要使用HMA,必須要有物理的擴展存儲器存在。此外HMA的建立和使用還需要XMS驅動程序HIMEM.SYS的支持,因此只有裝入了HIMEM.SYS之後才能使用HMA。
●4.什麼是上位內存?
為了解釋上位內存的概念,我們還得回過頭看看保留內存區。保留內存區是指640KB~1024KB(共384KB)區域。這部分區域在PC誕生之初就明確是保留給系統使用的,用戶程序無法插足。但這部分空間並沒有充分使用,因此大家都想對剩餘的部分打主意,分一塊地址空間(注意:是地址空間,而不是物理存儲器)來使用。於是就得到了又一塊內存區域UMB。
UMB(Upper Memory Blocks)稱為上位內存或上位內存塊。它是由擠占保留內存中剩餘未用的空間而產生的,它的物理存儲器仍然取自物理的擴展存儲器,它的管理驅動程序是EMS驅動程序。
●5.什麼是SHADOW(影子)內存?
對於細心的讀者,可能還會發現一個問題:即是對於裝有1MB或1MB以上物理存儲器的機器,其640KB~1024KB這部分物理存儲器如何使用的問題。由於這部分地址空間已分配為系統使用,所以不能再重復使用。為了利用這部分物理存儲器,在某些386系統中,提供了一個重定位功能,即把這部分物理存儲器的地址重定位為1024KB~1408KB。這樣,這部分物理存儲器就變成了擴展存儲器,當然可以使用了。但這種重定位功能在當今高檔機器中不再使用,而把這部分物理存儲器保留作為Shadow存儲器。Shadow存儲器可以占據的地址空間與對應的ROM是相同的。Shadow由RAM組成,其速度大大高於ROM。當把ROM中的內容(各種BIOS程序)裝入相同地址的Shadow RAM中,就可以從RAM中訪問BIOS,而不必再訪問ROM。這樣將大大提高系統性能。因此在設置CMOS參數時,應將相應的Shadow區設為允許使用(Enabled)。
●6、什麼是奇/偶校驗?
奇/偶校驗(ECC)是數據傳送時採用的一種校正數據錯誤的一種方式,分為奇校驗和偶校驗兩種。
如果是採用奇校驗,在傳送每一個位元組的時候另外附加一位作為校驗位,當實際數據中「1」的個數為偶數的時候,這個校驗位就是「1」,否則這個校驗位就是「0」,這樣就可以保證傳送數據滿足奇校驗的要求。在接收方收到數據時,將按照奇校驗的要求檢測數據中「1」的個數,如果是奇數,表示傳送正確,否則表示傳送錯誤。
同理偶校驗的過程和奇校驗的過程一樣,只是檢測數據中「1」的個數為偶數。
●1.什麼是CL延遲?
CL反應時間是衡定內存的另一個標志。CL是CAS Latency的縮寫,指的是內存存取數據所需的延遲時間,簡單的說,就是內存接到CPU的指令後的反應速度。一般的參數值是2和3兩種。數字越小,代表反應所需的時間越短。在早期的PC133內存標准中,這個數值規定為3,而在Intel重新制訂的新規范中,強制要求CL的反應時間必須為2,這樣在一定程度上,對於內存廠商的晶元及PCB的組裝工藝要求相對較高,同時也保證了更優秀的品質。因此在選購品牌內存時,這是一個不可不察的因素。
還有另的詮釋:內存延遲基本上可以解釋成是系統進入數據進行存取操作就緒狀態前等待內存響應的時間。
打個形象的比喻,就像你在餐館里用餐的過程一樣。你首先要點菜,然後就等待服務員給你上菜。同樣的道理,內存延遲時間設置的越短,電腦從內存中讀取數據的速度也就越快,進而電腦其他的性能也就越高。這條規則雙雙適用於基於英特爾以及AMD處理器的系統中。由於沒有比2-2-2-5更低的延遲,因此國際內存標准組織認為以現在的動態內存技術還無法實現0或者1的延遲。
通常情況下,我們用4個連著的阿拉伯數字來表示一個內存延遲,例如2-2-2-5。其中,第一個數字最為重要,它表示的是CAS Latency,也就是內存存取數據所需的延遲時間。第二個數字表示的是RAS-CAS延遲,接下來的兩個數字分別表示的是RAS預充電時間和Act-to-Precharge延遲。而第四個數字一般而言是它們中間最大的一個。
總結
經過上面分析,內存儲器的劃分可歸納如下:
●基本內存 占據0~640KB地址空間。
●保留內存 占據640KB~1024KB地址空間。分配給顯示緩沖存儲器、各適配卡上的ROM和系統ROM BIOS,剩餘空間可作上位內存UMB。UMB的物理存儲器取自物理擴展存儲器。此范圍的物理RAM可作為Shadow RAM使用。
●上位內存(UMB) 利用保留內存中未分配使用的地址空間建立,其物理存儲器由物理擴展存儲器取得。UMB由EMS管理,其大小可由EMS驅動程序設定。
●高端內存(HMA) 擴展內存中的第一個64KB區域(1024KB~1088KB)。由HIMEM.SYS建立和管理。
●XMS內存 符合XMS規范管理的擴展內存區。其驅動程序為HIMEM.SYS。
●EMS內存 符合EMS規范管理的擴充內存區。其驅動程序為EMM386.EXE等。
內存:隨機存儲器(RAM),主要存儲正在運行的程序和要處理的數據。
[編輯本段]【內存頻率】
內存主頻和CPU主頻一樣,習慣上被用來表示內存的速度,它代表著該內存所能達到的最高工作頻率。內存主頻是以MHz(兆赫)為單位來計量的。內存主頻越高在一定程度上代表著內存所能達到的速度越快。內存主頻決定著該內存最高能在什麼樣的頻率正常工作。目前較為主流的內存頻率是800MHz的DDR2內存,以及一些內存頻率更高的DDR3內存。
大家知道,計算機系統的時鍾速度是以頻率來衡量的。晶體振盪器控制著時鍾速度,在石英晶片上加上電壓,其就以正弦波的形式震動起來,這一震動可以通過晶片的形變和大小記錄下來。晶體的震動以正弦調和變化的電流的形式表現出來,這一變化的電流就是時鍾信號。而內存本身並不具備晶體振盪器,因此內存工作時的時鍾信號是由主板晶元組的北橋或直接由主板的時鍾發生器提供的,也就是說內存無法決定自身的工作頻率,其實際工作頻率是由主板來決定的。
DDR內存和DDR2內存的頻率可以用工作頻率和等效頻率兩種方式表示,工作頻率是內存顆粒實際的工作頻率,但是由於DDR內存可以在脈沖的上升和下降沿都傳輸數據,因此傳輸數據的等效頻率是工作頻率的兩倍;而DDR2內存每個時鍾能夠以四倍於工作頻率的速度讀/寫數據,因此傳輸數據的等效頻率是工作頻率的四倍。例如DDR 200/266/333/400的工作頻率分別是100/133/166/200MHz,而等效頻率分別是200/266/333/400MHz;DDR2 400/533/667/800的工作頻率分別是100/133/166/200MHz,而等效頻率分別是400/533/667/800MHz。

㈤ 存儲器的原理是什麼

存儲器講述工作原理及作用

介紹

存儲器(Memory)是現代信息技術中用於保存信息的記憶設備。其概念很廣,有很多層次,在數字系統中,只要能保存二進制數據的都可以是存儲器;在集成電路中,一個沒有實物形式的具有存儲功能的電路也叫存儲器,如RAM、FIFO等;在系統中,具有實物形式的存儲設備也叫存儲器,如內存條、TF卡等。計算機中全部信息,包括輸入的原始數據、計算機程序、中間運行結果和最終運行結果都保存在存儲器中。它根據控制器指定的位置存入和取出信息。有了存儲器,計算機才有記憶功能,才能保證正常工作。計算機中的存儲器按用途存儲器可分為主存儲器(內存)和輔助存儲器(外存),也有分為外部存儲器和內部存儲器的分類方法。外存通常是磁性介質或光碟等,能長期保存信息。內存指主板上的存儲部件,用來存放當前正在執行的數據和程序,但僅用於暫時存放程序和數據,關閉電源或斷電,數據會丟失。

2.按存取方式分類

(1)隨機存儲器(RAM):如果存儲器中任何存儲單元的內容都能被隨機存取,且存取時間與存儲單元的物理位置無關,則這種存儲器稱為隨機存儲器(RAM)。RAM主要用來存放各種輸入/輸出的程序、數據、中間運算結果以及存放與外界交換的信息和做堆棧用。隨機存儲器主要充當高速緩沖存儲器和主存儲器。

(2)串列訪問存儲器(SAS):如果存儲器只能按某種順序來存取,也就是說,存取時間與存儲單元的物理位置有關,則這種存儲器稱為串列訪問存儲器。串列存儲器又可分為順序存取存儲器(SAM)和直接存取存儲器(DAM)。順序存取存儲器是完全的串列訪問存儲器,如磁帶,信息以順序的方式從存儲介質的始端開始寫入(或讀出);直接存取存儲器是部分串列訪問存儲器,如磁碟存儲器,它介於順序存取和隨機存取之間。

(3)只讀存儲器(ROM):只讀存儲器是一種對其內容只能讀不能寫入的存儲器,即預先一次寫入的存儲器。通常用來存放固定不變的信息。如經常用作微程序控制存儲器。目前已有可重寫的只讀存儲器。常見的有掩模ROM(MROM),可擦除可編程ROM(EPROM),電可擦除可編程ROM(EEPROM).ROM的電路比RAM的簡單、集成度高,成本低,且是一種非易失性存儲器,計算機常把一些管理、監控程序、成熟的用戶程序放在ROM中。

3.按信息的可保存性分類

非永久記憶的存儲器:斷電後信息就消失的存儲器,如半導體讀/寫存儲器RAM。

永久性記憶的存儲器:斷電後仍能保存信息的存儲器,如磁性材料做成的存儲器以及半導體ROM。

4.按在計算機系統中的作用分

根據存儲器在計算機系統中所起的作用,可分為主存儲器、輔助存儲器、高速緩沖存儲器、控制存儲器等。為了解決對存儲器要求容量大,速度快,成本低三者之間的矛盾,目前通常採用多級存儲器體系結構,即使用高速緩沖存儲器、主存儲器和外存儲器。

能力影響

從寫命令轉換到讀命令,在某個時間訪問某個地址,以及刷新數據等操作都要求數據匯流排在一定時間內保持休止狀態,這樣就不能充分利用存儲器通道。此外,寬並行匯流排和DRAM內核預取都經常導致不必要的大數據量存取。在指定的時間段內,存儲器控制器能存取的有用數據稱為有效數據速率,這很大程度上取決於系統的特定應用。有效數據速率隨著時間而變化,常低於峰值數據速率。在某些系統中,有效數據速率可下降到峰值速率的10%以下。

通常,這些系統受益於那些能產生更高有效數據速率的存儲器技術的變化。在CPU方面存在類似的現象,最近幾年諸如AMD和 TRANSMETA等公司已經指出,在測量基於CPU的系統的性能時,時鍾頻率不是唯一的要素。存儲器技術已經很成熟,峰值速率和有效數據速率或許並不比以前匹配的更好。盡管峰值速率依然是存儲器技術最重要的參數之一,但其他結構參數也可以極大地影響存儲器系統的性能。

影響有效數據速率的參數

有幾類影響有效數據速率的參數,其一是導致數據匯流排進入若干周期的停止狀態。在這類參數中,匯流排轉換、行周期時間、CAS延時以及RAS到CAS的延時(tRCD)引發系統結構中的大部分延遲問題。

匯流排轉換本身會在數據通道上產生非常長的停止時間。以GDDR3系統為例,該系統對存儲器的開放頁不斷寫入數據。在這期間,存儲器系統的有效數據速率與其峰值速率相當。不過,假設100個時鍾周期中,存儲器控制器從讀轉換到寫。由於這個轉換需要6個時鍾周期,有效的數據速率下降到峰值速率的 94%。在這100個時鍾周期中,如果存儲器控制器將匯流排從寫轉換到讀的話,將會丟失更多的時鍾周期。這種存儲器技術在從寫轉換到讀時需要15個空閑周期,這會將有效數據速率進一步降低到峰值速率的79%。表1顯示出針幾種高性能存儲器技術類似的計算結果。

顯然,所有的存儲器技術並不相同。需要很多匯流排轉換的系統設計師可以選用諸如XDR、RDRAM或者DDR2這些更高效的技術來提升性能。另一方面,如果系統能將處理事務分組成非常長的讀寫序列,那麼匯流排轉換對有效帶寬的影響最小。不過,其他的增加延遲現象,例如庫(bank)沖突會降低有效帶寬,對性能產生負面影響。

DRAM技術要求庫的頁或行在存取之前開放。一旦開放,在一個最小周期時間,即行周期時間(tRC)結束之前,同一個庫中的不同頁不能開放。對存儲器開放庫的不同頁存取被稱為分頁遺漏,這會導致與任何tRC間隔未滿足部分相關的延遲。對於還沒有開放足夠周期以滿足tRC間隙的庫而言,分頁遺漏被稱為庫沖突。而tRC決定了庫沖突延遲時間的長短,在給定的DRAM上可用的庫數量直接影響庫沖突產生的頻率。

大多數存儲器技術有4個或者8個庫,在數十個時鍾周期具有tRC值。在隨機負載情況下,那些具有8個庫的內核比具有4個庫的內核所發生的庫沖突更少。盡管tRC與庫數量之間的相互影響很復雜,但是其累計影響可用多種方法量化。

存儲器讀事務處理

考慮三種簡單的存儲器讀事務處理情況。第一種情況,存儲器控制器發出每個事務處理,該事務處理與前一個事務處理產生一個庫沖突。控制器必須在打開一個頁和打開後續頁之間等待一個tRC時間,這樣增加了與頁循環相關的最大延遲時間。在這種情況下的有效數據速率很大程度上決定於I/O,並主要受限於DRAM內核電路。最大的庫沖突頻率將有效帶寬削減到當前最高端存儲器技術峰值的20%到30%。

在第二種情況下,每個事務處理都以隨機產生的地址為目標。此時,產生庫沖突的機會取決於很多因素,包括tRC和存儲器內核中庫數量之間的相互作用。tRC值越小,開放頁循環地越快,導致庫沖突的損失越小。此外,存儲器技術具有的庫越多,隨機地址存取庫沖突的機率就越小。

第三種情況,每個事務處理就是一次頁命中,在開放頁中定址不同的列地址。控制器不必訪問關閉頁,允許完全利用匯流排,這樣就得到一種理想的情況,即有效數據速率等於峰值速率。

第一種和第三種情況都涉及到簡單的計算,隨機情況受其他的特性影響,這些特性沒有包括在DRAM或者存儲器介面中。存儲器控制器仲裁和排隊會極大地改善庫沖突頻率,因為更有可能出現不產生沖突的事務處理,而不是那些導致庫沖突的事務處理。

然而,增加存儲器隊列深度未必增加不同存儲器技術之間的相對有效數據速率。例如,即使增加存儲器控制隊列深度,XDR的有效數據速率也比 GDDR3高20%。存在這種增量主要是因為XDR具有更高的庫數量以及更低的tRC值。一般而言,更短的tRC間隔、更多的庫數量以及更大的控制器隊列能產生更高的有效帶寬。

實際上,很多效率限制現象是與行存取粒度相關的問題。tRC約束本質上要求存儲器控制器從新開放的行中存取一定量的數據,以確保數據管線保持充滿。事實上,為保持數據匯流排無中斷地運行,在開放一個行之後,只須讀取很少量的數據,即使不需要額外的數據。

另外一種減少存儲器系統有效帶寬的主要特性被歸類到列存取粒度范疇,它規定了每次讀寫操作必須傳輸的數據量。與之相反,行存取粒度規定每個行激活(一般指每個RAS的CAS操作)需要多少單獨的讀寫操作。列存取粒度對有效數據速率具有不易於量化的巨大影響。因為它規定一個讀或寫操作中需要傳輸的最小數據量,列存取粒度給那些一次只需要很少數據量的系統帶來了問題。例如,一個需要來自兩列各8位元組的16位元組存取粒度系統,必須讀取總共32位元組以存取兩個位置。因為只需要32個位元組中的16個位元組,系統的有效數據速率降低到峰值速率的50%。匯流排帶寬和脈沖時間長度這兩個結構參數規定了存儲器系統的存取粒度。

匯流排帶寬是指連接存儲器控制器和存儲器件之間的數據線數量。它設定最小的存取粒度,因為對於一個指定的存儲器事務處理,每條數據線必須至少傳遞一個數據位。而脈沖時間長度則規定對於指定的事務處理,每條數據線必須傳遞的位數量。每個事務處理中的每條數據線只傳一個數據位的存儲技術,其脈沖時間長度為1。總的列存取粒度很簡單:列存取粒度=匯流排寬度×脈沖時間長度。

很多系統架構僅僅通過增加DRAM器件和存儲匯流排帶寬就能增加存儲系統的可用帶寬。畢竟,如果4個400MHz數據速率的連接可實現 1.6GHz的總峰值帶寬,那麼8個連接將得到3.2GHz。增加一個DRAM器件,電路板上的連線以及ASIC的管腳就會增多,總峰值帶寬相應地倍增。

首要的是,架構師希望完全利用峰值帶寬,這已經達到他們通過物理設計存儲器匯流排所能達到的最大值。具有256位甚或512位存儲匯流排的圖形控制器已並不鮮見,這種控制器需要1,000個,甚至更多的管腳。封裝設計師、ASIC底層規劃工程師以及電路板設計工程師不能找到採用便宜的、商業上可行的方法來對這么多信號進行布線的矽片區域。僅僅增加匯流排寬度來獲得更高的峰值數據速率,會導致因為列存取粒度限制而降低有效帶寬。

假設某個特定存儲技術的脈沖時間長度等於1,對於一個存儲器處理,512位寬系統的存取粒度為512位(或者64位元組)。如果控制器只需要一小段數據,那麼剩下的數據就被浪費掉,這就降低了系統的有效數據速率。例如,只需要存儲系統32位元組數據的控制器將浪費剩餘的32位元組,進而導致有效的數據速率等於50%的峰值速率。這些計算都假定脈沖時間長度為1。隨著存儲器介面數據速率增加的趨勢,大多數新技術的最低脈沖時間長度都大於1。

選擇技巧

存儲器的類型將決定整個嵌入式系統的操作和性能,因此存儲器的選擇是一個非常重要的決策。無論系統是採用電池供電還是由市電供電,應用需求將決定存儲器的類型(易失性或非易失性)以及使用目的(存儲代碼、數據或者兩者兼有)。另外,在選擇過程中,存儲器的尺寸和成本也是需要考慮的重要因素。對於較小的系統,微控制器自帶的存儲器就有可能滿足系統要求,而較大的系統可能要求增加外部存儲器。為嵌入式系統選擇存儲器類型時,需要考慮一些設計參數,包括微控制器的選擇、電壓范圍、電池壽命、讀寫速度、存儲器尺寸、存儲器的特性、擦除/寫入的耐久性以及系統總成本。

選擇存儲器時應遵循的基本原則

1、內部存儲器與外部存儲器

一般情況下,當確定了存儲程序代碼和數據所需要的存儲空間之後,設計工程師將決定是採用內部存儲器還是外部存儲器。通常情況下,內部存儲器的性價比最高但靈活性最低,因此設計工程師必須確定對存儲的需求將來是否會增長,以及是否有某種途徑可以升級到代碼空間更大的微控制器。基於成本考慮,人們通常選擇能滿足應用要求的存儲器容量最小的微控制器,因此在預測代碼規模的時候要必須特別小心,因為代碼規模增大可能要求更換微控制器。目前市場上存在各種規模的外部存儲器器件,我們很容易通過增加存儲器來適應代碼規模的增加。有時這意味著以封裝尺寸相同但容量更大的存儲器替代現有的存儲器,或者在匯流排上增加存儲器。即使微控制器帶有內部存儲器,也可以通過增加外部串列EEPROM或快閃記憶體來滿足系統對非易失性存儲器的需求。

2、引導存儲器

在較大的微控制器系統或基於處理器的系統中,設計工程師可以利用引導代碼進行初始化。應用本身通常決定了是否需要引導代碼,以及是否需要專門的引導存儲器。例如,如果沒有外部的定址匯流排或串列引導介面,通常使用內部存儲器,而不需要專門的引導器件。但在一些沒有內部程序存儲器的系統中,初始化是操作代碼的一部分,因此所有代碼都將駐留在同一個外部程序存儲器中。某些微控制器既有內部存儲器也有外部定址匯流排,在這種情況下,引導代碼將駐留在內部存儲器中,而操作代碼在外部存儲器中。這很可能是最安全的方法,因為改變操作代碼時不會出現意外地修改引導代碼。在所有情況下,引導存儲器都必須是非易失性存儲器。

可以使用任何類型的存儲器來滿足嵌入式系統的要求,但終端應用和總成本要求通常是影響我們做出決策的主要因素。有時,把幾個類型的存儲器結合起來使用能更好地滿足應用系統的要求。例如,一些PDA設計同時使用易失性存儲器和非易失性存儲器作為程序存儲器和數據存儲器。把永久的程序保存在非易失性ROM中,而把由用戶下載的程序和數據存儲在有電池支持的易失性DRAM中。不管選擇哪種存儲器類型,在確定將被用於最終應用系統的存儲器之前,設計工程師必須仔細折中考慮各種設計因素。

㈥ 當數據的物理存儲改變了,應用程序不變

數據的物理存儲變了,正常情況下應用程序是會改變的,不可能不改團薯模變,如果不改變,說手散明塌緩它的存儲即使改變了也沒有受到影響。

㈦ 為什麼硬碟里剩餘存儲量一會變大一會變小

這困猛是一個很平常的問題,他的蓄物空間為FAT32的格式,這如果你拔移動硬碟時如果拔得太快他可能會丟失文件,但那些(丟失文件)會佔用你的空間,如果這樣的話就把移動硬碟格式化,如果太重要的文漏梁件,你就去專業的電腦工程師補救。
有時虛返尺運擬內存也會導致你的硬碟里剩餘存儲量一會變大一會變小,這個也是正常的,不同的主板會是不同的,硬碟的變化更大,

㈧ 硬碟的存儲空間總是變化是怎麼回事

系統悄枯頃敗瞎會有臨時文件啟陸的,只要程序或者系統運行都會產生臨時文件,佔用硬碟空間,下載360安全衛士可以清理系統

㈨ 20年後的存儲設備可能是什麼樣的用一種說明方法介紹。

20年後的存儲設備可能會有以下幾個方面的變化:

1. 容量更大:隨著技術的發展,存儲設備的容量將會越來越大,未來的存儲設備可能會有更多的存儲空間,從而滿足人們對於數據存儲的需求。

2. 速度更快:未來的存儲設備可能會採用更快的傳輸技術,例如光纖傳輸、量子傳輸等,以實現更快的數據讀寫速度。

3. 更加可靠:未來的存儲設備可能會採用更加可靠的存儲技術,例如基於DNA的存儲技術、基於量子的存儲技術等,從而提高好衫春數據的安全性和穩定性。

4. 更加智能:未來的存儲設備可能會具備更強的智能化功能,例如自動備份、自動分類、自動整理等,從而提高人們使用存儲友耐設備的便捷性和效率。

綜上所述,未來的存儲設備可塌裂能會在容量、速度、可靠性和智能化方面都有所提升,為人們提供更加高效、安全、便捷的數據存儲服務。

㈩ 半導體存儲器有幾類,分別有什麼特點

1、隨機存儲器

對於任意一個地址,以相同速度高速地、隨機地讀出和寫入數據的存儲器(寫入速度和讀出速度可以不同)。存儲單元的內部結構一般是組成二維方矩陣形式,即一位一個地址的形式(如64k×1位)。但有時也有編排成便於多位輸出的形式(如8k×8位)。

特點:這種存儲器的特點是單元器件數量少,集成度高,應用最為廣泛(見金屬-氧化物-半導體動態隨機存儲器)。

2、只讀存儲器

用來存儲長期固定的數據或信息,如各種函數表、字元和固定程序等。其單元只有一個二極體或三極體。一般規定,當器件接通時為「1」,斷開時為「0」,反之亦可。若在設計只讀存儲器掩模版時,就將數據編寫在掩模版圖形中,光刻時便轉移到硅晶元上。

特點:其優點是適合於大量生產。但是,整機在調試階段,往往需要修改只讀存儲器的內容,比較費時、費事,很不靈活(見半導體只讀存儲器)。

3、串列存儲器

它的單元排列成一維結構,猶如磁帶。首尾部分的讀取時間相隔很長,因為要按順序通過整條磁帶。半導體串列存儲器中單元也是一維排列,數據按每列順序讀取,如移位寄存器和電荷耦合存儲器等。

特點:砷化鎵半導體存儲器如1024位靜態隨機存儲器的讀取時間已達2毫秒,預計在超高速領域將有所發展。

(10)存儲器的變化說明了什麼擴展閱讀:

半導體存儲器優點

1、存儲單元陣列和主要外圍邏輯電路製作在同一個硅晶元上,輸出和輸入電平可以做到同片外的電路兼容和匹配。這可使計算機的運算和控制與存儲兩大部分之間的介面大為簡化。

2、數據的存入和讀取速度比磁性存儲器約快三個數量級,可大大提高計算機運算速度。

3、利用大容量半導體存儲器使存儲體的體積和成本大大縮小和下降。