1. 分別就棧的順序存儲結構和鏈式存儲結構實現棧的各種基本操作。
順序存儲結構
#include<iostream>
typedef char ElemType;
#define MaxSize 100
using namespace std;
typedef struct
{
ElemType data[MaxSize];
int top;
}sqStack;
void InitStack(sqStack *&s);//初始化棧
void ClearStack(sqStack *&s);//摧毀棧
int StackLength(sqStack *s);//返回棧的長度
bool StackEmpty(sqStack *s);//判斷棧是否為空
int Push(sqStack *&s,ElemType e);//進棧
int Pop(sqStack *&s,ElemType &e);//出棧
int GetTop(sqStack *s,ElemType &e);//取棧頂元素
void DispStack(sqStack *s);//顯示棧中元素值
int main()
{
return 0;
}
void InitStack(sqStack *&s)//初始化棧
{
s=new sqStack;
s->top=-1;
}
void ClearStack(sqStack *&s)//摧毀棧
{
delete s;
}
int StackLength(sqStack *s)//返回棧的長度
{
return (s->top+1);
}
bool StackEmpty(sqStack *s)//判斷棧是否為空
{
return (s->top==-1);
}
int Push(sqStack *&s,ElemType e)//進棧
{
if(s->top==MaxSize-1)
return 0;
s->top++;
s->data[s->top]=e;
return 1;
}
int Pop(sqStack *&s,ElemType &e)//出棧
{
if(s->top==-1)
return 0;
e=s->data[s->top];
s->top--;
return 1;
}
int GetTop(sqStack *s,ElemType &e)//取棧頂元素
{
if(s->top==-1)
return 0;
e=s->data[s->top];
return 1;
}
void DispStack(sqStack *s)//顯示棧中元素值
{
for(int i=s->top;i>=0;i--)
cout<<s->data[i]<<" ";
cout<<endl;
}
鏈式存儲結構
typedef char ElemType;
typedef struct linknode
{
ElemType data;
struct linknode *next;
}LiStack;
void InitStack(LiStack *&s);//初始化棧
void ClearStack(LiStack *&s);//摧毀棧
int StackLength(LiStack *s);//返回棧的長度
bool StackEmpty(LiStack *s);//判斷棧是否為空
void Push(LiStack *&s,ElemType e);//進棧
int Pop(LiStack *&s,ElemType &e);//出棧
int GetTop(LiStack *s,ElemType &e);//取棧頂元素
void DispStack(LiStack *s);//顯示棧中元素值
int main()
{
return 0;
}
void InitStack(LiStack *&s)//初始化棧
{
s=new LiStack;
s->next=NULL;
}
void ClearStack(LiStack *&s)//摧毀棧
{
for(LiStack *p=s->next;p;p=p->next)
{
delete s;
s=p;
p=p->next;
}
delete s;
}
int StackLength(LiStack *s)//返回棧的長度
{
int i=0;
for(LiStack *p=s->next;p;p=p->next)
i++;
return i;
}
bool StackEmpty(LiStack *s)//判斷棧是否為空
{
return (s->next==NULL);
}
void Push(LiStack *&s,ElemType e)//進棧
{
LiStack *p=new LiStack;
p->data=e;
p->next=s->next;
s->next=p;
}
int Pop(LiStack *&s,ElemType &e)//出棧
{
LiStack *p;
if(s->next==NULL)
return 0;
p=s->next;
e=p->data;
s->next=p->next;
delete p;
return 1;
}
int GetTop(LiStack *s,ElemType &e)//取棧頂元素
{
if(s->next==NULL)
return 0;
e=s->next->data;
return 1;
}
void DispStack(LiStack *s)//顯示棧中元素值
{
LiStack *p=s->next;
for(;p;p=p->next)
cout<<p->data<<" ";
cout<<endl;
}
2. 簡述棧式存儲管理策略
簡述棧式存儲管理策略:將整個存儲空間設計為一個棧,每調用一個過程就將它壓入棧。
在運行遞歸調用且每次調用都要重新分配局部變數的語言中,需要使用棧式存儲分配。幾乎所有的程序設計語言都使用如下三種類型的存儲環境:完全靜態環境、基於棧的存儲環境和基於堆的存儲環境的一種或幾種。
從數據結構和系統兩個層次理解
在具體的培畢侍C/C++編程框架中,這兩個概念並不是並行的。深入到匯編級進行研究就會發現,棧是機器系統提供的數據結構,而堆是由C/C++函數庫提供的。這兩個概念可以從數據結構和系統兩個層次去理解:
1、從數據結構層次理解,棧是一種先進後出的線性表,只要符合先進後出的原則的線性表都是棧。至於採用的存儲方式(實現方式)是順序存儲(順序數圓棧)還是鏈式存儲(配吵鏈式棧)是沒有關系的。堆則是二叉樹的一種,有最大堆最小堆,排序演算法中有常用的堆排序。
2、從系統層次理解,棧是系統為運行的程序分配的先進後出的存儲區域。在學習bootloader時知道,在上電後初始化階段要為各個工作模式下分配堆棧,這里的堆棧實際上就是指stack,堆棧的說法只是因為歷史的原因。
在執行函數時,函數內部局部變數的存儲單元可以在棧上創建(針對CISC架構而言,RISC架構下,局部變數的存儲單元是在寄存器上創建),函數執行結束時這些存儲單元自動被釋放。堆是系統管理的可以被程序利用的全局存儲空間,動態內存分配就是從堆上分配。
3. 分析堆棧段中數據的存儲方式及棧指針變化之間的關系
堆棧段指針(寄存器SS)是用於確定堆棧在內存中的起始位置的寄存器;堆棧段寄存器的作用和其他段寄存器(CS,DS,ES)相同,都是為了在一整段的內存中劃分區域:由於內存為一整段儲存單元,CS(代碼段寄存器)中存放代碼段的起始位置
4. java中什麼是堆和棧,如何應用,最好舉個例子,並詳細地說明一下,謝謝了
簡單的說:
Java把內存劃分成兩種:一種是棧內存,一種是堆內存。
在函數中定義的一些基本類型的變數和對象陵液簡的引用變數都在函數的棧內存中分配。
當在一段代碼塊定義一個變數時,Java就在棧中為這個變數分配內存空間,當超過變數的作用域後,Java會自動釋放掉為該變數所分配的內存空間,該內存空間可以立即被另作他用。
堆內存用來存放由new創建的對象和數組。
在堆中分配的內存,由Java虛擬機的自動垃圾回收器來管理。
在堆中產生了一個數組或對象後,還可以在棧中定義一個特殊的變數,讓棧中這個變數的取值等於數組或對象在堆內存中的首地址,棧中的這個變數就成了數組或對象的引用變數。
引用變數就相當於是為數組或對象起的一個名稱,以後就可以在程序中使用棧中的引用變數來訪問堆中的數組或對象。
具體的說:
棧與堆都是Java用來在Ram中存放數據的地方。與C++不同,Java自動管理棧和堆,程序員不能直接地設置棧或堆。
Java的堆是一個運行時數據區,類的尺褲(對象從中分配空間。這些對象通過new、newarray、anewarray和multianewarray等指令建立,它們不需要程序代碼來顯式的釋放。堆是由垃圾回收來負責的,堆的優勢是可以動態地分配內存大小,生存期也不必事先告訴編譯器,因為它是在埋謹運行時動態分配內存的,Java的垃圾收集器會自動收走這些不再使用的數據。但缺點是,由於要在運行時動態分配內存,存取速度較慢。
棧的優勢是,存取速度比堆要快,僅次於寄存器,棧數據可以共享。但缺點是,存在棧中的數據大小與生存期必須是確定的,缺乏靈活性。棧中主要存放一些基本類型的變數(,int, short, long, byte, float, double, boolean, char)和對象句柄。
棧有一個很重要的特殊性,就是存在棧中的數據可以共享。假設我們同時定義:
int a = 3;
int b = 3;
編譯器先處理int a = 3;首先它會在棧中創建一個變數為a的引用,然後查找棧中是否有3這個值,如果沒找到,就將3存放進來,然後將a指向3。接著處理int b = 3;在創建完b的引用變數後,因為在棧中已經有3這個值,便將b直接指向3。這樣,就出現了a與b同時均指向3的情況。這時,如果再令a=4;那麼編譯器會重新搜索棧中是否有4值,如果沒有,則將4存放進來,並令a指向4;如果已經有了,則直接將a指向這個地址。因此a值的改變不會影響到b的值。要注意這種數據的共享與兩個對象的引用同時指向一個對象的這種共享是不同的,因為這種情況a的修改並不會影響到b, 它是由編譯器完成的,它有利於節省空間。而一個對象引用變數修改了這個對象的內部狀態,會影響到另一個對象引用變數。
String是一個特殊的包裝類數據。可以用:
String str = new String("abc");
String str = "abc";
兩種的形式來創建,第一種是用new()來新建對象的,它會在存放於堆中。每調用一次就會創建一個新的對象。
而第二種是先在棧中創建一個對String類的對象引用變數str,然後查找棧中有沒有存放"abc",如果沒有,則將"abc"存放進棧,並令str指向」abc」,如果已經有」abc」 則直接令str指向「abc」。
比較類裡面的數值是否相等時,用equals()方法;當測試兩個包裝類的引用是否指向同一個對象時,用==,下面用例子說明上面的理論。
String str1 = "abc";
String str2 = "abc";
System.out.println(str1==str2); //true
可以看出str1和str2是指向同一個對象的。
String str1 =new String ("abc");
String str2 =new String ("abc");
System.out.println(str1==str2); // false
用new的方式是生成不同的對象。每一次生成一個。
因此用第一種方式創建多個」abc」字元串,在內存中其實只存在一個對象而已. 這種寫法有利與節省內存空間. 同時它可以在一定程度上提高程序的運行速度,因為JVM會自動根據棧中數據的實際情況來決定是否有必要創建新對象。而對於String str = new String("abc");的代碼,則一概在堆中創建新對象,而不管其字元串值是否相等,是否有必要創建新對象,從而加重了程序的負擔。
另一方面, 要注意: 我們在使用諸如String str = "abc";的格式定義類時,總是想當然地認為,創建了String類的對象str。擔心陷阱!對象可能並沒有被創建!而可能只是指向一個先前已經創建的對象。只有通過new()方法才能保證每次都創建一個新的對象。由於String類的immutable性質,當String變數需要經常變換其值時,應該考慮使用StringBuffer類,以提高程序效率。
java中內存分配策略及堆和棧的比較
2.1 內存分配策略
按照編譯原理的觀點,程序運行時的內存分配有三種策略,分別是靜態的,棧式的,和堆式的.
靜態存儲分配是指在編譯時就能確定每個數據目標在運行時刻的存儲空間需求,因而在編譯時就可以給他們分配固定的內存空間.這種分配策略要求程序代碼中不允許有可變數據結構(比如可變數組)的存在,也不允許有嵌套或者遞歸的結構出現,因為它們都會導致編譯程序無法計算準確的存儲空間需求.
棧式存儲分配也可稱為動態存儲分配,是由一個類似於堆棧的運行棧來實現的.和靜態存儲分配相反,在棧式存儲方案中,程序對數據區的需求在編譯時是完全未知的,只有到運行的時候才能夠知道,但是規定在運行中進入一個程序模塊時,必須知道該程序模塊所需的數據區大小才能夠為其分配內存.和我們在數據結構所熟知的棧一樣,棧式存儲分配按照先進後出的原則進行分配。
靜態存儲分配要求在編譯時能知道所有變數的存儲要求,棧式存儲分配要求在過程的入口處必須知道所有的存儲要求,而堆式存儲分配則專門負責在編譯時或運行時模塊入口處都無法確定存儲要求的數據結構的內存分配,比如可變長度串和對象實例.堆由大片的可利用塊或空閑塊組成,堆中的內存可以按照任意順序分配和釋放.
2.2 堆和棧的比較
上面的定義從編譯原理的教材中總結而來,除靜態存儲分配之外,都顯得很呆板和難以理解,下面撇開靜態存儲分配,集中比較堆和棧:
從堆和棧的功能和作用來通俗的比較,堆主要用來存放對象的,棧主要是用來執行程序的.而這種不同又主要是由於堆和棧的特點決定的:
在編程中,例如C/C++中,所有的方法調用都是通過棧來進行的,所有的局部變數,形式參數都是從棧中分配內存空間的。實際上也不是什麼分配,只是從棧頂向上用就行,就好像工廠中的傳送帶(conveyor belt)一樣,Stack Pointer會自動指引你到放東西的位置,你所要做的只是把東西放下來就行.退出函數的時候,修改棧指針就可以把棧中的內容銷毀.這樣的模式速度最快, 當然要用來運行程序了.需要注意的是,在分配的時候,比如為一個即將要調用的程序模塊分配數據區時,應事先知道這個數據區的大小,也就說是雖然分配是在程序運行時進行的,但是分配的大小多少是確定的,不變的,而這個"大小多少"是在編譯時確定的,不是在運行時.
堆是應用程序在運行的時候請求操作系統分配給自己內存,由於從操作系統管理的內存分配,所以在分配和銷毀時都要佔用時間,因此用堆的效率非常低.但是堆的優點在於,編譯器不必知道要從堆里分配多少存儲空間,也不必知道存儲的數據要在堆里停留多長的時間,因此,用堆保存數據時會得到更大的靈活性。事實上,面向對象的多態性,堆內存分配是必不可少的,因為多態變數所需的存儲空間只有在運行時創建了對象之後才能確定.在C++中,要求創建一個對象時,只需用 new命令編制相關的代碼即可。執行這些代碼時,會在堆里自動進行數據的保存.當然,為達到這種靈活性,必然會付出一定的代價:在堆里分配存儲空間時會花掉更長的時間!這也正是導致我們剛才所說的效率低的原因,看來列寧同志說的好,人的優點往往也是人的缺點,人的缺點往往也是人的優點(暈~).
2.3 JVM中的堆和棧
JVM是基於堆棧的虛擬機.JVM為每個新創建的線程都分配一個堆棧.也就是說,對於一個Java程序來說,它的運行就是通過對堆棧的操作來完成的。堆棧以幀為單位保存線程的狀態。JVM對堆棧只進行兩種操作:以幀為單位的壓棧和出棧操作。
我們知道,某個線程正在執行的方法稱為此線程的當前方法.我們可能不知道,當前方法使用的幀稱為當前幀。當線程激活一個Java方法,JVM就會在線程的 Java堆棧里新壓入一個幀。這個幀自然成為了當前幀.在此方法執行期間,這個幀將用來保存參數,局部變數,中間計算過程和其他數據.這個幀在這里和編譯原理中的活動紀錄的概念是差不多的.
從Java的這種分配機制來看,堆棧又可以這樣理解:堆棧(Stack)是操作系統在建立某個進程時或者線程(在支持多線程的操作系統中是線程)為這個線程建立的存儲區域,該區域具有先進後出的特性。
每一個Java應用都唯一對應一個JVM實例,每一個實例唯一對應一個堆。應用程序在運行中所創建的所有類實例或數組都放在這個堆中,並由應用所有的線程共享.跟C/C++不同,Java中分配堆內存是自動初始化的。Java中所有對象的存儲空間都是在堆中分配的,但是這個對象的引用卻是在堆棧中分配,也就是說在建立一個對象時從兩個地方都分配內存,在堆中分配的內存實際建立這個對象,而在堆棧中分配的內存只是一個指向這個堆對象的指針(引用)而已。
5. 棧的兩種存儲結構各有哪些優缺點
順序 存儲結構:
優點:連續存儲,空間利用率高
缺點:不方便數據的增刪
鏈式存儲結構:
優點:對於數據的增刪比較方便
缺點:浪費空間
6. 在軟體測試中測試手機能存儲多少條簡訊屬於
對於產品的手機項目(應用軟體),主要是進行系統測試。而針對手機應用軟體的系統測試,我們通常從如下幾個角度開展:功能模塊測試,交叉事件測試,壓力測試,容量測試,兼容性測試,易用性/用戶體驗測試等。
能存儲多少簡訊屬於壓力測試中的存儲壓力測試:由於手機採用的是棧式存儲,所以當一個存儲塊滿了之後,如果程序員不做相應處理或者處理不好的話,很容易造成其他存儲區被擦除,從而在UI上出現問題(比如其他功能無法正常使用,出現異常)。
7. c語言 棧的操作
#include
#include
#define Max 100
typedef char T;
typedef struct MyStack
{
T aa[Max];
unsigned int p;
} stack;
//創建空棧
stack* createEmptyStack()
{
stack* st = (stack *)malloc(sizeof(stack));
int i=0;
for(i=0;i<Max;i++)
st->aa[i]=0;
st->p=0;
return st;
};
//棧判空
int isEmpty(const stack* st)
{
if(st->p==0) return 1;
else return 0;
};
//求棧的大小
unsigned int size(const stack* st)
{
return st->p;
};
//push操作
void push(stack* st,const T a)
{
st->p=st->p+1;
if(st->p==Max)
{
printf("棧滿\n");
st->p--;
return;
}
st->aa[st->p]=a;
};
//pop操作
T pop(stack* st)
{
if(isEmpty(st))
{
printf("棧空");
return NULL;
}
char t=st->aa[st->p];
st->p=st->p-1;
printf("%c ",t);
return t;
};
//棧銷毀
void destroy(stack* st)
{
free(st);
};
int main()
{
stack* st = createEmptyStack();
if(isEmpty(st)) printf("MyStack is empty\n");
else printf("MyStack is not empty\n");
push(st,'a');
push(st,'b');
push(st,'c');
push(st,'d');
push(st,'e');
printf("%d\n",size(st));
while(!isEmpty(st)) pop(st);
destroy(st);
system("pause");
return 0;
}
8. 棧的存儲結構
棧同順序表和鏈表一樣,棧也是用來存儲邏輯關系為 "一對一" 數據的線性存儲結構。
棧的具體實現
棧是一種 "特殊" 的線性存儲結構,因此棧的具體實現有以下兩種方式:
順序棧:採用順序存儲結構可以模擬棧存儲數據的特點,從而實現棧存儲結構;
鏈棧:採用鏈式存儲結構實現棧結構;
棧存儲結構與之前所學的線性存儲結構有所差異,這緣於棧對數據 "存" 和 "取" 的過程有特殊的要求:
棧只能從表的一端存取數據,另一端是封閉的;
在棧中,無論是存數據還是取數據,都必須遵循"先進後出"的原則,即最先進棧的元素最後出棧。
通常,棧的開口端被稱為棧頂;相應地,封口端被稱為棧底。因此,棧頂元素指的就是距離棧頂最近的元素。
9. 在什麼情況下可以用棧來存儲數據
堆棧的特點是先進後出,速度快!在單片機設計中主要用於保留現場和恢復現場。在函數的跳轉和中斷中,堆棧的優點表現得淋漓盡致。
下面是關於堆棧的一些詳細講述:
堆棧都是一種數據項按序排列的數據結構,只能在一端(稱為棧頂(top))對數據項進行插入和刪除。
要點:
堆:順序隨意
棧:後進先出(Last-In/First-Out)
編輯本段堆和棧的區別
一、預備知識—程序的內存分配
一個由c/C++編譯的程序佔用的內存分為以下幾個部分
1、棧區(stack)— 由編譯器自動分配釋放 ,存放函數的參數值,局部變數的值等。其操作方式類似於數據結構中的棧。
2、堆區(heap) — 一般由程序員分配渣擾悶釋放, 若程序員不釋放,程序結束時可能由OS回收 。注意它與數據結構中的堆是兩回事,分配方式倒是類似於鏈表。
3、全局區(靜態區)(static)—,全局變數和靜態變數的存儲是放在一塊的,初始化的全局變數和靜態變數在一塊區域, 未初始化的全局變數和未初始化的靜態變數在相鄰的另一塊區域。 - 程序結束後由系統釋放。
4、文字常量區 —常量字元串就是放在這里的。 程序結束後由系統釋放 。
5、程序代碼區—存放函數體的二進制代碼。
二、例子程序
這是一個前輩寫的,非常詳細
//main.cpp
int a = 0; 全局初始化區
char *p1; 全局未初始化區
main()
{
int b; 棧
char s[] = "abc"; 棧
char *p2; 棧
char *p3 = "123456"; 123456\0在常量區,p3在棧上。
static int c =0; 全如彎局(靜態)初始化區
p1 = (char *)malloc(10);
p2 = (char *)malloc(20);
}
分配得來得10和20位元組的區域就在堆區。
strcpy(p1, "123456"); 123456\0放在常量區,編譯器可能會將它與p3所指向的"123456"優化成一個地方。
編輯本段堆和棧的理論知識
1.申請方式
stack:
由系統自動分配。 例如,聲明在函數中一個局部變數 int b; 系統自動在棧中為b開辟空間
heap:
需要程序員自己申請,並指明大小,在c中malloc函數
如p1 = (char *)malloc(10);
在C++中用new運算符
如p2 = new char[20];//(char *)malloc(10);
但是注意p1、p2本身是在棧中的。
2.申請後系統的響應
棧:只要棧的剩餘空間大於所申請空間,系統將為程序提供內存,否則將報異常提示棧李培溢出。
堆:首先應該知道操作系統有一個記錄空閑內存地址的鏈表,當系統收到程序的申請時,會遍歷該鏈表,尋找第一個空間大於所申請空間的堆結點,然後將該結點從空閑結點鏈表中刪除,並將該結點的空間分配給程序,另外,對於大多數系統,會在這塊內存空間中的首地址處記錄本次分配的大小,這樣,代碼中的delete語句才能正確的釋放本內存空間。另外,由於找到的堆結點的大小不一定正好等於申請的大小,系統會自動的將多餘的那部分重新放入空閑鏈表中。
3.申請大小的限制
棧:在Windows下,棧是向低地址擴展的數據結構,是一塊連續的內存的區域。這句話的意思是棧頂的地址和棧的最大容量是系統預先規定好的,在 WINDOWS下,棧的大小是2M(也有的說是1M,總之是一個編譯時就確定的常數),如果申請的空間超過棧的剩餘空間時,將提示overflow。因此,能從棧獲得的空間較小。
堆:堆是向高地址擴展的數據結構,是不連續的內存區域。這是由於系統是用鏈表來存儲的空閑內存地址的,自然是不連續的,而鏈表的遍歷方向是由低地址向高地址。堆的大小受限於計算機系統中有效的虛擬內存。由此可見,堆獲得的空間比較靈活,也比較大。
4.申請效率的比較
棧由系統自動分配,速度較快。但程序員是無法控制的。
堆是由new分配的內存,一般速度比較慢,而且容易產生內存碎片,不過用起來最方便.
另外,在WINDOWS下,最好的方式是用VirtualAlloc分配內存,他不是在堆,也不是在棧,而是直接在進程的地址空間中保留一快內存,雖然用起來最不方便。但是速度快,也最靈活
5.堆和棧中的存儲內容
棧: 在函數調用時,第一個進棧的是主函數中函數調用後的下一條指令(函數調用語句的下一條可執行語句)的地址,然後是函數的各個參數,在大多數的C編譯器中,參數是由右往左入棧的,然後是函數中的局部變數。注意靜態變數是不入棧的。
當本次函數調用結束後,局部變數先出棧,然後是參數,最後棧頂指針指向最開始存的地址,也就是主函數中的下一條指令,程序由該點繼續運行。
堆:一般是在堆的頭部用一個位元組存放堆的大小。堆中的具體內容有程序員安排。
6.存取效率的比較
char s1[] = "aaaaaaaaaaaaaaa";
char *s2 = "bbbbbbbbbbbbbbbbb";
aaaaaaaaaaa是在運行時刻賦值的;
而bbbbbbbbbbb是在編譯時就確定的;
但是,在以後的存取中,在棧上的數組比指針所指向的字元串(例如堆)快。
比如:
#include
void main()
{
char a = 1;
char c[] = "1234567890";
char *p ="1234567890";
a = c[1];
a = p[1];
return;
}
對應的匯編代碼
10: a = c[1];
00401067 8A 4D F1 mov cl,byte ptr [ebp-0Fh]
0040106A 88 4D FC mov byte ptr [ebp-4],cl
11: a = p[1];
0040106D 8B 55 EC mov edx,dword ptr [ebp-14h]
00401070 8A 42 01 mov al,byte ptr [edx+1]
00401073 88 45 FC mov byte ptr [ebp-4],al
第一種在讀取時直接就把字元串中的元素讀到寄存器cl中,而第二種則要先把指針值讀到edx中,在根據edx讀取字元,顯然慢了。
7.小結:
堆和棧的區別可以用如下的比喻來看出:
使用棧就象我們去飯館里吃飯,只管點菜(發出申請)、付錢、和吃(使用),吃飽了就走,不必理會切菜、洗菜等准備工作和洗碗、刷鍋等掃尾工作,他的好處是快捷,但是自由度小。
使用堆就象是自己動手做喜歡吃的菜餚,比較麻煩,但是比較符合自己的口味,而且自由度大。
編輯本段堆和棧的區別主要分:
操作系統方面的堆和棧,如上面說的那些,不多說了。
還有就是數據結構方面的堆和棧,這些都是不同的概念。這里的堆實際上指的就是(滿足堆性質的)優先隊列的一種數據結構,第1個元素有最高的優先權;棧實際上就是滿足先進後出的性質的數學或數據結構。
雖然堆棧,堆棧的說法是連起來叫,但是他們還是有很大區別的,連著叫只是由於歷史的原因。
10. 棧式存儲管理策略是什麼
程序運行時的存儲組織及管理
棧式動態存儲分配策略是將整個程序的數據空間設計為一個棧(稱為運行蔽純時棧) 每當程物前序調用一個過程(進入一個塊)時,就在棧頂為被調過程分配宏螞咐一個新的數據空間 保留塊的開始地址:基地址寄存器(BASE,或用sp) 為當前塊分配存儲:在棧頂留出相應單元,作為當前數據區 為每個局部量分配相對地址,填入符號表(a d r adradr屬性)。