存儲信息的硬碟使用的是硬磁性材料。
硬磁性材料也就是永磁體指磁化後能長久保持磁性的材料 常見的有高碳鋼,鋁鎳鈷合金,鈦鈷合金 還應用於磁記錄,如錄音磁帶,錄象磁帶,電腦磁碟粉等。
軟磁性材料指磁化後,不能保持原有的磁性。如軟鐵,硅鋼,鐵鎳合金等。用來製造變壓器,電磁鐵等。
硬磁性材料的特點是:
1)具有較大的矯頑力,典型值Hc=104~106A/m。
2)磁滯回線較粗,具有較高的最大磁能積(BH)max。
3)剩磁很大。
4)這種材料充磁後不易退磁,適合做永久磁鐵。
5) 硬磁性材料如碳鋼、鋁鎳鈷合金和鋁鋼等。
矯頑磁力大,這意味著磁滯回線包圍的面積較大,磁滯特性非常明顯。把硬磁性材料放在外磁場中充磁後,若將外磁場撤除,仍然能保留較強的磁性,並且這種剩餘磁性不易被消除。
『貳』 存儲器的發展史
存儲器設備發展
1.存儲器設備發展之汞延遲線
汞延遲線是基於汞在室溫時是液體,同時又是導體,每比特數據用機械波的波峰(1)和波谷(0)表示。機械波從汞柱的一端開始,一定厚度的熔融態金屬汞通過一振動膜片沿著縱向從一端傳到另一端,這樣就得名「汞延遲線」。在管的另一端,一感測器得到每一比特的信息,並反饋到起點。設想是汞獲取並延遲這些數據,這樣它們便能存儲了。這個過程是機械和電子的奇妙結合。缺點是由於環境條件的限制,這種存儲器方式會受各種環境因素影響而不精確。
1950年,世界上第一台具有存儲程序功能的計算機EDVAC由馮.諾依曼博士領導設計。它的主要特點是採用二進制,使用汞延遲線作存儲器,指令和程序可存入計算機中。
1951年3月,由ENIAC的主要設計者莫克利和埃克特設計的第一台通用自動計算機UNIVAC-I交付使用。它不僅能作科學計算,而且能作數據處理。
2.存儲器設備發展之磁帶
UNIVAC-I第一次採用磁帶機作外存儲器,首先用奇偶校驗方法和雙重運算線路來提高系統的可靠性,並最先進行了自動編程的試驗。
磁帶是所有存儲器設備發展中單位存儲信息成本最低、容量最大、標准化程度最高的常用存儲介質之一。它互換性好、易於保存,近年來,由於採用了具有高糾錯能力的編碼技術和即寫即讀的通道技術,大大提高了磁帶存儲的可靠性和讀寫速度。根據讀寫磁帶的工作原理可分為螺旋掃描技術、線性記錄(數據流)技術、DLT技術以及比較先進的LTO技術。
根據讀寫磁帶的工作原理,磁帶機可以分為六種規格。其中兩種採用螺旋掃描讀寫方式的是面向工作組級的DAT(4mm)磁帶機和面向部門級的8mm磁帶機,另外四種則是選用數據流存儲技術設計的設備,它們分別是採用單磁頭讀寫方式、磁帶寬度為1/4英寸、面向低端應用的Travan和DC系列,以及採用多磁頭讀寫方式、磁帶寬度均為1/2英寸、面向高端應用的DLT和IBM的3480/3490/3590系列等。
磁帶庫是基於磁帶的備份系統,它能夠提供同樣的基本自動備份和數據恢復功能,但同時具有更先進的技術特點。它的存儲容量可達到數百PB,可以實現連續備份、自動搜索磁帶,也可以在驅動管理軟體控制下實現智能恢復、實時監控和統計,整個數據存儲備份過程完全擺脫了人工干涉。
磁帶庫不僅數據存儲量大得多,而且在備份效率和人工佔用方面擁有無可比擬的優勢。在網路系統中,磁帶庫通過SAN(Storage Area Network,存儲區域網路)系統可形成網路存儲系統,為企業存儲提供有力保障,很容易完成遠程數據訪問、數據存儲備份或通過磁帶鏡像技術實現多磁帶庫備份,無疑是數據倉庫、ERP等大型網路應用的良好存儲設備。
3.存儲器設備發展之磁鼓
1953年,隨著存儲器設備發展,第一台磁鼓應用於IBM 701,它是作為內存儲器使用的。磁鼓是利用鋁鼓筒表面塗覆的磁性材料來存儲數據的。鼓筒旋轉速度很高,因此存取速度快。它採用飽和磁記錄,從固定式磁頭發展到浮動式磁頭,從採用磁膠發展到採用電鍍的連續磁介質。這些都為後來的磁碟存儲器打下了基礎。
磁鼓最大的缺點是利用率不高, 一個大圓柱體只有表面一層用於存儲,而磁碟的兩面都利用來存儲,顯然利用率要高得多。 因此,當磁碟出現後,磁鼓就被淘汰了。
4.存儲器設備發展之磁芯
美國物理學家王安1950年提出了利用磁性材料製造存儲器的思想。福雷斯特則將這一思想變成了現實。
為了實現磁芯存儲,福雷斯特需要一種物質,這種物質應該有一個非常明確的磁化閾值。他找到在新澤西生產電視機用鐵氧體變換器的一家公司的德國老陶瓷專家,利用熔化鐵礦和氧化物獲取了特定的磁性質。
對磁化有明確閾值是設計的關鍵。這種電線的網格和芯子織在電線網上,被人稱為芯子存儲,它的有關專利對發展計算機非常關鍵。這個方案可靠並且穩定。磁化相對來說是永久的,所以在系統的電源關閉後,存儲的數據仍然保留著。既然磁場能以電子的速度來閱讀,這使互動式計算有了可能。更進一步,因為是電線網格,存儲陣列的任何部分都能訪問,也就是說,不同的數據可以存儲在電線網的不同位置,並且閱讀所在位置的一束比特就能立即存取。這稱為隨機存取存儲器(RAM),在存儲器設備發展歷程中它是互動式計算的革新概念。福雷斯特把這些專利轉讓給麻省理工學院,學院每年靠這些專利收到1500萬~2000萬美元。
最先獲得這些專利許可證的是IBM,IBM最終獲得了在北美防衛軍事基地安裝「旋風」的商業合同。更重要的是,自20世紀50年代以來,所有大型和中型計算機也採用了這一系統。磁芯存儲從20世紀50年代、60年代,直至70年代初,一直是計算機主存的標准方式。
5.存儲器設備發展之磁碟
世界第一台硬碟存儲器是由IBM公司在1956年發明的,其型號為IBM 350 RAMAC(Random Access Method of Accounting and Control)。這套系統的總容量只有5MB,共使用了50個直徑為24英寸的磁碟。1968年,IBM公司提出「溫徹斯特/Winchester」技術,其要點是將高速旋轉的磁碟、磁頭及其尋道機構等全部密封在一個無塵的封閉體中,形成一個頭盤組合件(HDA),與外界環境隔絕,避免了灰塵的污染,並採用小型化輕浮力的磁頭浮動塊,碟片表面塗潤滑劑,實行接觸起停,這是現代絕大多數硬碟的原型。1979年,IBM發明了薄膜磁頭,進一步減輕了磁頭重量,使更快的存取速度、更高的存儲密度成為可能。20世紀80年代末期,IBM公司又對存儲器設備發展作出一項重大貢獻,發明了MR(Magneto Resistive)磁阻磁頭,這種磁頭在讀取數據時對信號變化相當敏感,使得碟片的存儲密度比以往提高了數十倍。1991年,IBM生產的3.5英寸硬碟使用了MR磁頭,使硬碟的容量首次達到了1GB,從此,硬碟容量開始進入了GB數量級。IBM還發明了PRML(Partial Response Maximum Likelihood)的信號讀取技術,使信號檢測的靈敏度大幅度提高,從而可以大幅度提高記錄密度。
目前,硬碟的面密度已經達到每平方英寸100Gb以上,是容量、性價比最大的一種存儲設備。因而,在計算機的外存儲設備中,還沒有一種其他的存儲設備能夠在最近幾年中對其統治地位產生挑戰。硬碟不僅用於各種計算機和伺服器中,在磁碟陣列和各種網路存儲系統中,它也是基本的存儲單元。值得注意的是,近年來微硬碟的出現和快速發展為移動存儲提供了一種較為理想的存儲介質。在快閃記憶體晶元難以承擔的大容量移動存儲領域,微硬碟可大顯身手。目前尺寸為1英寸的硬碟,存儲容量已達4GB,10GB容量的1英寸硬碟不久也會面世。微硬碟廣泛應用於數碼相機、MP3設備和各種手持電子類設備。
另一種磁碟存儲設備是軟盤,從早期的8英寸軟盤、5.25英寸軟盤到3.5英寸軟盤,主要為數據交換和小容量備份之用。其中,3.5英寸1.44MB軟盤占據計算機的標准配置地位近20年之久,之後出現過24MB、100MB、200MB的高密度過渡性軟盤和軟碟機產品。然而,由於USB介面的快閃記憶體出現,軟盤作為數據交換和小容量備份的統治地位已經動搖,不久會退出存儲器設備發展歷史舞台。
6. 存儲器設備發展之光碟
光碟主要分為只讀型光碟和讀寫型光碟。只讀型指光碟上的內容是固定的,不能寫入、修改,只能讀取其中的內容。讀寫型則允許人們對光碟內容進行修改,可以抹去原來的內容,寫入新的內容。用於微型計算機的光碟主要有CD-ROM、CD-R/W和DVD-ROM等幾種。
上世紀60年代,荷蘭飛利浦公司的研究人員開始使用激光光束進行記錄和重放信息的研究。1972年,他們的研究獲得了成功,1978年投放市場。最初的產品就是大家所熟知的激光視盤(LD,Laser Vision Disc)系統。
從LD的誕生至計算機用的CD-ROM,經歷了三個階段,即LD-激光視盤、CD-DA激光唱盤、CD-ROM。下面簡單介紹這三個存儲器設備發展階段性的產品特點。
LD-激光視盤,就是通常所說的LCD,直徑較大,為12英寸,兩面都可以記錄信息,但是它記錄的信號是模擬信號。模擬信號的處理機制是指,模擬的電視圖像信號和模擬的聲音信號都要經過FM(Frequency Molation)頻率調制、線性疊加,然後進行限幅放大。限幅後的信號以0.5微米寬的凹坑長短來表示。
CD-DA激光唱盤 LD雖然取得了成功,但由於事先沒有制定統一的標准,使它的開發和製作一開始就陷入昂貴的資金投入中。1982年,由飛利浦公司和索尼公司制定了CD-DA激光唱盤的紅皮書(Red Book)標准。由此,一種新型的激光唱盤誕生了。CD-DA激光唱盤記錄音響的方法與LD系統不同,CD-DA激光唱盤系統首先把模擬的音響信號進行PCM(脈沖編碼調制)數字化處理,再經過EMF(8~14位調制)編碼之後記錄到盤上。數字記錄代替模擬記錄的好處是,對干擾和雜訊不敏感,由於盤本身的缺陷、劃傷或沾污而引起的錯誤可以校正。
CD-DA系統取得成功以後,使飛利浦公司和索尼公司很自然地想到利用CD-DA作為計算機的大容量只讀存儲器。但要把CD-DA作為計算機的存儲器,還必須解決兩個重要問題,即建立適合於計算機讀寫的盤的數據結構,以及CD-DA誤碼率必須從現有的10-9降低到10-12以下,由此就產生了CD-ROM的黃皮書(Yellow Book)標准。這個標準的核心思想是,盤上的數據以數據塊的形式來組織,每塊都要有地址,這樣一來,盤上的數據就能從幾百兆位元組的存儲空間上被迅速找到。為了降低誤碼率,採用增加一種錯誤檢測和錯誤校正的方案。錯誤檢測採用了循環冗餘檢測碼,即所謂CRC,錯誤校正採用里德-索洛蒙(Reed Solomon)碼。黃皮書確立了CD-ROM的物理結構,而為了使其能在計算機上完全兼容,後來又制定了CD-ROM的文件系統標准,即ISO 9660。
在上世紀80年代中期,光碟存儲器設備發展速度非常快,先後推出了WORM光碟、磁光碟(MO)、相變光碟(Phase Change Disk,PCD)等新品種。20世紀90年代,DVD-ROM、CD-R、CD-R/W等開始出現和普及,目前已成為計算機的標准存儲設備。
光碟技術進一步向高密度發展,藍光光碟是不久將推出的下一代高密度光碟。多層多階光碟和全息存儲光碟正在實驗室研究之中,可望在5年之內推向市場。
7.存儲器設備發展之納米存儲
納米是一種長度單位,符號為nm。1納米=1毫微米,約為10個原子的長度。假設一根頭發的直徑為0.05毫米,把它徑向平均剖成5萬根,每根的厚度即約為1納米。與納米存儲有關的主要進展有如下內容。
1998年,美國明尼蘇達大學和普林斯頓大學制備成功量子磁碟,這種磁碟是由磁性納米棒組成的納米陣列體系。一個量子磁碟相當於我們現在的10萬~100萬個磁碟,而能源消耗卻降低了1萬倍。
1988年,法國人首先發現了巨磁電阻效應,到1997年,採用巨磁電阻原理的納米結構器件已在美國問世,它在磁存儲、磁記憶和計算機讀寫磁頭等方面均有廣闊的應用前景。
2002年9月,美國威斯康星州大學的科研小組宣布,他們在室溫條件下通過操縱單個原子,研製出原子級的硅記憶材料,其存儲信息的密度是目前光碟的100萬倍。這是納米存儲材料技術研究的一大進展。該小組發表在《納米技術》雜志上的研究報告稱,新的記憶材料構建在硅材料表面上。研究人員首先使金元素在硅材料表面升華,形成精確的原子軌道;然後再使硅元素升華,使其按上述原子軌道進行排列;最後,藉助於掃瞄隧道顯微鏡的探針,從這些排列整齊的硅原子中間隔抽出硅原子,被抽空的部分代表「0」,餘下的硅原子則代表「1」,這就形成了相當於計算機晶體管功能的原子級記憶材料。整個試驗研究在室溫條件下進行。研究小組負責人赫姆薩爾教授說,在室溫條件下,一次操縱一批原子進行排列並不容易。更為重要的是,記憶材料中硅原子排列線內的間隔是一個原子大小。這保證了記憶材料的原子級水平。赫姆薩爾教授說,新的硅記憶材料與目前硅存儲材料存儲功能相同,而不同之處在於,前者為原子級體積,利用其製造的計算機存儲材料體積更小、密度更大。這可使未來計算機微型化,且存儲信息的功能更為強大。
以上就是本文向大家介紹的存儲器設備發展歷程的7個關鍵時期
『叄』 磁存儲技術的磁存儲信息
在磁存儲中信息的記錄與讀出原理是磁致電阻效應。磁致電阻磁頭的核心是一片金屬材料,其電阻隨磁場變化而變化。磁頭採用分離式設計,由感應磁頭寫,磁致電阻磁頭讀。
1.1記錄過程在硬磁碟中寫入信息,採用的是感應式薄膜磁頭,即用的是高磁感應強度的薄膜材料加平板印刷工藝的磁頭結構。磁頭縫隙小於0.1um,切向記錄長度小於0.076um。磁頭寬度較大,道間距也較大,道密度和位密度有很大差別, 目的是為了使磁頭場具有較大的均勻區,減小介質不均勻磁化帶來的雜訊。目前硬碟記錄中的位間距已經很小,進一步增大記錄密度,除提高材料性能外,主要是採用先進製造技術按比例縮小縫隙長度和磁軌寬度。較窄的磁軌和較小的縫隙將使記錄磁場變小。此外,提高記錄介質的各向異性常數,就能提高介質的矯頑力,改善高密度記錄時的熱穩定性。
1.2讀出過程讀出過程採用巨磁電阻GMR(GianMagneto Resistance)磁頭,包括磁性自旋閥(MagneticSpin Valve)與磁性隧道結(Magnetic Tunnel Junction)結構。磁性自旋閥結構為三明治式,即在兩個低矯頑力磁性層中間夾一個非磁性材料層。其中一個磁性層被另外一層反鐵磁層(FeMn等)所固定,稱為固定層,另一磁性層為自由層。磁性隧道結結構與磁性自旋閥相似,差別為有一層超薄的「絕緣」非磁性材料(AI203等)分割磁性自由層和固定層。在目前的各種高性能硬磁碟驅動器中,巨磁電阻磁頭應用較廣的是以電流方向在平面內的CIP(Current.In.Plane)型磁頭,尤其是採用納米氧化層的CIP.GMR薄膜,面記錄密度可達200Gb/in2。進一步研製電流垂直於平面的巨磁電阻薄膜CPP—GMR。採用CPP.GMR磁頭和垂直記錄技術,可實現300Gb/in2的記錄密度。
隧道型磁電阻磁頭TMR有望成為下一代高密度讀出元件的一種磁頭。2007年9月,美國Seagate公司採用隧道結磁頭的第四代DB35系列產品,硬碟容量已達1TB。
『肆』 為什麼磁性材料可以用來作為存儲器
磁性材料可以具有有磁和失磁兩種狀態,對應二進制的1和0,故所以能用來做存儲介質。
磁表面存儲器是利用塗覆在載體表面的磁性材料具有兩種不同的磁化狀態來表示二進制信息的「0」和「1」。將磁性材料均勻地塗覆在圓形的鋁合金或塑料的載體上就成為磁碟,塗覆在聚酯塑料帶上就成為磁帶。
計算機的外存儲器又稱磁表面存儲設備。所謂磁表面存儲,是用某些磁性材料薄薄地塗在金屬鋁或塑料表面作載磁體來存儲信息。磁碟存儲器、磁帶存儲器均屬於磁表面存儲器。
磁表面存儲器的優點為存儲容量大、單位價格低、記錄介質可以重復使用、記錄信息可以長期保存而不丟失,甚至可以離線存檔、非破壞性讀出,讀出時不需要再生信息。
『伍』 磁表面存儲器讀寫原理的記錄介質與磁頭
磁表面存儲器是目前使用最廣泛的外存儲器。所謂磁表面存儲,是用某些磁性材料薄薄地塗在金屬鋁或塑料表面作載磁體來存儲信息。根據記錄載體的外形,磁表面存儲器有磁鼓、磁帶、磁碟、磁卡等。而在計算機系統中廣泛使用的是磁碟和磁帶;特別是磁碟,幾乎是稍具規模系統的基本配置。 1. 基體與磁層
在磁表面存儲器中,記錄信息的介質是一層很薄的磁層,它需要依附於具有一定機械強度的基體之上。根據不同磁表面存儲器的需要,基體分為軟質基體與硬質基體兩大類,它們所要求的磁層材料與製造工藝也相應不同。
(1)軟質基體與磁層
磁帶的運行方式要求採用軟質基體,如聚酯薄膜帶。軟盤的碟片在工作時與磁頭接觸,為了減少磁頭磨損,也要求用軟質基體,如聚酯薄片。
將具有距磁特性的氧化鐵微粒,滲入少量鈷,用樹脂粘合劑混合後,塗敷在基本
體之上加工形成約1微米厚的均勻磁層。這就是記錄信息用介質,屬於顆粒型材料。
(2)硬質基體與磁層
硬碟的運行方式對基體與磁層要求更高,一般採用鋁合金硬質碟片作為基體。為了進一步提高片光潔度與硬度,一些新型硬碟採用工程塑料、陶瓷、玻璃作為基體。
硬碟一般採用電鍍工藝在碟片上形成一個很薄的磁層,所用材料為具有矩磁特性的鐵鎳鈷合金。電鍍形成的磁層屬於連續型非顆粒型材料,又稱薄膜介質,其均勻性與性能大為提高。磁層厚度大約只有0.1-0.2微米
,上面再鍍一層保護膜,增加抗磨性和抗腐蝕性。 在更新的硬碟中,採用濺射工藝形成薄膜磁層,即用粒子撞擊陰極,使陰極處的磁性材料原子淀積為磁性薄膜。其性能優於鍍膜。
為了增加讀出信號的幅度,希望選用材料的剩磁感應強度 比較大。但 過大,磁化狀態翻轉時間增加,因而影響記錄密度。為了提高激勵密度,要求磁層盡量薄。以減少磁化所需時間;磁層薄又使磁通變化量 減少,將影響讀出信號幅度。這就要求改進讀出放大的電子技術,以降低對磁層製造工藝的要求,或在相同工藝水平條件下,提高密度與可靠性。
此外,要求磁層內部無缺陷,表面組織緻密、光滑、平整,磁層厚薄均勻,無污染,對環境溫度不敏感,性能穩定。 磁頭是實現讀/寫的關鍵元件。寫入時,將脈沖代碼以磁化電流形式加入磁頭線圈,使記錄介質產生相應的磁化狀態,即電磁轉換。讀出時,磁層中的磁化翻轉使磁頭的讀出線圈產生感應信號,即磁電轉換。
圖3-1 磁頭原理圖
圖3-1是磁頭的原理性示意圖。磁頭由高導磁材料構成,上面繞有線圈,有一個線圈兼做寫入磁化與讀出,或分設讀磁頭與寫磁頭。磁頭面向記錄介質的部分開有間隙,稱作磁頭間隙,簡稱頭隙。如果沒有這個間隙,磁化電流產生的磁通將只在閉合磁路中流過,對記錄介質沒有作用。開了間隙後,大部分磁通將流經頭隙所對應的記錄介質局部區域,使該作用區留下某種磁化狀態。讀出時,記錄信息的介質經過磁頭,由於對著磁頭的區域中存在磁化狀態翻轉,若由正向飽和變為負向飽和,或由負向飽和變為正向飽和,使磁頭的磁路中發生磁通變化 。讀出線圈產生感應電勢,即讀出信號。因此頭曦部分的形狀與尺寸至關重要,又稱工作間隙。磁頭的磁路其餘部分既可做成環狀,也可做成馬蹄形,影響不大。
在磁碟或磁帶進行讀/寫時,記錄介質運動而磁頭不動,磁頭在記錄介質上的磁化區形成磁軌。磁化後,磁軌中心部分達到磁飽和,而磁軌兩側的邊緣部分磁化不足。在寫入後,常將兩側進行清洗,稱為夾縫清除。
從磁頭的任務來看,在磁碟中,每個記錄面有一個磁頭,兼做讀磁頭與寫磁頭,又稱復合磁頭。在磁帶機中,經常一次並行地讀/寫幾個磁軌。每個磁軌中有一對磁頭:一個讀磁頭和一個寫磁頭,可以實現寫後讀出檢查。將幾個磁軌的讀磁頭與寫磁頭裝配為一體,道間加屏蔽,稱為組合頭快。
從製造工藝方面來看,分為早期的傳統工藝磁頭與近期的薄膜磁頭。
在早期的製造工藝中,或是用高導磁率鐵淦氧材料熱壓成形,或用高導磁率鐵鎳合金(坡莫合金)疊片組裝成形。通常是先製成幾部分其中一段繞有線圈,然後將他們粘接起來。用於軟盤的磁頭,將上述鐵芯封裝在特種塑料外殼里,外殼做成球面形或平面扣子形,便於安裝和定位,並使磁頭與盤面接觸良好,工作時磨損小。用於硬碟的磁頭,將鐵芯封裝在一個陶瓷塊內,該陶瓷塊稱為浮動塊,工作時可由氣墊使其浮空於盤面上;後來又將鐵芯和浮動塊改為用同樣的材料製成。
近期的硬碟採用薄膜磁頭,用類似於半導體工藝的淀積和成形技術,在基板上形成坡莫合金的鐵芯,和具有一定匝數的線圈,如平面螺旋式導體線圈。由於製造成型過程中使用掩模光刻技術,精度很高,可以獲得比較理想的極尖形狀和工作間隙;然後在基板上燒固一層氧化鋁和碳化鈦,再切割加工成浮動塊。相比之下,薄膜磁頭在各方面的性能均優於傳統工藝磁頭。