A. U盤的儲存工作原理
一、 U盤基本工作原理通用串列匯流排(Universal serial Bus)是一種快速靈活的介面,
當一個USB設備插入主機時,由於USB設備硬體本身的原因,它會使USB匯流排的數據信號線的電平發生變化,而主機會經常掃描USB匯流排。當發現電平有變化時,它即知道有設備插入。
當USB設備剛插入主機時,USB設備它本身會初始化,並認為地址是0。也就是沒有分配地址,這有點象剛進校的大學生沒有學號一樣。
正如有一個陌生人闖入時我們會問「你是什麼人」一樣,當一個USB設備插入主機時,,它也會問:「你是什麼設備」。並接著會問,你使用什麼通信協議等等。當這一些信息都被主機知道後,主機與USB設備之間就可以根據它們之間的約定進行通信。
USB的這些信息是通過描述符實現的,USB描述符主要包括:設備描述符,配置描述符,
介面描述符,端點描述符等。當一個U盤括入主機時,你立即會發現你的資源管理器里多了一個可移動磁碟,在Win2000下你還可以進一步從主機上知道它是愛國者或是朗科的。這里就有兩個問題,首先主機為什麼知道插入的是移動磁碟,而不是鍵盤或列印機等等呢?另外在Win2000下為什麼還知道是哪個公司生產的呢?其實這很簡單,當USB設備插入主機時,主機首先就會要求對方把它的設備描述符傳回來,這些設備描述符中就包含了設備類型及製造商信息。又如傳輸所採用的協議是由介面描述符確定,而傳輸的方式則包含在端點描述符中。
USB設備分很多類:顯示類,通信設備類,音頻設備類,人機介面類,海量存儲類.特定類的設備又可分為若乾子類,每一個設備可以有一個或多個配置,配置用於定義設備的功能。配置是介面的集合,介面是指設備中哪些硬體與USB交換信息。每個與USB交換信息的硬體是一個端點。因些,介面是端點的集合。
U盤應屬於海量存儲類。
USB海量存儲設備又包括通用海量存儲子類,CDROM,Tape等,U盤實際上屬於海量存儲類中通用海量存儲子類。通用海量存儲設備實現上是基於塊/扇區存儲的設備。
USB組織定義了海量存儲設備類的規范,這個類規范包括4個獨立的子類規范。主要是指USB匯流排上的傳輸方法與存儲介質的操作命令。
海量存儲設備只支持一個介面,即數據介面,此介面有三個端點Bulk input ,Bulk output,中斷端點
這種設備的介面採用SCSI-2的直接存取設備協議,USB設備上的介質使用與SCSI-2以相同的邏輯塊方式定址
二、 Bulk-Only傳輸協議
當一個U盤插入主機以後,主機會要求USB設備傳回它們的描述符,當主機得到這些描述符後,即完成了設備的配置。識別出USB設備是一個支持Bulk-Only傳輸協議的海量存儲設備。這時應可進行Bulk-Only傳輸方式。在此方式下USB與設備之間的數據傳輸都是通過Bulk-In和Bulk-Out來實現的。
在這種傳輸方式下,有三種類型數據在USB和設備傳送,它們是命令塊包(CBW),命令執行狀態包(CSW)和普通數據包。CBW是主機發往設備的命令。格式如下:
其中dCBWSignature的值為43425355h,表示當前發送的是一個CBW。
DCBWDataTransferLength:表示這次CBW要傳送數據長度。
BmCBWFlags:表示本次CBW是讀數據還是寫數所
BBWCBLength:表示命令的長度。
CBWCB:表示本次命令內容。也即是SCSI命令。
當設備從主機收到CBW塊以後,它會把SCSI命令從CBW中分離出來,然後根據要求執行,執行的結果又以CSW的形式發給主機。
CSW的格式如下:
其中dCSWSignature的值為53425355h,表示當前發送的是一個CSW。
DCSWTag:必須和CBW中dCBWTag一樣。
DCSWDataResie:還要傳送的數據。
BCSWStatue:命令執行狀態,命令正確執行時,為0。三、 SCSI命令集
在Bulk-Only的命令塊包(CBW)中,有一段CBECB內容,它就是SCSI命令塊描述符。其內容如下:
Operation Code:是SCSI命令操作代碼。
Logical Block Address:邏輯塊地址,對U盤而言應是扇區。前面已經講過:通用海量存儲設備是一個基於塊/扇區存儲的設備,因此在SCSI中要提供這個參數是很顯然的。
transfer length:為要傳送的扇區數
SCSI中直接存取類型的存儲介質的傳輸命令有很多,如:
INQUIRY:其操作碼為12H
Test Unit Ready:其操作碼為00H
Format Unit:其操作碼為04H
.......
這里以INQUIRY命令為例:
INQUIRY命令描述符如下:
INQUIRY的結果是U盤供電電路原理U盤供電電路故障檢修U盤的結構U盤的電路結構U盤調試的主要步驟和內容USB 設備端的固件分以下幾個層次:文件模塊名稱 主要功能
Main.c 進行各種初始化操作、寄存器設置、中斷設置Fat16.c flash.c 負責按照Fat16 文件系統的組織向Flash 中寫入數據或是從Flash 中讀出數據Chap9.c bulk-only.c 完成不同的中斷請求,Chap9 完成來自端點0 的USB 標准設備請求,Bulk-Only 完成來自批量模式端點的Mass Storage Bulk-Only 傳輸中斷請求Isr.c 中斷服務程序,負責將不同類型的中斷轉向一同的地方D12ci.c 函數化的D12 的命令集合,可以直接調用這些函數,而不必再自己根據手冊查每個命令的代碼另外,此文件中包括一些與硬碟有關的地址定義在調試的時候,從現象上來看,分成以下幾個階段性的步驟:1、USB 晶元正常工作,可以實現軟連接,此時PC 機上會出現「未知設備類型」的USB 設備;2、使用他人已經高度成功的USB 通用介面,按普通USB 設備提供描述符,提供正確的VID 和PID 後,PC 能夠識別設備,但要求提供設備的驅動程序;3、安裝驅動程序後,調試幾個端點,使其均可傳輸數據,用PC 端的測試程序對其進行測試,驗證硬體及固件的正確性;4、按Mass StorageBulk-Only 模式提供描述符,PC 機上設備類型變成Mass Storage Device;5、響應了Bulk-Only 的Inquiry 命令,可以出現盤符了,但尚無法訪問磁碟;6、提供了其他所有的UFI命令(SCSI 子集),開始讀取磁碟0 扇區(BPB 區)的內容,按照FAT16 的格式格式化Flash,可以正確讀取信息,可以訪問盤符,列目錄為空;7、創建文件時,向設備發出Write 命令,調整Flash 的讀寫問題,解決寫某幾個扇區要先保存整個簇的內容,然後擦除整簇,再回寫,可以正常創建文件;8、完成最後的調試,U 盤高度完畢。在此基礎上,還需要提供支持FAT16 的文件系統介面函數,比如,可以從FAT16 中讀取文件,可以創建文件並將其保存到FAT16 中去。U盤維修技術常見故障維修以下故障在維修時,首先要排除USB介面損壞及PCB板虛焊、及USB延長線正常的情況下,再維修判斷1、U盤插到機器上沒有任何反應 維修思路:根據故障現象判斷,U盤整機沒有工作,而U盤工具所要具備的條件也就是我們維修的重點。無論任何方案的U盤想要工具都必須具備以下幾個條件:
(1)供電,分為主控所需的供電和FLASH所需的供電,這兩個是關鍵,而U盤電路非常的簡單,如沒有供電一般都是保險電感損壞或3.3V穩壓塊損壞,說到穩壓塊再這里也說一下,其有三個引腳分別是電源輸入(5V)、地、電源輸出(3.3),工作原理就是當輸入腳輸入一個5V電壓時,輸出腳就會輸出一個穩定的3.3V。只要查到哪裡是沒有供電的根源,問題就會很好解決了。
(2)時鍾,因主控要在一定頻率下才能工作,跟FLASH通信也要*時鍾信號進行傳輸,所以如果時鍾信號沒有,主控一定不會工作的。而在檢查這方面電路的時候,其實時鍾產生電路很簡單,只需要檢查晶振及其外圍電路即可,因晶振怕刷而U盤小巧很容易掉在地上造成晶振損壞,只要更換相同的晶振即可。注意:晶振是無法測量的,判斷其好壞最好的方法就是代換一個好的晶振來判斷。
(3)主控,如果上述兩個條件都正常那就是主控晶元損壞了。只要更換主控了。 2、U盤插入電腦,提示「無法識別的設備」。維修思路:對於此現象,首先的一點說明U盤的電路基本正常,而只是跟電腦通信方面有故障,而對於通信方面有以下幾點要檢查:
(1)U盤介面電路,此電路沒有什麼特別元件就是兩根數據線D D-,所以在檢查此電路時只要測量數據線到主控之間的線路是否正常即可,一般都在數據線與主控電路之間會串接兩個小阻值的電阻,以起到保護的作用,所以要檢查這兩個電阻的阻值是否正常。
(2)時鍾電路,因U盤與電腦進行通信要在一定的頻率下進行,如果U盤的工作頻率和電腦不能同步,那麼系統就會認為這是一個「無法識別的設備」了。這時就要換晶振了。而實際維修中真的有很多晶振損壞的實例!
(3)主控,如果上述兩點檢查都正常,那就可以判斷主控損壞了。 3、可以認U盤,但打開時提示「磁碟還沒有格式化」但系統又無法格式化,或提示「請插入磁碟」,打開U盤裡面都是亂碼、容量與本身不相符等。 維修思路:對於此現象,可以判斷U盤本身硬體沒有太大問題,只是軟體問題而以了。
解決方法:找到主控方案的修復工具搞一下就可以了。這個就要大家自己看U盤的主控是什麼方案的來決定了。 U盤故障大概也就是這些主要問題了。而對於無法寫文件、不存儲等現象,一般都是FLASH性能不良或有壞塊而引起的。大家看完之後有沒有一個清晰的思路了呢。隨便說明一下,U盤不同於MP3,他不存在固件之說,但有些廠家把自己的軟體放到裡面,低格一下就會沒有的。 告訴大家一個非常簡單的方法,就是在碰到主控損壞或找不到相應的修復工具時,可以用U盤套件來重新搞一個新的U盤,方法就是把故障機的FLASH拆下來,放到新的PCB板上就可以了。U盤套件包括(PCB帶主控(分1.1和2.0之分)及外殼一套)23元,中維在線有出售,維修起來非常簡單,做數據恢復就更方便了。
B. U盤能夠永久存儲信息的原理
u盤是靠快閃記憶體晶元存儲信息的.快閃記憶體晶元類似內存晶元,但掉電後仍可保存數據(內存晶元掉電後數據自動消失),快閃記憶體晶元通後控制晶元進行地址定址,一個完整的u盤包括存
存儲的原理:在源極和漏極之間電流單向傳導的半導體上形成貯存電子的浮動棚。浮動柵包裹著一層硅氧化膜絕緣體。它的上面是在源極和漏極之間控制傳導電流的選擇/控制柵。數據是0或1取決於在硅底板上形成的浮動柵中是否有電子。
C. U盤的存儲原理是什麼
U盤的存儲原理是:計算機把二進制數字信號轉為復合二進制數字信號(加入分配、核對、堆棧等指令)讀寫到USB晶元適配介面,通過晶元處理信號分配給EPROM2存儲晶元的相應地址存儲二進制數據,實現數據的存儲。
EPROM2數據存儲器,其控制原理是電壓控制柵晶體管的電壓高低值(高低電位),柵晶體管的結電容可長時間保存電壓值,也就是為什麼USB斷電後能保存數據的原因。
(3)u盤如何實現循環存儲擴展閱讀
U盤最大的優點就是:小巧便於攜帶、存儲容量大、價格便宜、性能可靠。U盤體積很小,僅大拇指般大小,重量極輕,一般在15克左右,特別適合隨身攜帶,我們可以把它掛在胸前、吊在鑰匙串上、甚至放進錢包里。
一般的U盤容量有2G、4G、8G、16G、32G、64G(1GB已沒有了,因為容量過小),除此之外還有128G、256G、512G、1T等。價格上以最常見的8GB為例,20-40元左右就能買到,16G的50元左右。快閃記憶體檔中無任何機械式裝置,抗震性能極強。另外,快閃記憶體檔還具有防潮防磁、耐高低溫等特性,安全可靠性很好。
快閃記憶體檔幾乎不會讓水或灰塵滲入,也不會被刮傷,而這些在舊式的攜帶式存儲設備(例如光碟、軟碟片)等是嚴重的問題。
而快閃記憶體檔所使用的固態存儲設計讓它們能夠抵抗無意間的外力撞擊。這些優點使得快閃記憶體檔非常適合用來從某地把個人數據或是工作文件攜帶到另一地,例如從家中到學校或是辦公室,或是一般來說需要攜帶到並訪問個人數據的各種地點。由於USB在現今的個人電腦中幾乎無所不在,因而到處都可以使用快閃記憶體檔。不過,小尺寸的快閃記憶體檔也讓它們常常被放錯地方、忘掉或遺失。
快閃記憶體檔雖然小,但相對來說卻有很大的存儲容量。早期快閃記憶體檔容量較小,僅可存儲16-32M文件,即便是這樣,也相當於當時通用的可擦寫移動存儲介質軟盤容量的10-20倍。隨著科技的發展,U盤容量也依摩爾定律飛速猛增。
到2012年為止,4G容量U盤已基本處於淘汰的邊緣,主流U盤容量發展為8-16G,相當於2-4張DVD光碟的容量。最大容量則已達到1T,相當於240餘張DVD光碟的容量。
快閃記憶體檔使用USB大量存儲設備的類別,這表示大多數現代的操作系統都可以在不需要另外安裝驅動程序的情況下讀取及寫入快閃記憶體檔。
快閃記憶體檔在操作系統裡面顯示成區塊式的邏輯單元,隱藏內部快閃記憶體所需的復雜細節。操作系統可以使用任何文件系統或是區塊定址的方式。也可以製作啟動U盤來引導計算機。
與其它的快閃記憶體設備相同,快閃記憶體檔在總讀取與寫入次數上也有限制。中階的快閃記憶體檔在正常使用狀況下可以讀取與寫入數十萬次,但當快閃記憶體檔變舊時,寫入的動作會更耗費時間。當我們用快閃記憶體檔來運行應用程序或操作系統時,便不能不考慮這點。
有些程序開發者特別針對這個特性以及容量的限制,為快閃記憶體檔撰寫了特別版本的操作系統(例如Linux)或是應用程序(例如Mozilla
Firefox)。它們通常對使用空間做優化,並且將暫存檔存儲在電腦的主存中,而不是快閃記憶體檔里。
許多快閃記憶體檔支持寫入保護的機制。這種在外殼上的開關可以防止電腦寫入或修改磁碟上的數據。寫入保護可以防止電腦病毒文件寫入快閃記憶體檔,以防止該病毒的傳播。沒有防寫功能的快閃記憶體檔,則成了多種病毒隨自動運行等功能傳播的途徑。
快閃記憶體檔比起機械式的磁碟來說更能容忍外力的撞擊,但仍然可能因為嚴重的物理損壞而故障或遺失數據。在組裝電腦中,錯誤的USB連接埠接線也可能損壞快閃記憶體檔的電路。
D. U盤是如何存儲數據的
快閃記憶體(Flash Memory)是非揮發存儲的一種,具有關掉電源仍可保存數據的優點,同時又可重復讀寫且讀寫速度快、單位體積內可儲存最多數據量,以及低功耗特性等優點。 其存儲物理機制實際上為一種新型EEPROM(電可擦除可編程只讀存儲)。是SCM(半導體存儲器)的一種。
早期的SCM採用典型的晶體管觸發器作為存儲位元,加上選擇、讀寫等電路構成存儲器。現代的SCM採用超大規模集成電路工藝製成存儲晶元,每個晶元中包含相當數量的存儲位元,再由若干晶元構成存儲器。目前SCM廣泛採用的主要材料是金屬氧化物場效應管(MOS),包括PMOS、NMOS、CMOS三類,尤其是NMOS和CMOS應用最廣泛。
RAM(隨機存取存儲),是一種半導體存儲器。必須在通電情況下工作,否則會喪失存儲信息。RAM又分為DRAM(動態)和SRAM(靜態)兩種,我們現在普遍使用的PC機內存即是SDRAM(同步動態RAM),它在運行過程當中需要按一定頻率進行充電(刷新)以維持信息。DDR DDR2內存也屬於SDRAM。而SRAM不需要頻繁刷新,成本比DRAM高,主要用在CPU集成的緩存(cache)上。
PROM(可編程ROM)則只能寫入一次,寫入後不能再更改。
EPROM(可擦除PROM)這種EPROM在通常工作時只能讀取信息,但可以用紫外線擦除已有信息,並在專用設備上高電壓寫入信息。
EEPROM(電可擦除PROM),用戶可以通過程序的控制進行讀寫操作。
快閃記憶體實際上是EEPROM的一種。一般MOS閘極(Gate)和通道的間隔為氧化層之絕緣(gate oxide),而Flash Memory的特色是在控制閘(Control gate)與通道間多了一層稱為「浮閘」(floating gate)的物質。拜這層浮閘之賜,使得Flash Memory可快速完成讀、寫、抹除等三種基本操作模式;就算在不提供電源給存儲的環境下,也能透過此浮閘,來保存數據的完整性。
Flash Memory晶元中單元格里的電子可以被帶有更高電壓的電子區還原為正常的1。Flash Memory採用內部閉合電路,這樣不僅使電子區能夠作用於整個晶元,還可以預先設定「區塊」(Block)。在設定區塊的同時就將晶元中的目標區域擦除干凈,以備重新寫入。傳統的EEPROM晶元每次只能擦除一個位元組,而Flash Memory每次可擦寫一塊或整個晶元。Flash Memory的工作速度大幅領先於傳統EEPROM晶元。
MSM(磁表面存儲)是用非磁性金屬或塑料作基體,在其表面塗敷、電鍍、沉積或濺射一層很薄的高導磁率、硬矩磁材料的磁面,用磁層的兩種剩磁狀態記錄信息"0"和"1"。基體和磁層合稱為磁記錄介質。依記錄介質的形狀可分別稱為磁卡存儲器、磁帶存儲器、磁鼓存儲器和磁碟存儲器。計算機中目前廣泛使用的MSM是磁碟和磁帶存儲器。硬碟屬於MSM設備。
ODM(光碟存儲)和MSM類似,也是將用於記錄的薄層塗敷在基體上構成記錄介質。不同的是基體的圓形薄片由熱傳導率很小,耐熱性很強的有機玻璃製成。在記錄薄層的表面再塗敷或沉積保護薄層,以保護記錄面。記錄薄層有非磁性材料和磁性材料兩種,前者構成光碟介質,後者構成磁光碟介質。
ODM是目前輔存中記錄密度最高的存儲器,存儲容量很大且碟片易於更換。缺點是存儲速度比硬碟低一個數量級。現已生產出與硬碟速度相近的ODM。CD-ROM、DVD-ROM等都是常見的ODM。