『壹』 1、評價存儲器性能的主要指標有哪些 2、簡述存儲器晶元擴展的基本思路。
當評價存儲器性能時,我們通常關注以下主要指標:
容量:存儲器能夠存儲的數據量。通常以位元組(Bytes)為單位進行衡量。較大的容量意味著可以存儲更多的數據。
速度:包括延遲(Latency)和帶寬(Bandwidth)。延遲是指從發起訪問請求到數據可用之間的時間延遲,而帶寬是指在單位時間內可以傳輸的數據量。較低的延遲和較高的帶寬表示存儲器可以更快地響應請求和傳輸數據。
訪問時間:從發出存儲器訪問請求到數據可用的總時間。它包括延遲以及傳輸和處理數據所需的時間。較低的訪問時間意味著存儲器能夠更快地提供需要的數據。
吞吐量:單位時間內完成的讀取或寫入操作的數量。較高的吞吐量表示存儲器可以處理更多的操作,提高整體性能。
增加晶元的容量:通過提高存儲單元的密度,增加晶元上可容納的存儲單元數量,從而擴展存儲器的容量。
採用新的存儲技術:引入新的存儲技術,如快閃記憶體、相變存儲器(PCM)、磁存儲器等,塵游以提供更高的存儲密度和性能。
堆疊技術:通過將多個存儲層堆疊在一起,形成立體結構,以增加存儲容量。這種技術利用垂直空間,將多個晶元或存儲單元疊放在一起。
存儲器層次結構優化:通過結合不同種類和層次的存儲器,如高速緩存(Cache)、主存儲器(RAM)、輔助存儲器(硬碟、固態硬碟等),實現存困兄正儲器層次結構的優化,提高整體性能和容量。
以上指標綜合考慮可以評估存儲器的性能優劣,根據不同應用的需求選擇合適的存儲器技術和規格。
關於存儲器晶元擴展的基本思路,常見的方式包括:
這些思路都是為了滿足不斷增長的數據存儲需求和提高存儲器汪悔性能的目標,不同的存儲器技術和設計策略會根據需求和技術發展而有所不同。
『貳』 存儲容量和地址線,數據線的關系
地址線、數據線和存儲容量之間的關系:地址線一次確定一個存儲單元,地址線上值可能取的所有組合確定了存儲單元的個數,所以,存儲單元的個數=2^地址線的條數。
地址線用來傳輸地址信息的,比如,cpu在內存或硬碟裡面尋找一個數據時,先通過地址線找到地址,然後再通過數據線將數據取出來。如果有32根,就可以訪問2的32次方的位元組,也就是4GB。
數據線,其作用是來連接移動設備和電腦,達到數據傳遞或通信目的。通俗點說,就是連接電腦與移動設備用來傳送視頻、鈴聲、圖片等文件的通路工具。
(2)存儲晶元容量上升1000倍擴展閱讀
存儲容量的計算
一千個位元組是1kb,但是一般說的一千位元組實際上是1024位元組,只是習慣稱為一千位元組。1024kb等於一mb,也就是說的一兆。以下是精確的演算法:
gigabyte等於1024mb
terabyte等於1024gb
perabyte等於1024tb
exabyte等於1024pb
zettabyte等於1024eb
yottabyte等於1024zb
這些單位都是常用的計算單位,一般用於存儲數據的產品通常有這幾個容量,1gb、2gb、4gb、8gb等等,都是2的整次方倍。
磁碟的存儲容量計算公式:存儲容量c=磁碟磁頭的數量h*磁軌的數量t*扇區的數量s。
『叄』 存儲器容量大小和什麼有關系
主要是在做存儲晶元的時候,單位面積的晶體管數量是定死的.位寬和深度是一定的.
容量和存儲器的定址空間有關-和有多少地址線有關.
『肆』 內存儲器的發展歷程
對於用過386機器的人來說,30pin的內存,我想在很多人的腦海里,一定或多或少的還留有一絲印象,這一次我們特意收集的7根30pin的內存條,並拍成圖片,怎麼樣看了以後,是不是有一種久違的感覺呀!
30pin 反面 30pin 正面
下面是一些常見內存參數的介紹:
bit 比特,內存中最小單位,也叫「位」。它只有兩個狀態分別以0和1表示
byte位元組,8個連續的比特叫做一個位元組。
ns(nanosecond)
納秒,是一秒的10億分之一。內存讀寫速度的單位,其前面數字越小表示速度越快。
72pin正面 72pin反面
72pin的內存,可以說是計算機發展史的一個經典,也正因為它的廉價,以及速度上大幅度的提升,為電腦的普及,提供了堅實的基礎。由於用的人比較多,目前在市場上還可以買得到。
SIMM(Single In-line Memory Moles)
單邊接觸內存模組。是5X86及其較早的PC中常採用的內存介面方式。在486以前,多採用30針的SIMM介面,而在Pentuim中更多的是72針的SIMM介面,或者與DIMM介面類型並存。人們通常把72線的SIMM類型內存模組直接稱為72線內存。
ECC(Error Checking and Correcting)
錯誤檢查和糾正。與奇偶校驗類似,它不但能檢測到錯誤的地方,還可以糾正絕大多數錯誤。它也是在原來的數據位上外加位來實現的,這些額外的位是用來重建錯誤數據的。只有經過內存的糾錯後,計算機操作指令才可以繼續執行。當然在糾錯是系統的性能有著明顯的降低。
EDO DRAM(Extended Data Output RAM)
擴展數據輸出內存。是Micron公司的專利技術。有72線和168線之分、5V電壓、帶寬32bit、基本速度40ns以上。傳統的DRAM和FPM DRAM在存取每一bit數據時必須輸出行地址和列地址並使其穩定一段時間後,然後才能讀寫有效的數據,而下一個bit的地址必須等待這次讀寫操作完成才能輸出。EDO DRAM不必等待資料的讀寫操作是否完成,只要規定的有效時間一到就可以准備輸出下一個地址,由此縮短了存取時間,效率比FPM DRAM高20%—30%。具有較高的性/價比,因為它的存取速度比FPM DRAM快15%,而價格才高出5%。因此,成為中、低檔Pentium級別主板的標准內存。
DIMM(Dual In-line Memory Moles)
雙邊接觸內存模組。也就是說這種類型介面內存的插板兩邊都有數據介面觸片,這種介面模式的內存廣泛應用於現在的計算機中,通常為84針,由於是雙邊的,所以共有84×2=168線接觸,所以人們常把這種內存稱為168線內存。
PC133
SDRAM(Synchronous Burst RAM)
同步突發內存。是168線、3.3V電壓、帶寬64bit、速度可達6ns。是雙存儲體結構,也就是有兩個儲存陣列,一個被CPU讀取數據的時候,另一個已經做好被讀取數據的准備,兩者相互自動切換,使得存取效率成倍提高。並且將RAM與CPU以相同時鍾頻率控制,使RAM與CPU外頻同步,取消等待時間,所以其傳輸速率比EDO DRAM快了13%。SDRAM採用了多體(Bank)存儲器結構和突發模式,能傳輸一整數據而不是一段數據。
SDRAM ECC 伺服器專用內存
RDRAM(Rambus DRAM)
是美國RAMBUS公司在RAMBUSCHANNEL技術基礎上研製的一種存儲器。用於數據存儲的字長為16位,傳輸率極速指標有望達到600MHz。以管道存儲結構支持交叉存取同時執行四條指令,單從封裝形式上看,與DRAM沒有什麼不同,但在發熱量方面與100MHz的SDRAM大致相當。因為它的圖形加速性能是EDO DRAM的3-10倍,所以目前主要應用於高檔顯卡上做顯示內存。
Direct RDRAM
是RDRAM的擴展,它使用了同樣的RSL,但介面寬度達到16位,頻率達到800MHz,效率更高。單個傳輸率可達到1.6GB/s,兩個的傳輸率可達到3.2GB/s。
點評:
30pin和72pin的內存,早已退出市場,現在市場上主流的內存,是SDRAM,而SDRAM的價格越降越底,對於商家和廠家而言,利潤空間已縮到了極限,賠錢的買賣,有誰願意去做了?再者也沒有必要,畢竟廠家或商家們總是在朝著向「錢」的方向發展。
隨著 INTEL和 AMD兩大公司 CPU生產飛速發展,以及各大板卡廠家的支持,RAMBUS 和 DDRAM 也得到了更快的發展和普及,究竟哪一款會成為主流,哪一款更適合用戶,市場終究會證明這一切的。
機存取存儲器是電腦的記憶部件,也被認為是反映集成電路工藝水平的部件。各種存儲器中以動態存儲器(DRAM)的存儲容量為最大,使用最為普及,幾十年間它的存儲量擴大了幾千倍,存取數據的速度提高40多倍。存儲器的集成度的提高是靠不斷縮小器件尺寸達到的。尺寸的縮小,對集成電路的設計和製造技術提出了極為苛刻的要求,可以說是只有一代新工藝的突破,才有一代集成電路。
動態讀寫存儲器DRAM(Dynamic Random Access MeMory)是利用MOS存儲單元分布電容上的電荷來存儲數據位,由於電容電荷會泄漏,為了保持信息不丟失,DRAM需要不斷周期性地對其刷新。由於這種結構的存儲單元所需要的MOS管較少,因此DRAM的集成度高、功耗也小,同時每位的價格最低。DRAM一般都用於大容量系統中。DRAM的發展方向有兩個,一是高集成度、大容量、低成本,二是高速度、專用化。
從1970年Intel公司推出第一塊1K DRAM晶元後,其存儲容量基本上是按每三年翻兩番的速度發展。1995年12月韓國三星公司率先宣布利用0.16μm工藝研製成功集成度達10億以上的1000M位的高速(3lns)同步DRAM。這個領域的競爭非常激烈,為了解決巨額投資和共擔市場風險問題,世界范圍內的各大半導體廠商紛紛聯合,已形成若干合作開發的集團格局。
1996年市場上主推的是4M位和16M位DRAM晶元,1997年以16M位為主,1998年64M位大量上市。64M DRAM的市場佔有率達52%;16M DRAM的市場佔有率為45%。1999年64M DRAM市場佔有率已提高到78%,16M DRAM佔1%。128M DRAM已經普及,明年將出現256M DRAM。
高性能RISC微處理器的時鍾已達到100MHz~700MHz,這種情況下,處理器對存儲器的帶寬要求越來越高。為了適應高速CPU構成高性能系統的需要,DRAM技術在不斷發展。在市場需求的驅動下,出現了一系列新型結構的高速DRAM。例如EDRAM、CDRAM、SDRAM、RDRAM、SLDRAM、DDR DRAM、DRDRAM等。為了提高動態讀寫存儲器訪問速度而採用不同技術實現的DRAM有:
(1) 快速頁面方式FPM DRAM
快速頁面方式FPM(Fast Page Mode)DRAM已經成為一種標准形式。一般DRAM存儲單元的讀寫是先選擇行地址,再選擇列地址,事實上,在大多數情況下,下一個所需要的數據在當前所讀取數據的下一個單元,即其地址是在同一行的下一列,FPM DRAM可以通過保持同一個行地址來選擇不同的列地址實現存儲器的連續訪問。減少了建立行地址的延時時間從而提高連續數據訪問的速度。但是當時鍾頻率高於33MHz時,由於沒有足夠的充電保持時間,將會使讀出的數據不可靠。
(2) 擴展數據輸出動態讀寫存儲器EDO DRAM
在FPM技術的基礎上發展起來的擴展數據輸出動態讀寫存儲器EDODRAM(Extended Data Out DRAM),是在RAM的輸出端加一組鎖存器構成二級內存輸出緩沖單元,用以存儲數據並一直保持到數據被可靠地讀取時為止,這樣就擴展了數據輸出的有效時間。EDODRAM可以在50MHz時鍾下穩定地工作。
由於只要在原DRAM的基礎上集成成本提高並不多的EDO邏輯電路,就可以比較有效地提高動態讀寫存儲器的性能,所以在此之前,EDO DRAM曾成為動態讀寫存儲器設計的主流技術和基本形式。
(3) 突發方式EDO DRAM
在EDO DRAM存儲器的基礎上,又發展了一種可以提供更高有效帶寬的動態讀寫存儲器突發方式EDO DRAM(Burst EDO DRAM)。這種存儲器可以對可能所需的4個數據地址進行預測並自動地預先形成,它把可以穩定工作的頻率提高到66MHz。
(4) 同步動態讀寫存儲器SDRAM
SDRAM(Synchronous DRAM)是通過同步時鍾對控制介面的操作和安排片內隔行突發方式地址發生器來提高存儲器的性能。它僅需要一個首地址就可以對一個存儲塊進行訪問。所有的輸入采樣如輸出有效都在同一個系統時鍾的上升沿。所使用的與CPU同步的時鍾頻率可以高達66MHz~100MHz。它比一般DRAM增加一個可編程方式寄存器。採用SDRAM可大大改善內存條的速度和性能,系統設計者可根據處理器要求,靈活地採用交錯或順序脈沖。
Infineon Technologies(原Siemens半導體)今年已批量供應256Mit SDRAM。其SDRAM用0.2μm技術生產,在100MHz的時鍾頻率下輸出時間為10ns。
(5) 帶有高速緩存的動態讀寫存儲器CDRAM
CDRAM(Cached DRAM)是日本三菱電氣公司開發的專有技術,1992年推出樣品,是通過在DRAM晶元,集成一定數量的高速SRAM作為高速緩沖存儲器Cache和同步控制介面,來提高存儲器的性能。這種晶元用單一+3.3V電源,低壓TTL輸入輸出電平。目前三菱公司可以提供的CDRAM為4Mb和16Mb,其片內Cache為16KB,與128位內部匯流排配合工作,可以實現100MHz的數據訪問。流水線式存取時間為7ns。
(6) 增強型動態讀寫存儲器EDRAM(Enhanced DRAM)
由Ramtron跨國公司推出的帶有高速緩沖存儲器的DRAM產品稱作增強型動態讀寫存儲器EDRAM(Enhanced DRAM),它採用非同步操作方式,單一+5V工作電源,CMOS或TTL輸入輸出電平。由於採用一種改進的DRAM 0.76μm CMOS工藝和可以減小寄生電容和提高晶體管增益的結構技術,其性能大大提高,行訪問時間為35ns,讀/寫訪問時間可以提高到65ns,頁面寫入周期時間為15ns。EDRAM還在片內DRAM存儲矩陣的列解碼器上集成了2K位15ns的靜態RAM高速緩沖存儲器Cache,和後寫寄存器以及另外的控制線,並允許SRAM Cache和DRAM獨立操作。每次可以對一行數據進行高速緩沖。它可以象標準的DRAM對任一個存儲單元用頁面或靜態列訪問模式進行操作,訪問時間只有15ns。當Cache未命中時,EDRAM就把新的一行載入到Cache中,並把選擇的存儲單元數據輸出,這需要花35ns。這種存儲器的突發數據率可以達到267Mbytes/s。
(7) RDRAM(Rambus DRAM)
Rambus DRAM是Rambus公司利用本身研製的一種獨特的介面技術代替頁面方式結構的一種新型動態讀寫存儲器。這種介面在處理機與DRAM之間使用了一種特殊的9位低壓負載發送線,用250MHz同步時鍾工作,位元組寬度地址與數據復用的串列匯流排介面。這種介面又稱作Rambus通道,這種通道嵌入到DRAM中就構成Rambus DRAM,它還可以嵌入到用戶定製的邏輯晶元或微處理機中。它通過使用250MHz時鍾的兩個邊沿可以使突發數據傳輸率達到500MHz。在採用Rambus通道的系統中每個晶元內部都有它自己的控制器,用來處理地址解碼和面頁高速緩存管理。由此一片存儲器子系統的容量可達512K位元組,並含有一個匯流排控制器。不同容量的存儲器有相同的引腳並連接在同一組匯流排上。Rambus公司開發了這種新型結構的DRAM,但是它本身並不生產,而是通過發放許可證的方式轉讓它的技術,已經得到生產許可的半導體公司有NEC、Fujitsu、Toshiba、Hitachi和LG等。
被業界看好的下一代新型DRAM有三種:雙數據傳輸率同步動態讀寫存儲器(DDR SDRAM)、同步鏈動態讀寫存儲器(SLDRAM)和Rambus介面DRAM(RDRAM)。
(1) DDR DRAM(Double Data Rate DRAM)
在同步動態讀寫存儲器SDRAM的基礎上,採用延時鎖定環(Delay-locked Loop)技術提供數據選通信號對數據進行精確定位,在時鍾脈沖的上升沿和下降沿都可傳輸數據(而不是第一代SDRAM僅在時鍾脈沖的下降沿傳輸數據),這樣就在不提高時鍾頻率的情況下,使數據傳輸率提高一倍,故稱作雙數據傳輸率(DDR)DRAM,它實際上是第二代SDRAM。由於DDR DRAM需要新的高速時鍾同步電路和符合JEDEC標準的存儲器模塊,所以主板和晶元組的成本較高,一般只能用於高檔伺服器和工作站上,其價格在中低檔PC機上可能難以接受。
(2) SLDRAM(Synchnonous Link DRAM)
這是由IBM、HP、Apple、NEC、Fujitsu、Hyundai、Micron、TI、Toshiba、Sansung和Siemens等業界大公司聯合制定的一個開放性標准,委託Mosaid Technologies公司設計,所以SLDRAM是一種原本最有希望成為高速DRAM開放性工業標準的動態讀寫存儲器。它是一種在原DDR DRAM基礎上發展的一種高速動態讀寫存儲器。它具有與DRDRAM相同的高數據傳輸率,但是它比其工作頻率要低;另外生產這種存儲器不需要支付專利使用費,使得製造成本較低,所以這種存儲器應該具有市場競爭優勢。但是由於SLDRAM聯盟是一個鬆散的聯合體,眾多成員之間難以協調一致,在研究經費投入上不能達成一致意見,加上Intel公司不支持這種標准,所以這種動態存儲器反而難以形成氣候,敵不過Intel公司鼎立支持的Rambus公司的DRDRAM。SLDRAM可用於通信和消費類電子產品,高檔PC和伺服器。
(3) DRDRAM(Direct Rambus DRAM)
從1996年開始,Rambus公司就在Intel公司的支持下制定新一代RDRAM標准,這就是DRDRAM(Direct RDRAM)。這是一種基於協議的DRAM,與傳統DRAM不同的是其引腳定義會隨命令而變,同一組引腳線可以被定義成地址,也可以被定義成控制線。其引腳數僅為正常DRAM的三分之一。當需要擴展晶元容量時,只需要改變命令,不需要增加硬體引腳。這種晶元可以支持400MHz外頻,再利用上升沿和下降沿兩次傳輸數據,可以使數據傳輸率達到800MHz。同時通過把數據輸出通道從8位擴展成16位,這樣在100MHz時就可以使最大數據輸出率達1.6Gb/s。東芝公司在購買了Rambus公司的高速傳輸介面技術專利後,於1998年9月首先推出72Mb的RDRAM,其中64Mb是數據存儲器,另外8Mb用於糾錯校驗,由此大大提高了數據讀寫可靠性。
Intel公司辦排眾議,堅定地推舉DRDRAM作為下一代高速內存的標准,目前在Intel公司對Micro、Toshiba和Samsung等公司組建DRDRAM的生產線和測試線投入資金。其他眾多廠商也在努力與其抗爭,最近AMD宣布至少今年推出的K7微處理器都不打算採用Rambus DRAM;據說IBM正在考慮放棄對Rambus的支持。當前市場上同樣是64Mb的DRAM,RDRAM就要比其他標準的貴45美元。
由此可見存儲器的發展動向是:大容量化,高速化, 多品種、多功能化,低電壓、低功耗化。
存儲器的工藝發展中有以下趨勢:CHMOS工藝代替NMOS工藝以降低功耗;縮小器件尺寸,外圍電路仍採用ECL結構以提高存取速度同時提高集成度;存儲電容從平面HI-C改為深溝式,保證尺寸減少後的電荷存儲量,以提高可靠性;電路設計中簡化外圍電路結構,注意降低雜訊,運用冗餘技術以提高質量和成品率;工藝中採用了多種新技術;使DRAM的存儲容量穩步上升,為今後繼續開發大容量的新電路奠定基礎。
從電子計算機中的處理器和存儲器可以看出ULSI前進的步伐和幾十年間的巨大變化。
『伍』 全息存儲器容量的發展史
存儲器設備發展
1.存儲器設備發展之汞延遲線
汞延遲線是基於汞在室溫時是液體,同時又是導體,每比特數據用機械波的波峰(1)和波谷(0)表示。機械波從汞柱的一端開始,一定厚度的熔融態金屬汞通過一振動膜片沿著縱向從一端傳到另一端,這樣就得名「汞延遲線」。在管的另一端,一感測器得到每一比特的信息,並反饋到起點。設想是汞獲取並延遲這些數據,這樣它們便能存儲了。這個過程是機械和電子的奇妙結合。缺點是由於環境條件的限制,這種存儲器方式會受各種環境因素影響而不精確。
1950年,世界上第一台具有存儲程序功能的計算機EDVAC由馮.諾依曼博士領導設計。它的主要特點是採用二進制,使用汞延遲線作存儲器,指令和程序可存入計算機中。
1951年3月,由ENIAC的主要設計者莫克利和埃克特設計的第一台通用自動計算機UNIVAC-I交付使用。它不僅能作科學計算,而且能作數據處理。
2.存儲器設備發展之磁帶
UNIVAC-I第一次採用磁帶機作外存儲器,首先用奇偶校驗方法和雙重運算線路來提高系統的可靠性,並最先進行了自動編程的試驗。
磁帶是所有存儲器設備發展中單位存儲信息成本最低、容量最大、標准化程度最高的常用存儲介質之一。它互換性好、易於保存,近年來,由於採用了具有高糾錯能力的編碼技術和即寫即讀的通道技術,大大提高了磁帶存儲的可靠性和讀寫速度。根據讀寫磁帶的工作原理可分為螺旋掃描技術、線性記錄(數據流)技術、DLT技術以及比較先進的LTO技術。
根據讀寫磁帶的工作原理,磁帶機可以分為六種規格。其中兩種採用螺旋掃描讀寫方式的是面向工作組級的DAT(4mm)磁帶機和面向部門級的8mm磁帶機,另外四種則是選用數據流存儲技術設計的設備,它們分別是採用單磁頭讀寫方式、磁帶寬度為1/4英寸、面向低端應用的Travan和DC系列,以及採用多磁頭讀寫方式、磁帶寬度均為1/2英寸、面向高端應用的DLT和IBM的3480/3490/3590系列等。
磁帶庫是基於磁帶的備份系統,它能夠提供同樣的基本自動備份和數據恢復功能,但同時具有更先進的技術特點。它的存儲容量可達到數百PB,可以實現連續備份、自動搜索磁帶,也可以在驅動管理軟體控制下實現智能恢復、實時監控和統計,整個數據存儲備份過程完全擺脫了人工干涉。
磁帶庫不僅數據存儲量大得多,而且在備份效率和人工佔用方面擁有無可比擬的優勢。在網路系統中,磁帶庫通過SAN(Storage Area Network,存儲區域網路)系統可形成網路存儲系統,為企業存儲提供有力保障,很容易完成遠程數據訪問、數據存儲備份或通過磁帶鏡像技術實現多磁帶庫備份,無疑是數據倉庫、ERP等大型網路應用的良好存儲設備。
3.存儲器設備發展之磁鼓
1953年,隨著存儲器設備發展,第一台磁鼓應用於IBM 701,它是作為內存儲器使用的。磁鼓是利用鋁鼓筒表面塗覆的磁性材料來存儲數據的。鼓筒旋轉速度很高,因此存取速度快。它採用飽和磁記錄,從固定式磁頭發展到浮動式磁頭,從採用磁膠發展到採用電鍍的連續磁介質。這些都為後來的磁碟存儲器打下了基礎。
磁鼓最大的缺點是利用率不高, 一個大圓柱體只有表面一層用於存儲,而磁碟的兩面都利用來存儲,顯然利用率要高得多。 因此,當磁碟出現後,磁鼓就被淘汰了。
4.存儲器設備發展之磁芯
美國物理學家王安1950年提出了利用磁性材料製造存儲器的思想。福雷斯特則將這一思想變成了現實。
為了實現磁芯存儲,福雷斯特需要一種物質,這種物質應該有一個非常明確的磁化閾值。他找到在新澤西生產電視機用鐵氧體變換器的一家公司的德國老陶瓷專家,利用熔化鐵礦和氧化物獲取了特定的磁性質。
對磁化有明確閾值是設計的關鍵。這種電線的網格和芯子織在電線網上,被人稱為芯子存儲,它的有關專利對發展計算機非常關鍵。這個方案可靠並且穩定。磁化相對來說是永久的,所以在系統的電源關閉後,存儲的數據仍然保留著。既然磁場能以電子的速度來閱讀,這使互動式計算有了可能。更進一步,因為是電線網格,存儲陣列的任何部分都能訪問,也就是說,不同的數據可以存儲在電線網的不同位置,並且閱讀所在位置的一束比特就能立即存取。這稱為隨機存取存儲器(RAM),在存儲器設備發展歷程中它是互動式計算的革新概念。福雷斯特把這些專利轉讓給麻省理工學院,學院每年靠這些專利收到1500萬~2000萬美元。
最先獲得這些專利許可證的是IBM,IBM最終獲得了在北美防衛軍事基地安裝「旋風」的商業合同。更重要的是,自20世紀50年代以來,所有大型和中型計算機也採用了這一系統。磁芯存儲從20世紀50年代、60年代,直至70年代初,一直是計算機主存的標准方式。
5.存儲器設備發展之磁碟
世界第一台硬碟存儲器是由IBM公司在1956年發明的,其型號為IBM 350 RAMAC(Random Access Method of Accounting and Control)。這套系統的總容量只有5MB,共使用了50個直徑為24英寸的磁碟。1968年,IBM公司提出「溫徹斯特/Winchester」技術,其要點是將高速旋轉的磁碟、磁頭及其尋道機構等全部密封在一個無塵的封閉體中,形成一個頭盤組合件(HDA),與外界環境隔絕,避免了灰塵的污染,並採用小型化輕浮力的磁頭浮動塊,碟片表面塗潤滑劑,實行接觸起停,這是現代絕大多數硬碟的原型。1979年,IBM發明了薄膜磁頭,進一步減輕了磁頭重量,使更快的存取速度、更高的存儲密度成為可能。20世紀80年代末期,IBM公司又對存儲器設備發展作出一項重大貢獻,發明了MR(Magneto Resistive)磁阻磁頭,這種磁頭在讀取數據時對信號變化相當敏感,使得碟片的存儲密度比以往提高了數十倍。1991年,IBM生產的3.5英寸硬碟使用了MR磁頭,使硬碟的容量首次達到了1GB,從此,硬碟容量開始進入了GB數量級。IBM還發明了PRML(Partial Response Maximum Likelihood)的信號讀取技術,使信號檢測的靈敏度大幅度提高,從而可以大幅度提高記錄密度。
目前,硬碟的面密度已經達到每平方英寸100Gb以上,是容量、性價比最大的一種存儲設備。因而,在計算機的外存儲設備中,還沒有一種其他的存儲設備能夠在最近幾年中對其統治地位產生挑戰。硬碟不僅用於各種計算機和伺服器中,在磁碟陣列和各種網路存儲系統中,它也是基本的存儲單元。值得注意的是,近年來微硬碟的出現和快速發展為移動存儲提供了一種較為理想的存儲介質。在快閃記憶體晶元難以承擔的大容量移動存儲領域,微硬碟可大顯身手。目前尺寸為1英寸的硬碟,存儲容量已達4GB,10GB容量的1英寸硬碟不久也會面世。微硬碟廣泛應用於數碼相機、MP3設備和各種手持電子類設備。
另一種磁碟存儲設備是軟盤,從早期的8英寸軟盤、5.25英寸軟盤到3.5英寸軟盤,主要為數據交換和小容量備份之用。其中,3.5英寸1.44MB軟盤占據計算機的標准配置地位近20年之久,之後出現過24MB、100MB、200MB的高密度過渡性軟盤和軟碟機產品。然而,由於USB介面的快閃記憶體出現,軟盤作為數據交換和小容量備份的統治地位已經動搖,不久會退出存儲器設備發展歷史舞台。
6. 存儲器設備發展之光碟
光碟主要分為只讀型光碟和讀寫型光碟。只讀型指光碟上的內容是固定的,不能寫入、修改,只能讀取其中的內容。讀寫型則允許人們對光碟內容進行修改,可以抹去原來的內容,寫入新的內容。用於微型計算機的光碟主要有CD-ROM、CD-R/W和DVD-ROM等幾種。
上世紀60年代,荷蘭飛利浦公司的研究人員開始使用激光光束進行記錄和重放信息的研究。1972年,他們的研究獲得了成功,1978年投放市場。最初的產品就是大家所熟知的激光視盤(LD,Laser Vision Disc)系統。
從LD的誕生至計算機用的CD-ROM,經歷了三個階段,即LD-激光視盤、CD-DA激光唱盤、CD-ROM。下面簡單介紹這三個存儲器設備發展階段性的產品特點。
LD-激光視盤,就是通常所說的LCD,直徑較大,為12英寸,兩面都可以記錄信息,但是它記錄的信號是模擬信號。模擬信號的處理機制是指,模擬的電視圖像信號和模擬的聲音信號都要經過FM(Frequency Molation)頻率調制、線性疊加,然後進行限幅放大。限幅後的信號以0.5微米寬的凹坑長短來表示。
CD-DA激光唱盤 LD雖然取得了成功,但由於事先沒有制定統一的標准,使它的開發和製作一開始就陷入昂貴的資金投入中。1982年,由飛利浦公司和索尼公司制定了CD-DA激光唱盤的紅皮書(Red Book)標准。由此,一種新型的激光唱盤誕生了。CD-DA激光唱盤記錄音響的方法與LD系統不同,CD-DA激光唱盤系統首先把模擬的音響信號進行PCM(脈沖編碼調制)數字化處理,再經過EMF(8~14位調制)編碼之後記錄到盤上。數字記錄代替模擬記錄的好處是,對干擾和雜訊不敏感,由於盤本身的缺陷、劃傷或沾污而引起的錯誤可以校正。
CD-DA系統取得成功以後,使飛利浦公司和索尼公司很自然地想到利用CD-DA作為計算機的大容量只讀存儲器。但要把CD-DA作為計算機的存儲器,還必須解決兩個重要問題,即建立適合於計算機讀寫的盤的數據結構,以及CD-DA誤碼率必須從現有的10-9降低到10-12以下,由此就產生了CD-ROM的黃皮書(Yellow Book)標准。這個標準的核心思想是,盤上的數據以數據塊的形式來組織,每塊都要有地址,這樣一來,盤上的數據就能從幾百兆位元組的存儲空間上被迅速找到。為了降低誤碼率,採用增加一種錯誤檢測和錯誤校正的方案。錯誤檢測採用了循環冗餘檢測碼,即所謂CRC,錯誤校正採用里德-索洛蒙(Reed Solomon)碼。黃皮書確立了CD-ROM的物理結構,而為了使其能在計算機上完全兼容,後來又制定了CD-ROM的文件系統標准,即ISO 9660。
在上世紀80年代中期,光碟存儲器設備發展速度非常快,先後推出了WORM光碟、磁光碟(MO)、相變光碟(Phase Change Disk,PCD)等新品種。20世紀90年代,DVD-ROM、CD-R、CD-R/W等開始出現和普及,目前已成為計算機的標准存儲設備。
光碟技術進一步向高密度發展,藍光光碟是不久將推出的下一代高密度光碟。多層多階光碟和全息存儲光碟正在實驗室研究之中,可望在5年之內推向市場。
7.存儲器設備發展之納米存儲
納米是一種長度單位,符號為nm。1納米=1毫微米,約為10個原子的長度。假設一根頭發的直徑為0.05毫米,把它徑向平均剖成5萬根,每根的厚度即約為1納米。與納米存儲有關的主要進展有如下內容。
1998年,美國明尼蘇達大學和普林斯頓大學制備成功量子磁碟,這種磁碟是由磁性納米棒組成的納米陣列體系。一個量子磁碟相當於我們現在的10萬~100萬個磁碟,而能源消耗卻降低了1萬倍。
1988年,法國人首先發現了巨磁電阻效應,到1997年,採用巨磁電阻原理的納米結構器件已在美國問世,它在磁存儲、磁記憶和計算機讀寫磁頭等方面均有廣闊的應用前景。
2002年9月,美國威斯康星州大學的科研小組宣布,他們在室溫條件下通過操縱單個原子,研製出原子級的硅記憶材料,其存儲信息的密度是目前光碟的100萬倍。這是納米存儲材料技術研究的一大進展。該小組發表在《納米技術》雜志上的研究報告稱,新的記憶材料構建在硅材料表面上。研究人員首先使金元素在硅材料表面升華,形成精確的原子軌道;然後再使硅元素升華,使其按上述原子軌道進行排列;最後,藉助於掃瞄隧道顯微鏡的探針,從這些排列整齊的硅原子中間隔抽出硅原子,被抽空的部分代表「0」,餘下的硅原子則代表「1」,這就形成了相當於計算機晶體管功能的原子級記憶材料。整個試驗研究在室溫條件下進行。研究小組負責人赫姆薩爾教授說,在室溫條件下,一次操縱一批原子進行排列並不容易。更為重要的是,記憶材料中硅原子排列線內的間隔是一個原子大小。這保證了記憶材料的原子級水平。赫姆薩爾教授說,新的硅記憶材料與目前硅存儲材料存儲功能相同,而不同之處在於,前者為原子級體積,利用其製造的計算機存儲材料體積更小、密度更大。這可使未來計算機微型化,且存儲信息的功能更為強大。
『陸』 美日韓在晶元領域的霸權是如何一步步確立的
2020年8月7日,華為余承東公開表示海思麒麟高端晶元已經「絕版」,中國最強的晶元設計公司,就在我們眼皮子底下被鎖悶並哪死了未來。
華為海思推出第一款麒麟(Kirin)晶元是在2009年,雖然當時反響一般,但奏響了麒麟騰飛的樂章,隨後每一年都有不小的進步:麒麟925帶領Mate7打入高端陣營;麒麟955助力華為P9銷量過千萬……自己研發的晶元,成為華為手機蔽肆甩開國內友商的最大武器。
然而到了2020年8月7日,麒麟系列的高端晶元卻被迫提前退休,余承東表示麒麟系列中最先進的Kirin 990和Kirin 1000系列,在9月15日之後將無法生產,華為Mate40將成為麒麟高端晶元的絕唱。絕版的原因很簡單:受到美國禁令影響,台積電將不再為華為代工。
台積電並非沒有抗爭。全球高製程工藝一線難求,台積電話語權其實很強,而且幾周前剛剛超過英特爾成為世界第一大半導體公司。所以面對美國禁令,台積電也曾斡旋過,但只要美國提起一個公司的名字,就能讓台積電高管們嚇出冷汗。這個公司就是: 福建晉華。
福建晉華成立於2016年,目標是在存儲晶元領域實現突破。福建晉華是IDM一體化工藝,即設計、製造、封裝都要做,一旦產品落地,對大陸整個半導體工藝的都會有所帶動和提升。晉華一期投資款高達370億元,還和台灣第二大代工廠台聯電進行了技術合作。
研發人員日夜奮戰,成立一年多後,晉華就打造出了一座12寸的生產線,並准備投產,不料卻迎來了 資本主義的鐵拳。
2017年12月,美國鎂光 科技 即刻以竊取知識產權為由開始狙擊晉華,晉華也不甘示弱,雙方在中國福州和美國加州互相起訴。就當局勢焦灼之時,早就虎視眈眈的特朗普政府在2018年10月29日發起了閃電戰: 將福建晉華列入實體名單,嚴禁美國企業進行合作。
禁令發出後,和晉華合作的美國應用材料公司(Applied Materials)的研發支持人員當天就打包撤離,另外兩家美商科磊和泛林也迅速召回了前來合作的工程師。更嚴重的是,由於設備中含有美國原件,歐洲的阿斯麥、日本東京電子也暫停了對晉華的設備供應。
晉華員工回憶外資螞碼撤退場景時,總結說:「這些人根本給我們時間道別。」
福建晉華官網上的生產進度,停留在了2018年試投片日,遲遲沒有更新,而產品頁則直接顯示「頁面在建設」中。去年5月10日,英國《金融時報》稱,晉華已經開始尋求出租或者出售自己的工廠。僅僅一個回合,擔當中國存儲突破的種子選手,就被打倒在了起跑線上。
「實體名單」就像是一份死刑通知書,可以瞬間讓企業墜入地獄。美國制裁的決心、打擊的力度,令同樣採用美國核心零部件和核心技術支撐的台積電不寒而慄。同樣,本來興致勃勃要來搶台積電蛋糕的三星沒了下文;中芯也含蓄地表示,可能不能為「某些客戶」代工。
為什麼這些公司不願意去觸碰美國「逆鱗」?半導體領域,美國真的就獨霸天下嗎?其實並不然。
雖然美國半導體行業產值大約佔全世界的47%,體量上處於絕對優勢;但韓國、歐洲、日本、中國台灣、中國大陸等其他「豪強」也各有擅長,與美國的差距並不是無法越過的鴻溝。
比如, 韓國 在產值1500億美金的存儲晶元領域,占據壓倒性優勢,雙強(三星、海力士)占據65%市場;
歐洲 在模擬晶元領域有三駕馬車(英飛凌、意法半導體、恩智浦),從80年代起就從未跌出全球二十強。
日本 不但有獨步天下的圖像識別晶元,以信越日立為首的幾家公司,更是牢牢扼住了全世界半導體的上游材料。
中國台灣在千億美元級別的晶元代工領域,更勝美國一籌,台積電和聯電占據60%的規模,以日月光為首的封測代工也能搶下50%的市場;
中國大陸依託龐大的下游市場,近年晶元設計領域發展迅速,不但誕生了世界前十的晶元設計巨頭華為海思,整體晶元設計規模也位居世界第二。
這些企業從賬面實力來看,甚至可以讓晶元行業「去美國化」,合力搞出一部沒有美國晶元的手機。 但美國515禁令一下,各路豪強卻莫敢不從。
一超多強的局面似乎就像「紙老虎」,在美國霸權之下,眾半導體商分封而治可能才是目前的「真相」。大家忌憚的,其實是美國手握的兩把利劍:晶元設備和設計工具 。 這兩把劍又和日本的材料一起,組成了威力極強的美日半導體霸權三張牌: 設備、工具和材料。
那麼,美日手中握的這三把劍究竟可怕在何處?是如何能挾制各路 科技 巨頭豪強?了解這些答案,才能了解華為們的突圍之路。
一、設備:晶元製造的外置大腦
設備商對於一般行業而言,就是個賣鏟子的,交錢拿貨基本就完事兒了;但 半導體設備商卻不同,不僅提供設備賣鏟子,還要全程服務賣腦子,可謂是晶元製造商的外置大腦 。
晶元製造成本高昂,只有將良品率控制在90%上下,才不會虧本。但要知道,晶元製造,工序一千起步,這就導致,哪怕每一步合格率都有99%,最終良率都會在0.9*0.9的多次累積下,趨近於0。因此,要想不虧本, 每個步驟的合格率就得控制在99.99%乃至99.999%以上。
要達到這個狀況,就對設備的復雜度提出了超高要求。 就目前最先進的EUV光刻機來說,單台設備里超過十萬個零件、4萬個螺栓,以及3000多條線路。僅僅軟管加起來,就有兩公里長。這么一台龐大的設備,重量足足有180噸,單次發貨需要動用40個貨櫃、20輛卡車以及3架貨機才能運完。
而更為重要的是,即使設備買回來,也遠不是像電視冰箱一樣,放好、插電就能開動這么簡單。一般來說,一台高精度光刻機的調試組裝,需要一年時間。而零件的組裝、參數的設置、模塊的調試,甚至螺絲的松緊、外部氣溫都會影響生產效果。哪怕一里外的一輛地鐵經過,都能導致多數設備集體失靈。
這也是所有精密儀器的「通病」。比如,十年前,北京大學12個高精度實驗室里價值4億元的儀器突然失靈,而原因居然是位於地下13.5米深的北京4號線經過了北大東門產生了1Hz~10Hz的震動,為此北大高精度實驗室不得不集體搬家。
因此, 半導體製造設備每開動一段時間,就必須聯系專門原廠服務人員上門調校。 荷蘭光刻機巨頭ASML阿斯麥曾有一個客戶,要更換光器件;由於當時阿斯麥的工程師無法出國,便邀請客戶優秀員工到公司學習,用了近2個月,才僅僅掌握了單個零部件更換的技能。
因此,阿斯麥、應用材料等半導體巨頭,不只是把設備賣掉就結束了,更是在中國建立了2000人左右的龐大支持團隊。其中應用材料的第二大收入就是服務,營收佔比超過25%,而且穩定增長,旱澇保收。
而設備廠的可怕之處正在於, 不但通過「一代設備,一代工藝,一代產品」決定了製造廠的工藝製程,更是通過售後服務將製造廠牢牢的拿捏在手中 。 隨著工藝越來越越高精尖,設備商的話語權也正在進一步提升。
設備商的強勢,可以從利潤上明確的反映出來。過去5年,晶元製造廠的頭部效應越來越明顯,但上游設備商的凈利潤率反而大幅提升:泛林利潤率從12%提升到22%,應用材料從14%上升到18%。代工廠想要客大欺店,那是根本不存在。
也正因如此,在長達六十年的時間里,美國一直都在以各種手段,來保證自己在設備領域的絕對主導地位。
根據2019年全球頂級半導體設備廠商排名,全球前五大半導體設備商占據了全球58%行業營收。 其中,美國獨佔三席;其餘兩席,一席是日本的東京電子,另一席荷蘭的阿斯麥,恰巧,這兩家又都是美國一手扶持起來的。
具體來說,應用材料(AMAT)和泛林(LAM)、科磊(KLA),是根正苗紅的美國企業。
其中,泛林在刻蝕機的市場佔有率高達50%以上。應用材料則不僅在刻蝕機領域與泛林平分秋色,在離子注入、化學拋光等等細分設備環節也都占據半壁江山,甚至高達70%。科磊則在半導體前道檢測設備領域占據了50%以上的市場,並在鍍膜測量設備的市佔率達到了98%。
而光刻機巨頭阿斯麥,看似是一家荷蘭企業,其實有一顆美國心。 早在2000年前後,光刻機市場還停留在DUV(深紫外)光刻階段,日本尼康才是真正的霸主,但到了EUV(極紫外)階段,尼康卻在美國的一手主導下被淘汰出局。
原因很簡單,EUV技術難度登峰造極: 從傳統DUV跨越到EUV,意味著光源從193nm劇烈縮短到13.5nm。這需要將20KW的激光,以每秒5萬次的頻率來轟擊20微米的錫滴,將液態錫汽化成為等離子體。這相當於在颶風里以每秒五萬次的頻率,讓乒乓球打中一隻蒼蠅兩次。
當年,全球最先進的EUV研發機構是英特爾與美國能源部帶頭組建的EUV LLC聯盟, 這里有摩托羅拉、AMD、IBM,以及能源部下屬三大國家實驗室,可謂是集美國科研精華於一身。 可以說,只有進入EUVLLC聯盟,才能獲得一張EUV的門票。
美國彼時正將日本半導體視為大敵,自然拒絕了日本尼康的入會請求,而阿斯麥則保證55%零部件會從美國供應商處采購,並接受定期審查。這才入了美國的局,從後起之秀變成了「帝花之秀」。
美國不僅對阿斯麥開了門,還送了禮:允許阿斯麥先後收購了美國掩罩技術龍頭Silicon Valley Group、美國光刻檢測與解決方案玩家Brion、美國紫外光源龍頭Cymer等公司。 阿斯麥技術心、研發身,都打上了星條旗烙印。那還不是任憑美國使喚。
而早年的東京電子,只是美國半導體始祖仙童半導體(Fairchild)的設備代理商,後來又與美國Thermco公司合資生產半導體設備,直到1988年才變成日本獨資,但東京電子身上也已經流著美國公司的血。
因此,在2019年六月,面對第一輪美國禁令,東京電子就表示:「那些被禁止與應用材料和泛林做生意的中國客戶,我們也不會跟他們有業務往來」,義正詞嚴表明了和美系設備商共進退。
至此,美國靠著多年的「時間積累」和超高精密度「工藝技術」,在設備領域形成了牢牢的主動權。而時間和技術,都不是後進者可以一蹴而就的。
二、EDA(設計軟體):生態網路效應下的「幌金繩」
如果說設備是針對晶元生產的一把封喉劍,那麼 EDA無疑是晶元設計環節的「幌金繩」,雖不致命但可以令「孫悟空」束手束腳、無處施展。
EDA這根「幌金繩」分三段: 首先,它是晶元設計師的「PS軟體+素材庫」, 可以讓晶元設計從幾十年前圖紙上畫線的體力活,變成了軟體里「素材排列組合+敲敲代碼」的腦力活。而且,現在僅指甲蓋大小晶元,也有幾十億個晶體管,這種工程量,離開了EDA簡直是天方夜譚。
20年前的英特爾奔騰處理器的線路圖一角,目前晶體管密度已經上升超過1000倍
其次,EDA的奧秘,在於其豐富的IP庫。 即將經常使用的功能,標准化為可以直接調用的模塊,而無需設計公司再重新設計。如果說晶元設計是廚師做菜的話,軟體就是廚具,IP就是料包。
而事實上,EDA巨頭公司,往往是得益於其IP的獨占。比如Cadence(楷登電子)擁有大量模擬電路IP,而其也是模擬及混合信號電路設計的王者;而Synopsys(新思 科技 )的IP庫更偏向DC綜合、PT時序分析,因而新思在數字晶元領域獨占鰲頭。
而在全球前三的IP企業中,EDA公司就佔了兩個,合計市場份額高達24.1%。在Synopsys的歷年營收中,IP授權是僅次於EDA授權的第二業務。
EDA還有一項重要的功能是模擬 ,即幫設計好的晶元查漏補缺。畢竟一次流片(試產)的成本就高達數百萬美金,頂得上一個小設計公司大半年的利潤。業內廣為流傳一句話: 設計不模擬,流片兩行淚。
加州大學教授有一個統計測算,2011年一片SoC的設計費用大概為4000萬美元,而 如果沒有EDA,設計費用則會飆升至77億美元,增加了近200倍。
因此,EDA被譽為半導體里的最高杠桿,雖然全球產值不過一百多億美元,但卻可以影響全球五千多億集成電路市場、幾萬億電子產業的發展。
EDA如此高效好用,那我國自主化狀況如何呢?很可惜,比操作系統還尷尬 。
我國最大的EDA廠商華大九天在全球的份額差不多是1%,而美國三大廠商Synopsys(新思 科技 )、Cadence(楷登電子)以及Mentor Graphics(明導 科技 ,2016年被西門子收購)則占據了80%以上的市場。
這也就導致了雖然我國晶元設計位居世界第二,但美國一聲令下,晶元設計就會面臨「工具危機」,巧婦難為無米之炊。不過,既然軟體已經交過錢了, 用舊版本難道不行嗎?
很可惜,並不能。
因為這背後有一張EDA商、IP商、代工廠們互相嵌合的生態網。EDA是不斷更新的。新的版本對應更新的IP庫和PDK文件。而PDK即工藝設計包,則又包含了晶元工藝中的電流、電壓、材料、流程等參數,是代工廠生產時的必備數據。 新EDA、新IP、新工藝,互相促進、互為一體。
因此,用舊版的軟體就會處處「脫節」:做設計時無法獲得最新的設計IP庫,找代工廠時又無法和工藝需要最新的EDA、PDK進行匹配。長此以往,技術越來越落後,合作夥伴也越來越少。不過既然EDA不過是0101的代碼,從破解小組里找幾個高手不就好了嗎?
很遺憾,也幾乎不可能。
每個EDA軟體出廠時都會內嵌一個Flexlm加密軟體, 把EDA和安裝的設備進行一一鎖定 ,包括主機號、設備硬碟、網卡、使用日期等信息。而Flexlm的密鑰長度達239位,暴力破解的難度非常大。如果用英特爾高性能的CPU來破解的話,需要4000左右的核年(core-year),也就是說 用40核的CPU,需要100年 。
當然,也可以採用分布式的方式,繼續增加CPU數量減少時間。然而,即使破解成功了,來到了全新的IP庫門前時,也會被EDA廠商通過「修改時間、文件大小、確認IP來源」等方式,再次進行驗證,然後被拒絕。油然而生一股挖了百年地下隧道、卻撞到石頭上的酸爽。
破解並不有效,也不敞亮,還和我國知識產權保護的態度相違背。因此,依然還是要靠華大九天等公司自研崛起。那麼, 這條出路有多寬呢? 其實單純寫出一套軟體,難度並不大。關鍵還是要有海量豐富的IP、PDK,以及產業上下游的支持配合。單點突破未必有效,需要軍團全面突圍,而這並非一朝一夕之功。
三、材料:工匠精神最後的堡壘
2019年,日韓鬧了矛盾,雙方都很剛,但日本斷供了韓國幾款半導體材料後,沒多久韓國三星掌門人李在鎔就飛往日本懇請鬆口了,後來他更是跑到比利時、中國台灣,試圖繞道購買或者收點存貨過日。
按理說,韓國也是半導體強國,三星在設計、製造領域更是主要玩家,但面對區區幾億美金的材料,卻被鬧得狼狽不堪。
材料真的有這么難嗎?講真,半導體原始材料是非常豐富的,比如矽片用的就是滿地球的沙子。但要實現半導體的「材料自由」,卻並不容易,必須打通任督二脈: 「純度」、「配方」 。
純度是一個無止境之路。我國已經實現自產的光伏矽片,一般純度是6-8個9,即99.999999%,但半導體的矽片純度卻是11個9,而且還在不斷提高。小數點後多3到5位,就意味著雜質含量相差了1000到10萬倍。
這個差距有多大呢? 假設,光伏矽片里包含的雜質,相當於一桶沙子灑在了操場上;那麼半導體矽片的要求則是在兩個足球場大的面積里,只能容下一粒沙子。
那麼, 為什麼必須將雜質含量降到這么低呢? 因為原子的大小隻有1/10納米,哪怕僅有幾個原子大小的雜質出現在矽片上,也會徹底堵塞一條電路通道,導致晶元局部失靈。如果雜質含量更高的話,甚至會和硅原子混在一起,直接改變矽片的原子排列結構,讓矽片的導電效率完全改變。
經過刻蝕後的硅表面和錫顆粒,如同明月在金字塔後升起
要達到如此純度,需要科學和工藝的完美結合。
一方面,需要大量基礎科學儀器來輔助。比如在材料生產過程中,設備自身就會有金屬原子滲透影響純度,因此需要不斷改良。而要確認純度,也是高難度。就像特種氣體,就需要專門的儀器來檢測10億分之一(PPB級)的雜質含量水平。實現這個難度,就不僅需要半導體企業,還需要奧林巴斯等光學企業出馬助力。
另一方面,從實驗室到工廠車間也需要工藝積累。材料製造,不僅對生產設備要求高,就連工廠里的地墊、拖把,也都是高級別特供。而且,生產車間溫度、濕度的不同,也會影響材料純度,就不得不反復嘗試後得出標准。
而高純度只是第一步,復合材料(比如光刻膠)的配置更是難以跨越的鴻溝。如果說 「純度」是個藝術科學的話,那麼「配方」就是玄學科學 。
其實,無論提純、還是配置,基本的理論原理、工藝技術都不是難事兒。但如何選材、配比,從而實現極致的效果,卻需要高度依賴經驗法則,即業內常說的 「know-how」 。
同樣的材料,不同的配比就會有不同的效果;就像我們用紅黃藍三色去搭配,不同的配比就能得到不同的顏色。而即使用同樣的配方、採用同樣的工藝, 在不同的濕度、溫度甚至光照下,也會有不同,甚至相差很遠的效果。
這些影響材料效果的參數,無法通過精密計算獲得,只能是實驗室、車間里一次次調配、實驗、觀察、記錄、改良。有時候,為了得到10%的效果改良,可能需要花費幾年。然而,這提升的10%,雖然搶占的只是幾百億規模的市場,但卻影響著萬億半導體行業。
因此, 無論是提純,還是配方,其實需要的都是超長的耐心待機、極致專注。 這不禁令人會想到日本的壽司之神,一輩子只做壽司,而一個學徒僅擰毛巾就要練五年。雖然在生活中,這種執著看起來有些迂腐可笑,但事實上,材料領域做得最好的,正是日本企業。
據SEMI推測,2019年日本企業在全球半導體材料市場,所佔份額達到66%。19種主要材料中,日本有14種市佔率超過50%。而在占據產值2/3的四大最核心的材料:矽片、光刻膠、電子特氣和掩膜膠等領域,日本有三項都占據了70%的份額。最新一代EUV光刻膠領域,日本的3家企業申請了行業80%以上的專利。
日本在材料產能上占據優勢後,又用服務將客戶捆綁得死死的 。
許多半導體材料都有極強的腐蝕性和毒性,曾有一位特種氣體的供應商描述,一旦氣體泄漏,只需一瓶,就可以把整個廈門市人口消滅。因此,晶元製造商只能把材料的運輸、保存、檢測等環節,都交給材料的「娘家」材料商。
而另一方面,材料雖小、威力卻大。半導體製造中幾萬美金的材料不達標,就能讓耗資數十億美金生產線的產品大半報廢,因此製造商們只會選擇經過認證的、長期合作的供應商。新進玩家,幾乎沒有上桌的機會。
而對於材料公司而言,下游用得越多,得到的反饋就越多,就有更多的案例支持、更多的驗證機會來提升工藝、改善配比,從而進一步拉大和追趕者的差距。對於後進者而言,商業處境用一句話來形容就是:一步趕不上、步步都白忙。
日本能取得這個成就,其實離不開日本「經營之聖」稻盛和夫在上世紀80年代給日本規劃的方向:歐美先進國家不願再轉讓技術的條件下,日本人除了將自己固有的「改良改善特質」發揚光大之外,別無出路;各類企業都要在各自的專業領域內做徹底,把技術做到極致,在本專業內不亞於世界上任何國家的任何企業。
這種匠人精神,令日本在規模不大的材料領域,頂住美國、成為領主。
四、何處突圍
我們在做產業研究的時候,有個強烈的感受, 中國似乎在美國的打壓中,陷入一個被無限向上追溯的絕境:
發現晶元被卡脖子後,我們在晶元設計領域有了崛起的華為海思,但隨後就發現:還需要代工領域突破;當中芯國際攻堅晶元代工製造時,卻又發現:需要設備環節突破;當中微公司、北方華創在逆襲設備、有所收獲時,卻又發現:設備核心零部件又仰人鼻息;當零部件也有所進展時,又發現:晶元材料還是被卡脖子。
而當我們繼續一步步向前溯源、「圖窮匕見」時,才發現一切都回到了任正非此前無數次強調的 基礎科學 。
回顧來看,如果沒有1703年建立的現代二進制,那麼兩百年後的機器語言就無從談起;如果沒有1874年布勞恩發現物理上的整流效應,那麼就沒有大半個世紀後晶體管的發明和應用;而等離子物理、氣體化學,更是刻蝕機等關鍵設備的必備基礎。
而在美國大學中,有7所位列全球物理學科排名前十,有6所位列全球數學學科排名前十,有5所位列全球材料學科排名前十。 基礎科學強大的統治力,成為美國半導體公司汲取力量的源泉。
在強勢的基礎學科背後,卻又是1957年就已經埋下伏筆的美國基礎學科支持體系—— 對大學基礎學科進行財政支持;通過超級 科技 項目帶領應用落地。
當年美蘇爭霸,蘇聯的全球第一顆人造衛星升空刺激了美國執政者,這也成為美國 科技 發展的重要轉折點:
一方面,為了保持「美國領先」,政府開始直接對研究機構發錢。美國國家科學基金會(NSF)給大學的基礎研究經費從1955年的700萬美金,飆升到1968年的2億美金。在2018年,NSF用於基礎研究的經費,更是高達42億美金。這長達50年的基礎研究經費里, 美國聯邦政府出了一半 。
尤其值得一提的是,NSF每年為數以千計的基礎學科研究生提供獎學金,這其中誕生了 42位 諾貝爾獎得主。
另一方面, 美國啟動了超級工程來落地研發成果。 1958年,NASA成立,挑戰人類 科技 極限的阿波羅登月和太空梭工程也就此啟動。
在研究需要250萬個零件的太空梭過程中(作為對比,光刻機零件大約是10萬個,一輛 汽車 只有1萬多個零件),大量尖端技術找到用武之地;而這些當時「冷門」的尖端技術,又在條件成熟時,相繼轉化為殺手級民用品(比如從太空梭零件中誕生的人造心臟、紅外照相機)。
太空梭的技術外溢,並不是孤例。 醫院核磁共振設備中採用的超導磁鐵,也正是在美國粒子加速器「Tevatron」的研發中應用誕生。美國的超級 科技 工程,成為基礎學科成果的試驗田、練兵場和民用轉化泉。
事實上,通過基礎研究掌握源頭 科技 ,隨後一步步外溢建立產業霸權,這條路徑並不只是美國的專利,也應該是各個產業強國的選擇,更是面對美國打壓時一條真正可行的道路。王侯將相,寧有種乎。 避免無窮盡的「國產替代向上突破」的陷阱,實現和「基礎研究向下溢出」的大會師。
事實上,我們面臨的困難、打壓,日本也經歷過。
上世紀八十年代後期,美國對日本半導體產業發起突襲:政治封殺、商業打壓、關稅壓迫無所不用其極,尤其是培養了「新小弟」韓國來擠壓日本半導體產業。沒幾年,日本就從全球第一半導體強國寶座上跌落了。日本半導體引以為傲的三大楷模,松下、東芝、富士通的半導體部門先後被出售。
面對美國的壓制,日本選擇 進軍高精尖材料,用時間換空間、用匠心換信心。
1989年,韓國發力補貼存儲晶元,而日本通產省制定了投資160億日元的「硅類高分子材料研究開發基本計劃」,重點補貼信越化學為首的有機硅企業。
1995年,韓國發動第二輪存儲價格戰前夕,而日本東京應化(TOK)則實現了 KrF光刻膠商業化,打破了美國IBM長達10餘年的壟斷,並在隨後第五年,其產品工藝成為行業標准,全球領先。
2005年,三星坐上存儲晶元老大的位置,而日本凸版印刷株式會社以710億日元收購了美國杜邦公司的光掩膜業務,成為光罩龍頭。
在韓國全力擴張產能,和其他半導體下游廠搏殺的日子裡,日本一步步走到了材料霸主的寶座前。從看似掌握著無解優勢的美國人手裡,硬生生搶下了一把霸權劍。
但日本的成功僅僅是因為換了一個上游戰場嗎?顯然不是。在過去30年,三大自然科學領域, 日本共計收獲了16個諾貝爾獎,其中有6個都屬於是化學領域 ,而這些才是日本崛起的堅實地基。
我國的基礎研究怎麼樣呢?2018年,我國基礎研究費用,在全年總研發支出中僅佔5%,而這還是10年來佔比最高的一年。而同期美國基礎研究佔比則是17%,日本是12%。 在國內各個學校論壇上,勸師弟師妹們從基礎學科轉向金融計算機等應用學科的帖子,層出不窮。
所以有人笑稱,陸家嘴學集成電路的,比張江還多。
今年7月份,更是爆出了中科院某所90多人集體離職的迷思。誠然,每個人都有擇業的自由,但需要警示的,是大家做出選擇的理由。基礎學科研究的長周期、弱轉化、低收入,令研究員們在日益上漲的房價、動則數百億利潤造假套現面前,相形見絀。
任正非曾經感嘆道:國家發展工業,過去的方針是砸錢,但錢砸下去不起作用。我們國家修橋、修路、修房子……已經習慣了只要砸錢就行。但是晶元砸錢不行,得砸數學家、物理學家、化學家……
64年前,蘇聯率先發射的一顆衛星讓美國驚醒。美國人一邊加碼「短期對抗」,一邊醞釀「長期創新」,從而開啟了多個領域的突破、領先;而今,一張張禁令也讓我們驚醒,我國不少產業只是表面上的大,急需要的是骨子裡的強。
這些危機之痛,總是令人後悔不已。過去幾十年,落後就要挨打的現實一次次提醒著我們, 要實現基礎技術能力的創新和突破,才能贏取下一個時代。