❶ 半導體板塊大漲是怎麼回事
半導體板塊11日盤中走勢活躍,截至目前,聚飛光電漲逾12%,中晶科技漲停,珈偉新能漲逾9%,上海貝嶺、韋爾股份、思瑞浦、三安光電等漲幅超7%。
消息面上,去年以來,半導體行業「漲聲」不絕於耳,漲價環節涉及代工、設計以及封測環節,漲價領域則包括內存晶元、電源管理晶元以及汽車晶元等。
另據報道,2020年12月9日,國產功率半導體龍頭士蘭微電子表示,公司相關產品成本不斷提升,從即日起SGT MOS產品的價格本月提漲20%。
12月16日,富滿電子也在產品聯絡函中稱,自2021年1月1日起,所有產品含稅價格在現行價格基礎上統一上調10%,以期聯合產業鏈合作夥伴共同應對成本壓力。
(1)存儲半導體趨勢擴展閱讀:
專業分析認為行業景氣度持續向上
銀河證券分析師指出,近期MOSFET、存儲晶元等均出現漲價趨勢,預計供不應求情況將延續。雖然去年四季度存儲晶元整體價格仍處於下行通道,但受下游數據中心建設、智能手機出貨拉動需求復甦明顯,疊加今年存儲廠商謹慎的資本開支和晶圓產能擠壓,預計以伺服器DRAM為代表的部分存儲產品價格有望步入上行通道。
天風證券指出,半導體晶元漲價背後體現的是行業景氣,漲價是表象,供需關系是核心。行業景氣度持續兩個季度,大概率會向上傳導到材料和設備環節。
❷ 半導體的未來發展
半導體是指一種導電性可受控制,范圍可從絕緣體至導體之間的材料。無論從科技或是經濟發展的角度來看,半導體的重要性都是非常巨大的。現在大部分電子產品中的核心單元都和半導體有著極為密切的關連。
一、2019年全球半導體材料市場銷顫圓售額達521.2億美元
SEMI報告茄攔塌指出,2019年全球半導體材料市場銷售額為521.2億美元,小幅下降-1.1%。分區域來看,中國台灣、韓國、中國大陸、日本、北美、歐洲半導體銷售額分別為113.4億美元、88.3億美元、86.9億美元、77.0億美元、56.2億美元、38.9億美元,分別佔全球半導體材料市場份額的22%、17%、17%、15%、11%、17%。中國大陸是2019年各地區中唯一增長的半導體材料市場,銷售規模位居第三。
—— 以上數據來源於前瞻產業研究院《半導體矽片、外延片行業市場前景預測與投資戰略規劃分析報告》
❸ 半導體的現狀及其發展趨勢
中國計算50年
——中國數字電子計算機的創業歷程及領路人
(2006-09-11 16:18:31)
■ 中國科學院院士、北京科技大學教授 高慶獅
編者按: 一轉眼,中國的計算機事業已經走過了50個春秋。在《計算機世界》紀念中國計算機事業發展50年的過程中,我們看到,在這50年裡,有太多激動人心的創舉出現,也有太多令人黯然的無奈穿過。
幾代大師為了中國計算機事業的發展鞠躬盡瘁,更多人為了中國計算機產業的前行奮發圖強。為此,我們特邀中國科學院院士、北京科技大學教授、中國科學院計算技術研究所終身研究員高慶獅撰寫此文,以紀念過往、慶祝成就,同時也警醒現狀、激勵未來。
50年風雨之後,為了尋求ICT的融合和計算領域的更大發展,中國正在積極醞釀更好的政策環境。2006年8月29日,全國信息產業科技創新會議在京召開。
自從1946年,世界上第一台數字電子計算機在美國誕生,與計算機最鄰近領域的數學和物理界的共和國泰斗、世界數學大師華羅庚教授和中國原子能事業的奠基人錢三強教授,十分關注這一新技術如何在國內發展。
中國誕生計算機
從1951年起,國內外和計算機領域相近的其他領域人才,尤其是從國外回來的教授、工程師和博士,不斷轉入到該行業中。他們當中的很多人,都在華羅庚領導的中科院數學所和錢三強領導的中科院物理所里,其中包括國際電路網路權威閔乃大教授、在美國公司有多年實踐經驗的范新弼博士、在丹麥公司有多年實踐經驗的吳幾康工程師,以及從英國留學回來的夏培肅博士和從美國留學回來的蔣士飛博士。
他們積極推動,把發展計算機列入12年發展規劃。
1956年3月,由閔乃大教授、胡世華教授、徐獻瑜教授、張效祥教授、吳幾康副研究員和北大的黨政人員組成代表團,參加了在莫斯科主辦的「計算技術發展道路」國際會議,到前蘇聯「取經」,為我國制定12年規劃的計算機部分做技術准備。當時的代表團主要成員後來都參加了12年規劃。此外,范新弼、夏培肅和蔣士飛也加入規劃制定中。在隨後制定的12年規劃中,確定了中國要研製計算機,並批准中國科學院成立計算技術、半導體、電子學及自動化等四個研究所。
計算技術研究所籌備處由科學院、總參三部、國防五院(七機部)、二機部十局(四機部)四個單位聯合成立,北京大學、清華大學也相應成立了計算數學專業和計算機專業。為了迅速培養計算機專業人才,這三個單位聯合舉辦了第一屆計算機和第一屆計算數學訓練班。計算數學訓練班的學生有幸聽到了剛剛歸國的錢學森教授和董鐵寶教授講課。錢學森教授在當時已經是國際控制論的權威專家,而董鐵寶教授在美國已經有過3~4年的編程經驗,也是當時國內惟一真正接觸過計算機的學者。當時我也是學生之一。
錢學森的數學功底的深度和廣度幾乎涵蓋了我們所學的數學的所有課程,而且運用自如,我們作為北大數學系學生,對此感到十分欽佩。同時,錢學森教授也幫助我們具體了解到,數學如何應用到實際物理世界中。
在前蘇聯專家的幫助下,由七機部張梓昌高級工程師領導研發的中國第一台數字電子計算機103機(定點32二進制位,每秒2500次)在中國科學院計算技術研究所誕生,並於1958年交付使用。參與研發的骨幹有董占球、王行剛等年輕人。隨後,由總參張效祥教授領導的中國第一台大型數字電子計算機104機(浮點40二進制位、每秒1萬次)在1959年也交付使用,骨幹有金怡濂,蘇東庄,劉錫剛,姚錫珊,周錫令等人。其中,磁心存儲器是計算所副研究員范新弼和七機部黃玉珩高級工程師領導完成的。在104機上建立的、由仲萃豪和董韞美領導的中國第一個自行設計的編譯系統,則在1961年試驗成功(Fortran型)。
國防是首要服務對象
在任何先進國家,計算機的發展首先都是為國防服務,應用於國家戰略部署上,中國也不例外。1958年,北京大學張世龍領導包括當時作為學生的王選在內的北大師生,與中國人民解放軍空軍合作,自行設計研製了數字電子計算機「北京一號」,並交付空軍使用。當時中國人民解放軍朱德總司令還親自到北京大學北閣「北京一號」機房參觀了該機器。隨後,張世龍帶領北大師生(包括王選和許卓群在內),立即投入北大自行設計的「紅旗」計算機研製工作,當時設定的目標比前蘇聯專家幫助研製的104機還高,並於1962年試算成功。但是由於搬遷和文革的干擾,搬遷後「紅旗」一直沒有能夠恢復和繼續工作。
與此同時,1958年,在哈爾濱軍事工程學院(國防科技大學前身)海軍系柳克俊的領導下,哈爾濱軍事工程學院和中國人民解放軍海軍合作,自行設計了「901」海軍計算機,並交付海軍使用。在海軍系康繼昌的領導下,哈爾濱軍事工程學院和中國人民解放軍空軍合作,自行設計的「東風113」空軍機載計算機也交付空軍使用。隨後,柳克俊領導的國產晶體管軍用的計算機,也在1961年交付海軍使用。
1958年~1962年期間,中國人民解放軍總參謀部也前後獨立研製成功了一些自行設計、全部國產化的計算機。
1964年,中科院計算技術研究所吳幾康、范新弼領導的自行設計119機(通用浮點44二進制位、每秒 5萬次)也交付使用,這是中國第一台自行設計的電子管大型通用計算機,也是當時世界上最快的電子管計算機。當時美國等發達國家已經轉入晶體管計算機領域,119機雖不能說明中國具有極高水平,但是仍然能表明,中國有能力實現「外國有的,中國要有;外國沒有的,中國也要有」這個偉大目標。
在119機上建立的,是董韞美領導的自行設計的編譯系統,該系統在1965年交付使用(Algol型),後來移植到109丙機上繼續起作用。
哈爾濱軍事工程學院計算機系慈雲桂教授領導的自行設計的晶體管計算機441B(浮點40二進制位、每秒8千次)在1964年研製成功,骨幹人員包括康鵬等人。1965年,441B機改進為計算速度每秒兩萬次。
與此同時,中科院計算技術研究所蔣士飛領導的自行設計的晶體管計算機109乙機(浮點32二進制位、每秒6萬次),也在1965年交付使用。為了發展「兩彈一星」工程,1967年,由中科院計算機所蔣士飛領導,自行設計專為兩彈一星服務的計算機109丙機,並交付使用,骨幹有沈亞城、梁吟藻等人。兩台109丙機分別安裝在二機部供核彈研究用和七機部供火箭研究用。109丙機的使用時間長達15年,被譽為「功勛計算機」,是中國第一台具有分時、中斷系統和管理程序的計算機,而且,中國第一個自行設計的管理程序就是在它上面建立的。
這些由中國科研人員自力更生、努力拚搏研製出的第一批計算機,代表了中國人掌握計算機的技術水平和成果,證明了中國有能力發展自己的全部國產化的計算機事業。
突破百萬到超越億計算
雖然我國自行設計研製了多種型號的計算機,但運算速度一直未能突破百萬次大關。1973年,北京大學(由張世龍培養的、包括許卓群和張興華等骨幹人員)與「738廠」(包括孫強南、陳華林等骨幹人員)聯合研製的集成電路計算機150(通用浮點48二進制位、每秒1百萬次)問世。這是我國擁有的第一台自行設計的百萬次集成電路計算機,也是中國第一台配有多道程序和自行設計操作系統的計算機。該操作系統由北京大學楊芙清教授領導研製,是國內第一個自行設計的操作系統。
1973年3月,在全國實際研製目標200~500萬次不能滿足中國飛行體設計的計算流體力學需要的情形下,時任國防科委副主任的錢學森,根據飛行體設計需要,要求中科院計算所在20世紀70年代研製一億次高性能巨型機,80年代完成十億次和百億次高性能巨型機,並且指出必須考慮並行計算道路。中科院計算所根據國防情報所和計算所情報室提供的國際上的公開資料,分析了1970年前後美國研製的高性能巨型機的優缺點之後,於1973年5月提出「全部器件國產化一億次高性能巨型機(20M低功耗ECL、電路-四條流水線)及其模型機(757向量計算機、10M ECL、電路-單條流水線)」的可行方案。由於文革中受到嚴重干擾,以及文革後「走馬燈」式良莠不齊的領導亂指揮,盡管在1979年,由亞城負責的20M低功耗ECL電路的集成電路晶元投片已經研發成功,但是最終「全部器件國產化一億次高性能巨型機」的研發,因為任務變化,最終擱淺。
表1和表2給出了代表中國掌握電子管、晶體管、集成電路計算機技術的發展時間表,水平主要是根據創新的「三性」中的先進性。需要說明的是,表中所列只是代表中國已掌握的計算機技術水平的計算機,其中,帶*的103、104、119、150、757,及銀河-1號巨型機和銀河-2模擬計算機等7台計算機,都被載入「記述對中華文明發展起促進作用的重要歷史事件」的中華世紀壇青銅甬道銘文中。
除了研製水平之外,產業、市場和應用的發展也同樣重要。在批量生產計算機上,電子工業部及其相關研究所(例如著名的15所)和工廠(例如著名的738廠)功不可沒。不僅上述中國早期計算機的研製和批量生產要依靠它們,而且它們也獨立設計和研製過一些成批生產的計算機(例如108系列、與清華大學合作的DJS-130等),尤其在人造衛星地面系統(例如320計算機及艦上718計算機)及其他軍工任務上,這些研究所和工廠都有過突出貢獻。研究所和工廠研究工作的重點,主要是在技術和工藝方面。他們的領軍人包括莫根生、陳立偉、曹啟章及一批骨幹人員,例如江學國等。現任中國工程院院士羅沛霖領導的仿IBM系列也起過歷史性作用,沈緒榜和李三立負責的有關衛星天上和地上計算機及其他任務用的計算機也做出了重要的貢獻。此外,七機部、清華大學及中科院各分院在發展計算技術方面還做出了許多貢獻,這里就不枚舉了。
中國自力更生全部國產化的半導體、集成電路計算機事業,和20世紀50~70年代林蘭英、王守武、王守覺和徐元森等教授領導的中科院半導體所、上海冶金所和109廠的研究及開發工作是分不開的。中科院半導體所和109廠都是從中國科學院物理所獨立出來的,中科院物理所對中國計算機事業的歷史貢獻功不可沒。
人才培養至關重要
發展計算機事業離不開人才培養,20世紀50~70年代,中科院計算技術研究所(及之後的中國科技大學)的夏培肅副研究員、北京大學和哈爾濱軍事工程學院,在組織教師和學生動手研製計算機、進行實踐、培養人才等方面,都取得了很好的成績。夏培肅領導組織教師和學生動手研製了107(定點32二進制位、每秒 250次)計算機,該計算機於1960年交付使用,並且還復制了兩台。盡管107計算機比103(1958年交付使用)、104計算機(1959年交付使用)速度低了10倍到40倍,但是對培養人才起了重要作用。
一個計算機系統是由多方面研究成果構成的。范新弼領導的磁心存儲器長期處於領先地位,其中主要的骨幹有伍福寧、王振山、徐正春、張傑、甘鴻,等等。王克本領導了中國第一個八層印刷電路版研究與設計小組。方光旦在磁頭、磁膠,張品賢在磁帶,顧爾旺在磁鼓等方面,都做出了出色的貢獻。實際上,大多計算機的研發都是集體成果,例如全國參加757計算機研發工作的人員,就有上千人。
我國第一個「計算機系統結構設計」小組於1957年在中科院計算所成立。20世紀50~70年代,它承擔了中科院計算所代表性的計算機(119、109乙、109丙、757、717等計算機)的系統結構設計任務。參與成員則根據當時前蘇聯計算機領軍人物、前蘇聯科學院列貝捷夫院士的建議,由年輕的數學專業畢業生組成。第一任小組負責人是國際網路權威人士閔乃大教授,第一個正式設計任務則是1958年5月國防部門的「導彈防禦系統計算機」系統結構設計。設計工作由北京大學張世龍和第二任小組負責人虞承宣,加上6名數學專業畢業的大學生組成,其中周巢塵、沈緒榜等3人後來分別由不同領域(軟體、航天、系統結構)、不同單位被選為中科院院士。
中國20世紀60年代編譯系統的帶頭人在當時都是年輕人,如中國人民解放軍總參謀部楊奇、中科院計算所董韞美和仲萃豪、南京大學徐家福、國防科技大學陳火旺等。中國20世紀60年代操作系統的帶頭人有北京大學楊芙清、南京大學大孫仲秀等,當時也都是年輕人。軟體正確性設計(容易推廣到硬體的正確性設計)是近20多年國際上關注的具有巨大經濟效益、社會效益和理論價值的重大問題。我國領軍人物何積豐院士、周巢塵院士如今已經是國際上知名的佼佼者。20世紀70年代,逐漸形成容錯和檢測理論和實踐的帶頭人是魏道政,而知識處理的帶頭人是陸汝鈐。
依賴進口弊端過大
20世紀70年代後期以後,中國研製的計算機,幾乎全部使用進口元器件、進口部件。
由於超大規模集成電路迅速發展,數千萬甚至上億個晶體管逐漸能夠集成在一個晶元上,20世紀80年代及其之後得到迅速發展的計算機,是普通個人使用的「微機」(PC機)及超強「微機」(後者可以組成伺服器或者並行處理的高性能計算機),而其他各式各樣的計算機(包括超級中小型計算機在內)由於性價比問題,無法和微機競爭,就自然逐步退出舞台了。國際上沒有及時調整戰略的計算機公司,例如CDC公司、王安公司等,紛紛倒閉。雖然如此,國內那一段過渡時期為了滿足用戶需求而研製的各種機型也曾有過較大貢獻,例如張修領導的KJ8920,在為用戶提供優質服務軟體方面就很突出。
中國最早意識到個人計算機發展趨勢而率先轉向研究「微機」,並且做出突出貢獻的帶頭人有倪光南、韓承德等。
國內高性能計算機,有慈雲桂、盧錫城、周興銘、楊學軍領導的銀河系列;張效祥、金怡濂、陳左寧領導的神州系列;李國傑、孫凝暉領導的曙光系列;祝明發領導的聯想深騰系列;以及周興銘領導的銀河-2數字模擬巨型機等。PC機有聯想系列、長城系列、方正系列、同方系列等,其學術代表性帶頭人是倪光南,產業代表性的領軍人是柳傳志。
計算機產業作為一個產業鏈,軟體發展依賴於整機和應用需求的發展;整機的發展依賴於晶元、部件及需求的發展;晶元的發展則依賴於「集成電路生產線大三角形」的發展。這里集成電路生產線大三角形是指集成電路生產線的三大部分,即大底座、中間層和頂層。大底座(價值十多億美元的集成電路製造工藝生產線)是從拉單晶硅到光刻-擴散-參雜,到最後封裝,相當於過去林蘭英、王守武、王守覺和徐元森等領導中科院半導體所、上海冶金所的研究工作。中間層是各種高速低功耗電路設計,相當於過去中科院計算所電路設計組蔣士飛、沈亞城等人的研究工作。20世紀70年代,沈亞城所進行的高速低功耗ECL電路設計,直到做成晶元,才可以算做完成。頂層則是硅編譯等等軟體工作,這部分工作過去是計算所使用小規模集成電路時把邏輯設計圖變成為工程布線圖的手工工作,加上半導體所製造小規模集成電路各種掩模版所需的手工工作。在超大規模集成電路的情況下,從復雜性、可靠性角度,手工是絕對不可能完成的,需要依靠硅編譯來自動完成。
在允許部分進口的環境下,一個產業鏈如果要求全部國產化,會造成一環落後引發產業鏈後續部分全部落後的情況;使用進口元器件、進口部件,使得各種類型整機可以在國際先進基礎上得到發展,進而軟體和應用都能在國際先進基礎上得到發展,從市場經濟角度看,這無疑是正確的。
但是,當國內所研製的計算機全部轉向使用進口元器件、進口部件時,一方面中國的高性能計算和PC機的發展依賴於進口元器件和進口部件的水平;另一方面中國的集成電路研製力量,由於缺少巨大的經濟支持,都轉向非計算機用的其他難度小的方向。
「元器件全部進口化」導致的結果是,不僅全部國產化的億次高性能巨型機研製中止,而且真正完全自主的國產的計算機集成電路研製工作也中斷,至今也沒有恢復,甚至沒有任何恢復的跡象,這兩方面對國家安全都很不利。實際上,「集成電路生產線大三角形」依靠進口的集成電路生產線,就等於依賴外國集成電路生產線水平和外國政府批准向中國出口的集成電路生產線的水平。引進無法達到最先進,而且在特殊情況下,引進很可能中斷,引進的生產線的備份件也不能得到更新。
「中國芯」何時真正崛起
進入21世紀以後,李德磊負責的「方舟」、胡偉武負責的「龍芯」、以及王沁參加負責的「多思」、方信我負責的「國安」等等「中國芯」項目不斷涌現,計算機產業鏈國產化又前進了一大步。但當前或者未來將出現的眾多的「中國芯」的共同點,都是「集成電路生產線大三角形」的一個應用。也就是說,其水平仍然是依賴於外國集成電路生產線水平和外國政府批准向中國出口的集成電路生產線的水平,仍然受制於人。
眾多「中國芯」的主要的差別只是在系統結構設計上,或者在高速低功耗電路等設計上,有沒有重大創新、重大突破。設計明顯創新的,有國外學者稱之為相當於「大學生課程設計」水平,雖然難聽卻也有幾分道理。盡管能設計「中國芯」的人或公司越來越多,但是能設計「中國集成電路生產線大三角形」的人,如果不採取措施,不僅目前沒有,恐怕不遠的將來仍然是空白。如果中國不能製造中國的「集成電路生產線大三角形」,那麼無論有多少種「中國芯」,中國的高性能計算機和中國PC機的發展水平就必然還是取決於美國「集成電路生產線大三角形」的發展水平及美國政府允許向中國出口的水平。
現實的道路是,我們可以通過引進、消化、吸收與獨立研究相結合的方式發展晶元產業,而建立完全自主的「集成電路生產線大三角」,則應該是國家急需解決的重中之重。
早在1965年,中科院半導體所王守覺就開始研製從邏輯圖到掩模版的自動形成系統「圖形發生器」,這項研究比美國還早。由於文革破壞而中斷了3年,1971年初研製成功時,反而比美國晚了一年多。以上歷史說明,中國人的獨立研究能力也不容忽視,研究環境也不容被忽視。
如何做到既能使產業鏈的各個環節的發展都能建立在國際最高水平之上,又能確保國家安全?這不僅僅是一個計算機產業鏈的問題,應該是許多產業鏈所存在的共同問題,更是決策者急需處理的政策問題。
中國半個世紀電子數字計算機事業的領路人,是在兩位共和國功勛科學家華羅庚和錢三強關注下的一個群體,這個群體在50年前,是10多名從相鄰領域轉過來的30~40多歲的中青年帶頭人,和五、六十名受過專業教育的20多歲的青年骨幹,還有數十名當時尚未出世的後起之秀,本文列舉的,只是這個百人群體中的一小部分。
鏈接:文中部分科學家簡歷
華羅庚:江蘇金壇人。中國解析數論、典型群、矩陣幾何學、自守函數論與多復變函數論等很多方面研究的創始人與開拓者,國際知名數學家,先後當選美國科學院外籍院士,第三世界科學院院士,法國南錫大學、美國伊利諾大學、香港中文大學榮譽博士,聯邦德國巴伐利亞科學院院士等。
錢三強:浙江湖州人,出生於浙江紹興。核物理專家、中國核原子科學之父,曾師從居里的女兒、諾貝爾獎獲得者伊萊娜?居里及其丈夫約里奧?居里。在中國研發原子彈期間,擔任技術總負責人、總設計師,被追授「兩彈一星功勛獎章」。
范新弼:電子計算機專家,湖南長沙人。1951年獲美國斯坦福大學電子學博士學位,在電子器件研究與應用領域獲8項美國專利。歸國後,領導我國第一台大型計算機及其後多台大型計算機的磁芯存儲器研製工作,領導中國半導體存儲元件研究,建立了國內第一批測試設備。
張效祥:計算機專家、中國科學院院士(學部委員)、中國解放軍總參謀部計算技術研究所研究員。領導中國第一台大型通用電子計算機的仿製並在此後的35年中主持中國自行設計的電子管、晶體管到大規模集成電路各代大型計算機的研製,為中國計算機事業的創建、開拓和發展,起了重要作用。1985年,領導完成中國第一台億次巨型並行計算機系統。
錢學森:中國現代物理學家、世界著名火箭專家、全國政協副主席,浙江杭州市人,生於上海。錢學森曾在美國任講師、副教授、教授以及超音速實驗室主任和古根罕噴氣推進研究中心主任。1950年開始,歷經5年努力,於1955年才回到祖國,1958年起長期擔任火箭導彈和航天器研製的技術領導職務。
董鐵寶:力學家、計算數學家,江蘇武進人,「中國第一個程序員」(王選),長期致力於結構力學、斷裂力學、材料力學性能、計算數學的研究和教學,我國計算機研製和斷裂力學研究的先驅者之一。1945年赴美學習,1956年歸國教學,1968年在文革中因受迫害自殺。
金怡濂:中國工程院院士、著名高性能計算機專家、國家最高科學技術獎獲得者,原籍江蘇常州。中國第一台大型計算機研製者之一,先後提出多種類型、各個時期居國內領先或國際先進水平的大型、巨型計算機系統的設計思想和技術方案,為我國高性能計算機技術的跨越式發展和趕超世界計算機先進水平有著重要貢獻。
王選:江蘇無錫人。著名的計算機應用專家,主要致力於文字、圖形、圖象的計算機處理研究。中國科學院院士、中國工程院院士、第三世界科學院院士、國家最高科學技術獎獲得者。曾任北大方正集團董事、方正控股有限公司首席科技顧問,九三學社副主席、中國科協副主席、九三學社副主席、中國科協副主席。2003年當選十屆全國政協副主席。
周巢塵:計算機軟體專家,原籍江蘇南匯,中國科學院院士(學部委員)、第三世界科學院院士、中國科學院軟體研究所研究員,曾任聯合國大學國際軟體技術研究所所長。
楊芙清:北京大學計算機學科第一位教授、博士生導師,中國科學院院士(學部委員)、計算機科學技術及軟體專家,無錫人。歷任軟體工程國家工程研究中心主任、北京大學信息與工程科學學部主任、北京大學軟體工程研究所所長、北京大學計算機科技系教授。
孫仲秀:計算機科學家、中國科學院院士,原籍浙江餘杭,生於江蘇省南京市,歷任南京大學助教、講師、副教授、教授、博士生導師、副校長等職。1974年後主持研製了中國國產系列計算機DJS200系列的DJS200/XT1和 DJS200/XT1P等操作系統。從1979年起開始對分布式計算機系統軟體和應用進行了研究,1982年在國內首次研製成功ZCZ分布式微型計算機系統,研究和開發了多個實用的分布式計算機系統。
何積豐:中國科學院院士、計算機軟體專家,生於上海,祖籍浙江寧波。現任華東師范大學終身教授、軟體學院院長,上海嵌入式系統研究所所長、聯合國大學國際軟體技術研究所高級研究員。早年進行管理信息系統和辦公自動化系統的研發。
吳幾康:安徽歙縣人。計算機專家、中國計算機事業的開拓者之一。曾於1951年至1953年在丹麥任無線電廠開發工程師,歸國後調至中國科學院近代物理研究所,後參與籌建計算技術研究所。1965年負責研製成功兩台大型通用計算機,後參與籌建771微電子學研究所,任副所長和研究員。
張梓昌:電子計算機專家。江蘇崇明(今屬上海市)人。歷任航天工業部第二研究院所長、測控公司總工程師,中國計算機學會第一屆副理事長,中國宇航學會第一、二屆理事。長期從事電子設備和計算機的研製,曾負責我國第一台計算機的技術工作,是我國計算機技術的學科帶頭人之一。
張世龍:北京大學計算機科學與技術系主任、教授,曾參加我國第一台自行設計製造的大型計算機119機和北大紅旗計算機的系統設計。
慈雲桂:著名計算機科學家、教授,中國科學院技術科學部學部委員,安徽桐城人。歷任國防科技大學副校長兼電子計算機系主任和計算機研究所所長等職,先後主持了我國多種型號計算機的研製,從領導研製我國第一台電子管數字計算專用機,到擔任「銀河」億次計算機研製的技術總指揮和總設計師,為國家經濟建設、國防建設及科學研究事業做出了突出貢獻。
馮康:應用數學和計算數學家、中國科學院院士、世界數學史上具有重要地位的科學家。生於江蘇南京,原籍浙江紹興。其獨立創造了有限元方法、自然歸化和自然邊界元方法,開辟了辛幾何和辛格式研究新領域。中國現代計算數學研究的開拓者。1997年底國家自然科學一等獎授予馮康的另一項工作「哈密爾頓系統辛幾何演算法」。歷任中國科學院計算技術研究所任副研究員、研究員,中國科學院計算中心主任、名譽主任。(排名不分先後)
(計算機世界報)
參考資料:http://www.cnii.com.cn/20060808/ca371826.htm
❹ 推進半導體技術發展的五大趨勢
過去幾十年,全球半導體行業增長主要受台式機、筆記本電腦和無線通信產品等尖端電子設備的需求,以及基於雲計算興起的推動。這些增長將繼續為高性能計算市場領域開發新應用程序。
首先,5G將讓數據量呈指數級增長。我們需要越來越多的伺服器來處理和存儲這些數據。2020年Yole報告,這些伺服器核心的高端CPU和GPU的復合年增長率有望達到29%。它們將支持大量的數據中心應用,比如超級計算和高性能計算服務。在雲 游戲 和人工智慧等新興應用的推動下,GPU預計將實現更快增長。例如,2020年3月,互聯網流量增長了近50%,法蘭克福的商業互聯網數據交換創下了數據吞吐量超過每秒9.1兆兆位的新世界紀錄。
第二個主要驅動因素是移動SoC——智能手機晶元。這個細分市場增長雖然沒有那麼快, 但這些SoC在尺寸受限的晶元領域對更多功能的需求,將推動進一步技術創新。
除了邏輯、內存和3D互聯的傳統維度擴展之外,這些新興應用程序將需要利用跨領域的創新。這需要在器件、塊和SoC級別進行新模塊、新材料和架構的改變,以實現在系統級別的效益。我們將這些創新歸納為半導體技術的五大發展趨勢。
趨勢一:摩爾定律還有用,將為半導體技術續命8到10年…
在接下來的8到10年裡,CMOS晶體管的密度縮放將大致遵循摩爾定律。這將主要通過EUV模式和引入新器件架構來實現邏輯標准單元縮放。
在7nm技術節點上引入了極紫外(EUV)光刻,可在單個曝光步驟中對一些最關鍵的晶元結構進行了設計。在5nm技術節點之外(即關鍵線後端(BEOL)金屬節距低於28-30nm時),多模式EUV光刻將不可避免地增加了晶圓成本。最終,我們希望高數值孔徑(High-NA) EUV光刻技術能夠用於行業1nm節點的最關鍵層上。這種技術將推動這些層中的一些多圖案化回到單圖案化,從而提供成本、產量和周期時間的優勢。
Imec對隨機缺陷的研究對EUV光刻技術的發展具有重要意義。隨機列印故障是指隨機的、非重復的、孤立的缺陷,如微橋、局部斷線、觸點丟失或合並。改善隨機缺陷可使用低劑量照射,從而提高吞吐量和成本。
為了加速高NA EUV的引入,我們正在安裝Attolab,它可以在高NA EUV工具面世之前測試一些關鍵的高NA EUV材料(如掩膜吸收層和電阻)。目前Attolab已經成功地完成了第一階段安裝,預計在未來幾個月將出現高NA EUV曝光。
除了EUV光刻技術的進步之外,如果沒有前沿線端(FEOL)設備架構的創新,摩爾定律就無法延續。如今,FinFET是主流晶體管架構,最先進的節點在6T標准單元中有2個鰭。然而,將鰭片長度縮小到5T標准單元會導致鰭片數量減少,標准單元中每個設備只有一個鰭片,導致設備的單位面積性能急劇下降。這里,垂直堆疊納米薄片晶體管被認為是下一代設備,可以更有效地利用設備佔用空間。另一個關鍵的除垢助推器是埋地動力軌(BPR)。埋在晶元的FEOL而不是BEOL,這些BPR將釋放互連資源路由。
將納米片縮放到2nm一代將受到n-to-p空間約束的限制。Imec設想將Forksheet作為下一代設備。通過用電介質牆定義n- p空間,軌道高度可以進一步縮放。與傳統的HVH設計相反,另一個有助於提高路由效率的標准單元架構發展是針對金屬線路的垂直-水平-垂直(VHV)設計。最終通過互補場效應晶體管(CFET)將標准cell縮小到4T,之後充分利用cell層面上的第三維度,互補場效應晶體管通過將n-場效應晶體管與p-場效應晶體管折疊。
趨勢2: 在固定功率下,邏輯性能的提高會慢下來
有了上述的創新,我們期望晶體管密度能遵循摩爾所規劃的路徑。但是在固定電源下,節點到節點的性能改進——被稱Dennard縮放比例定律,Dennard縮放比例定律(Dennard scaling)表明,隨著晶體管變得越來越小,它們的功率密度保持不變,因此功率的使用與面積成比例;電壓和電流的規模與長度成比例。
世界各地的研究人員都在尋找方法來彌補這種減速,並進一步提高晶元性能。上述埋地電力軌道預計將提供一個性能提高在系統水平由於改進的電力分配。此外,imec還著眼於在納米片和叉片裝置中加入應力,以及提高中線的接觸電阻(MOL)。
二維材料如二硫化鎢(WS2)在通道中有望提高性能,因為它們比Si或SiGe具有更強的柵長伸縮能力。其中基於2d的設備架構包括多個堆疊的薄片非常有前景,每個薄片被一個柵極堆疊包圍並從側面接觸。模擬表明,這些器件在1nm節點或更大節點上比納米片的性能更好。為了進一步改善這些器件的驅動電流,我們著重改善通道生長質量,在這些新材料中加入摻雜劑和提高接觸電阻。我們試圖通過將物理特性(如生長質量)與電氣特性相關聯來加快這些設備的學習周期。
除了FEOL, 走線擁擠和BEOL RC延遲,這些已經成為性能改善的重要瓶頸。為了提高通徑電阻,我們正在研究使用Ru或Mo的混合金屬化。我們預計半鑲嵌(semi-damascene)金屬化模塊可同時改善緊密距金屬層的電阻和電容。半鑲嵌(semi-damascene) 可通過直接模式和使用氣隙作為介電在線路之間(控制電容增加)
允許我們增加寬高比的金屬線(以降低電阻)。同時,我們篩選了各種替代導體,如二元合金,它作為『good old』 Cu的替代品,以進一步降低線路電阻。
趨勢3:3D技術使更多的異構集成成為可能
在工業領域,通過利用2.5D或3D連接的異構集成來構建系統。這些有助於解決內存問題,可在受形狀因素限制的系統中添加功能,或提高大型晶元系統的產量。隨著邏輯PPAC(性能-區域-成本)的放緩,SoC 的智能功能分區可以提供另一個縮放旋鈕。一個典型的例子是高帶寬內存棧(HBM),它由堆疊的DRAM晶元組成,這些晶元通過短的interposer鏈路直接連接到處理器晶元,例如GPU或CPU。最典型的案例是Intel Lakefield CPU上的模對模堆疊, AMD 7nm Epyc CPU。在未來,我們希望看到更多這樣的異構SOC,它是提高晶元性能的最佳橋梁。
在imec,我們通過利用我們在不同領域(如邏輯、內存、3D…)所進行的創新,在SoC級別帶來了一些好處。為了將技術與系統級別性能聯系起來,我們建立了一個名為S-EAT的框架(用於實現高級技術的系統基準測試)。這個框架可評估特定技術對系統級性能的影響。例如:我們能從緩存層次結構較低級別的片上內存的3D分區中獲益嗎?如果SRAM被磁存儲器(MRAM)取代,在系統級會發生什麼?
為了能夠在緩存層次結構的這些更深層次上進行分區,我們需要一種高密度的晶片到晶片的堆疊技術。我們已經開發了700nm間距的晶圓-晶圓混合鍵合,相信在不久的將來,鍵合技術的進步將使500nm間距的鍵合成為可能。
通過3D集成技術實現異質集成。我們已經開發了一種基於sn的微突起互連方法,互連間距降低到7µm。這種高密度連接充分利用了透硅通孔技術的潛力,使>16x更高的三維互聯密度在模具之間或模具與硅插接器之間成為可能。這樣就大大降低了對HBM I/O介面的SoC區域需求(從6 mm2降至1 mm2),並可能將HBM內存棧的互連長度縮短至多1 mm。使用混合銅鍵合也可以將模具直接與硅結合。我們正在開發3µm間距的模具到晶圓的混合鍵合,它具有高公差和放置精度。
由於SoC變得越來越異質化,一個晶元上的不同功能(邏輯、內存、I/O介面、模擬…)不需要來自單一的CMOS技術。對不同的子系統採用不同的工藝技術來優化設計成本和產量可能更有利。這種演變也可以滿足更多晶元的多樣化和定製化需求。
趨勢4:NAND和DRAM被推到極限;非易失性存儲器正在興起
內存晶元市場預測顯示,2020年內存將與2019年持平——這一變化可能部分與COVID-19減緩有關。2021年後,這個市場有望再次開始增長。新興非易失性存儲器市場預計將以>50%的復合年增長率增長,主要受嵌入式磁隨機存取存儲器(MRAM)和獨立相變存儲器(PCM)的需求推動。
NAND存儲將繼續遞增,在未來幾年內可能不會出現顛覆性架構變化。當今最先進的NAND產品具有128層存儲能力。由於晶片之間的結合,可能會產生更多的層,從而使3D擴展繼續下去。Imec通過開發像釕這樣的低電阻字線金屬,研究備用存儲介質堆,提高通道電流,並確定控制壓力的方法來實現這一路線圖。我們還專注於用更先進的FinFET器件取代NAND外圍的平面邏輯晶體管。我們正在 探索 3D FeFET與新型纖鋅礦材料,作為3D NAND替代高端存儲應用。作為傳統3D NAND的替代品,我們正在評估新型存儲器的可行性。
對於DRAM,單元縮放速度減慢,EUV光刻可能需要改進圖案。三星最近宣布EUV DRAM產品將用於10nm (1a)級。除了 探索 EUV光刻用於關鍵DRAM結構的模式,imec還為真正的3D DRAM解決方案提供了構建模塊。
在嵌入式內存領域,我通過大量的努力來理解並最終拆除所謂的內存牆,CPU從DRAM或基於SRAM的緩存中訪問數據的速度有多快?如何確保多個CPU核心訪問共享緩存時的緩存一致性?限制速度的瓶頸是什麼? 我們正在研究各種各樣的磁隨機存取存儲器(MRAM),包括自旋轉移轉矩(STT)-MRAM,自旋軌道轉矩(SOT)-MRAM和電壓控制磁各向異性(VCMA)-MRAM),以潛在地取代一些傳統的基於SRAM的L1、L2和L3緩存(圖4)。每一種MRAM存儲器都有其自身的優點和挑戰,並可能通過提高速度、功耗和/或內存密度來幫助我們克服內存瓶頸。為了進一步提高密度,我們還在積極研究可與磁隧道結相結合的選擇器,這些是MRAM的核心。
趨勢5:邊緣人工智慧晶元行業崛起
邊緣 AI預計在未來五年內將實現100%的增長。與基於雲的人工智慧不同,推理功能是嵌入在位於網路邊緣的物聯網端點(如手機和智能揚聲器)上的。物聯網設備與一個相對靠近邊緣伺服器進行無線通信。該伺服器決定將哪些數據發送到雲伺服器(通常是時間敏感性較低的任務所需的數據,如重新培訓),以及在邊緣伺服器上處理哪些數據。
與基於雲的AI(數據需要從端點到雲伺服器來回移動)相比,邊緣 AI更容易解決隱私問題。它還提供了響應速度和減少雲伺服器工作負載的優點。想像一下,一輛需要基於人工智慧做出決定的自動 汽車 。由於需要非常迅速地做出決策,系統不能等待數據傳輸到伺服器並返回。考慮到通常由電池供電的物聯網設備施加的功率限制,這些物聯網設備中的推理引擎也需要非常節能。
今天,商業上可用的邊緣 AI晶元,加上快速GPU或ASIC,可達到1-100 Tops/W運算效率。對於物聯網的實現,將需要更高的效率。Imec的目標是證明推理效率在10.000個Tops /W。
通過研究模擬內存計算架構,我們正在開發一種不同的方法。這種方法打破了傳統的馮·諾伊曼計算模式,基於從內存發送數據到CPU(或GPU)進行計算。使用模擬內存計算,節省了來回移動數據的大量能量。2019年,我們演示了基於SRAM的模擬內存計算單元(內置22nm FD-SOI技術),實現了1000Tops/W的效率。為了進一步提高到10.000Tops/W,我們正在研究非易失性存儲器,如SOT-MRAM, FeFET和基於IGZO(銦鎵鋅氧化物)的存儲器。
❺ 國產存儲晶元開始提速,兩大喜訊接連傳來,實現從0到1突破
全球存儲晶元的格局非常明確,以韓國三星,SK海力士和美國美光這三大巨頭為主,在各大存儲晶元領域中占據核心技術和市場份額的主要優勢。常見的NAND,DDR5以及DRAM都掌握在海外巨頭手中。
但其實國產存儲晶元已經開始提速了,兩大喜訊接連傳來,完成了從0到1的關鍵突破。具體是怎樣的喜訊呢?國產存儲晶元產業格局如何?
存儲晶元的重要性是顯而易見的,手機,電腦設備想要運行文件,存儲數據,那麼存儲晶元將會是不可或缺的存在。
根據存儲晶元種類的不同,賽道競爭程度也不一樣。有些存儲晶元巨頭已經將工藝做到了使用EUV光刻機的程度,而有些企業能在某個細分存儲晶元領域取得一席之地,就已經是很大的突破了。
國外巨頭因為起步時間早,有龐大的資本開支優勢,再加上產業鏈發展完善,取得領先也是能理解的。但後來居上,實現反超的例子也不是沒有,國產存儲晶元傳來兩大喜訊,已經在彎道超車了。具體有怎樣的喜訊呢?
第一大喜訊:昕原半導體建成28/22nm ReRAM生產線
對存儲晶元有一定了解的人都知道,DAND,DRAM等是發展了幾十年的存儲晶元,已經發展出完整的全球化產業鏈,相關的技術,配套設施和人才儲備也十分完善。
可是在人工智慧,雲計算等日益發展迅速的新基建領域, 探索 新型存儲晶元也成為了一種趨勢。而ReRAM這種阻變存儲器就是新型存儲晶元,它的優勢體現在讀取速度快,功耗低,應用范圍廣闊。
昕原半導體就是發展ReRAM存儲晶元的國產公司,其成立於2019年,在今年2月中旬正式傳來消息,建成了中國首條28nm/22nm的ReRAM生產線。
基於這座生產線,昕原半導體可以更快將研究成果落地,補充完善國產存儲晶元產業的生產供應鏈。
值得一提的是,在新型的ReRAM阻變存儲器產業中,入局的玩家還不是很多,而建成相關生產線的企業更是少之又少。放眼國外,昕原半導體的這一生產線建設成果都是領先的。這也意味著,中國已經在ReRAM新型阻變存儲器中把握住了先手機會,未來可期。
第二大喜訊:曝合肥長鑫今年投產17nm製程的DDR5 內存晶元
相較於昕原半導體大力發展新型阻變存儲器,合肥長鑫這家存儲巨頭則在傳統賽道上持續攻克難關。有消息爆料稱,合肥長鑫會在今年投產17nm製程工藝的DDR5內存晶元,成為國內首個參與DDR5內存晶元市場的中國企業。
DDR5是計算機內存規格的晶元,相比於DDR4等前幾代內存條,DDR5的性能更加出色,且功耗更低,是當下主流的高性能,高品質內存晶元。
DDR5的市場份額一直把控在三星、SK海力士、美光這三大巨頭手中,製造出的DDR5被各國客戶爭相下單采購,國內也一直存在DDR5內存晶元的空白。
然而喜訊傳來,消息爆料合肥長鑫會在今年進行DDR5內存晶元的投產,且還是17nm的工藝製程。在這一領域內,17nm已經是非常先進高端的水準了。
若爆料消息無誤,則說明國產DDR5晶元已經迎來有望參與全球市場的發展能力。除了投產DDR5晶元之外,合肥長鑫也一直在努力提升產能,得益於背後資本的支持,合肥長鑫計劃在今年實現每月12萬片晶圓的目標,而2年前合肥長鑫的產能水準還停留在每月4.5萬片。
以上兩個關於國產存儲晶元的喜訊接踵而至,一個是昕原半導體在新型ReRAM阻變存儲器建成生產線,為國產新型存儲晶元產業發展提供更多的可能性。
另一個是合肥長鑫計劃今年投產DDR5內存晶元,在17nm工藝的支持下,將有望拿下DDR5市場的一席之地,打破海外巨頭單一市場壟斷的局面。
不難發現,這兩個喜訊都是實現了從0到1的突破,昕原半導體的ReRAM生產線是國內首條,合肥長鑫投產DDR5也是國內首個參與者,可見國產存儲晶元已經開始提速。
其實不只是這兩大國產存儲晶元巨頭,在其餘的長江存儲,福建晉華等等存儲公司的參與下,構建了如今存儲晶元產業快速破局的格局。他們要麼是興建生產線,要麼加快技術研發突破,齊聚力量之下,相信定能為國產存儲晶元創造全新的未來。
海外巨頭長期耕耘技術研發和產業發展,國產企業要想加速進步,還得一步一個腳印。首先要樹立發展目標,其次包括人才資源,緊接著努力將研究成果落地產業。正所謂一分耕耘一分收獲,希望國產企業的耕耘都能得到應有的收獲。
對國產存儲晶元的兩個喜訊你有什麼看法呢?
❻ 半導體的發展史及其未來發展趨勢
1833年,英國巴拉迪最先發現硫化銀的電阻隨著溫度的變化情況不同於一般金屬,一般情況下,金屬的電阻隨溫度升高而增加,但巴拉迪發現硫化銀材料的電阻是隨著溫度的上升而降低。這是半導體現象的首次發現。
不久, 1839年法國的貝克萊爾發現半導體和電解質接觸形成的結,在光照下會產生一個電壓,這就是後來人們熟知的光生伏特效應,這是被發現的半導體的第二個特徵。
在1874年,德國的布勞恩觀察到某些硫化物的電導與所加電場的方向有關,即它的導電有方向性,在它兩端加一個正向電壓,它是導通的;如果把電壓極性反過來,它就不導電,這就是半導體的整流效應,也是半導體所特有的第三種特性。同年,舒斯特又發現了銅與氧化銅的整流效應。
1873年,英國的史密斯發現硒晶體材料在光照下電導增加的光電導效應,這是半導體又一個特有的性質。 半導體的這四個效應,(jianxia霍爾效應的余績——四個伴生效應的發現)雖在1880年以前就先後被發現了,但半導體這個名詞大概到1911年才被考尼白格和維斯首次使用。而總結出半導體的這四個特性一直到1947年12月才由貝爾實驗室完成。
很多人會疑問,為什麼半導體被認可需要這么多年呢?主要原因是當時的材料不純。沒有好的材料,很多與材料相關的問題就難以說清楚。
半導體於室溫時電導率約在10ˉ10~10000/Ω·cm之間,純凈的半導體溫度升高時電導率按指數上升。半導體材料有很多種,按化學成分可分為元素半導體和化合物半導體兩大類。除上述晶態半導體外,還有非晶態的有機物半導體等和本徵半導體。
1982年,江蘇無錫的江南無線電器材廠(742廠)IC生產線建成驗收投產,這是一條從日本東芝公司全面引進彩色和黑白電視機集成電路生產線,不僅擁有部封裝,而且有3英寸全新工藝設備的晶元製造線,不但引進了設備和凈化廠房及動力設備等「硬體」,而且還引進了製造工藝技術「軟體」。這是中國第一次從國外引進集成電路技術。第一期742廠共投資2.7億元(6600萬美元),建設目標是月投10000片3英寸矽片的生產能力,年產2648萬塊IC成品,產品為雙極型消費類線性電路,包括電視機電路和音響電路。到1984年達產,產量達到3000萬塊,成為中國技術先進、規模最大,具有工業化大生產的專業化工廠。 1982年10月,國務院為了加強全國計算機和大規模集成電路的領導,成立了以萬里副總理為組長的「電子計算機和大規模集成電路領導小組」,制定了中國IC發展規劃,提出「六五」期間要對半導體工業進行技術改造。 1983年,針對當時多頭引進,重復布點的情況,國務院大規模集成電路領導小組提出「治散治亂」,集成電路要「建立南北兩個基地和一個點」的發展戰略,南方基地主要指上海、江蘇和浙江,北方基地主要指北京、天津和沈陽,一個點指西安,主要為航天配套。
1986年,電子部廈門集成電路發展戰略研討會,提出「七五」期間我國集成電路技術「531」發展戰略,即普及推廣5微米技術,開發3微米技術,進行1微米技術科技攻關。 1988年,871廠紹興分廠,改名為華越微電子有限公司。 1988年9月,上無十四廠在技術引進項目,建了新廠房的基礎上,成立了中外合資公司――上海貝嶺微電子製造有限公司。 1988年,在上海元件五廠、上無七廠和上無十九廠聯合搞技術引進項目的基礎上,組建成中外合資公司――上海飛利浦半導體公司(現在的上海先進)。 1989年2月,機電部在無錫召開「八五」集成電路發展戰略研討會,提出了「加快基地建設,形成規模生產,注重發展專用電路,加強科研和支持條件,振興集成電路產業」的發展戰略。 1989年8月8日,742廠和永川半導體研究所無錫分所合並成立了中國華晶電子集團公司。
1990年10月,國家計委和機電部在北京聯合召開了有關領導和專家參加的座談會,並向黨中央進行了匯報,決定實施九O八工程。 1991年,首都鋼鐵公司和日本NEC公司成立中外合資公司――首鋼NEC電子有限公司。 1995年,電子部提出「九五」集成電路發展戰略:以市場為導向,以CAD為突破口,產學研用相結合,以我為主,開展國際合作,強化投資,加強重點工程和技術創新能力的建設,促進集成電路產業進入良性循環。 1995年10月,電子部和國家外專局在北京聯合召開國內外專家座談會,獻計獻策,加速我國集成電路產業發展。11月,電子部向國務院做了專題匯報,確定實施九0九工程。 1997年7月17日,由上海華虹集團與日本NEC公司合資組建的上海華虹NEC電子有限公司組建,總投資為12億美元,注冊資金7億美元,華虹NEC主要承擔「九0九」工程超大規模集成電路晶元生產線項目建設。 1998年1月,華晶與上華合作生產MOS圓片合約簽定,有效期四年,華晶晶元生產線開始承接上華公司來料加工業務。 1998年1月18日,「九0八」 主體工程華晶項目通過對外合同驗收,這條從朗訊科技公司引進的0.9微米的生產線已經具備了月投6000片6英寸圓片的生產能力。 1998年1月,中國華大集成電路設計中心向國內外用戶推出了熊貓2000系統,這是我國自主開發的一套EDA系統,可以滿足亞微米和深亞微米工藝需要,可處理規模達百萬門級,支持高層次設計。 1998年2月,韶光與群立在長沙簽訂LSI合資項目,投資額達2.4億元,合資建設大規模集成電路(LSI)微封裝,將形成封裝、測試集成電路5200萬塊的生產能力。 1998年2月28日,我國第一條8英寸硅單晶拋光片生產線建成投產,這個項目是在北京有色金屬研究總院半導體材料國家工程研究中心進行的。 1998年3月16日,北京華虹集成電路設計有限責任公司與日本NEC株式會社在北京長城-飯店舉行北京華虹NEC集成電路設計公司合資合同簽字儀式,新成立的合資公司其設計能力為每年約200個集成電路品種,並為華虹NEC生產線每年提供8英寸矽片兩萬片的加工訂單。 1998年4月,集成電路「九0八」工程九個產品設計開發中心項目驗收授牌,這九個設計中心為信息產業部電子第十五研究所、信息產業部電子第五下四研究所、上海集成電路設計公司、深圳先科設計中心、杭州東方設計中心、廣東專用電路設計中心、兵器第二一四研究所、北京機械工業自動化研究所和航天工業771研究所。這些設計中心是與華晶六英寸生產線項目配套建設的。 1998年6月,上海華虹NEC九0九二期工程啟動。 1998年6月12日,深港超大規模集成電路項目一期工程――後工序生產線及設計中心在深圳賽意法微電子有限公司正式投產,其集成電路封裝測試的年生產能力由原設計的3.18億塊提高到目前的7.3億塊,並將擴展的10億塊的水平。 1998年10月,華越集成電路引進的日本富士通設備和技術的生產線開始驗收試制投 片,-該生產線以雙極工藝為主、兼顧Bi-CMOS工藝、2微米技術水平、年投5英寸矽片15萬片、年產各類集成電路晶元1億只能力的前道工序生產線及動力配套系統。 1998年3月,由西安交通大學開元集團微電子科技有限公司自行設計開發的我國第一個-CMOS微型彩色攝像晶元開發成功,我國視覺晶元設計開發工作取得的一項可喜的成績。 1999年2月23日,上海華虹NEC電子有限公司建成試投片,工藝技術檔次從計劃中的0.5微米提升到了0.35微米,主導產品64M同步動態存儲器(S-DRAM)。這條生產線的建-成投產標志著我國從此有了自己的深亞微米超大規模集成電路晶元生產線。